- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Padmanathan Kasinathan; Rishi Pugazhendhi; Rajvikram Madurai Elavarasan; Vigna Kumaran Ramachandaramurthy; +8 AuthorsPadmanathan Kasinathan; Rishi Pugazhendhi; Rajvikram Madurai Elavarasan; Vigna Kumaran Ramachandaramurthy; Vinoth Ramanathan; Senthilkumar Subramanian; Sachin Kumar; Kamalakannan Nandhagopal; Raghavendra Rajan Vijaya Raghavan; Sankar Rangasamy; Ramkumar Devendiran; Mohammed H. Alsharif;doi: 10.3390/su142215258
Significant changes in society were emphasized as being required to achieve Sustainable Development Goals, a need which was further intensified with the emergence of the pandemic. The prospective society should be directed towards sustainable development, a process in which technology plays a crucial role. The proposed study discusses the technological potential for attaining the Sustainable Development Goals via disruptive technologies. This study further analyzes the outcome of disruptive technologies from the aspects of product development, health care transformation, a pandemic case study, nature-inclusive business models, smart cities and villages. These outcomes are mapped as a direct influence on Sustainable Development Goals 3, 8, 9 and 11. Various disruptive technologies and the ways in which the Sustainable Development Goals are influenced are elaborated. The investigation into the potential of disruptive technologies highlighted that Industry 5.0 and Society 5.0 are the most supportive development to underpin the efforts to achieve the Sustainable Development Goals. The study proposes the scenario where both Industry 5.0 and Society 5.0 are integrated to form smart cities and villages where the prospects of achieving Sustainable Development Goals are more favorable due to the integrated framework and Sustainable Development Goals’ interactions. Furthermore, the study proposes an integrated framework for including new age technologies to establish the concepts of Industry 5.0 and Society 5.0 integrated into smart cities and villages. The corresponding influence on the Sustainable Development Goals are also mapped. A SWOT analysis is performed to assess the proposed integrated approach to achieve Sustainable Development Goals. Ultimately, this study can assist the industrialist, policy makers and researchers in envisioning Sustainable Development Goals from technological perspectives.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su142215258&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 117 citations 117 popularity Top 10% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su142215258&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 CroatiaPublisher:Informa UK Limited Authors: Siva Agora Sakthivel Murugan, K.; Beno, Marsaline; Sankar, R.; Ganesan, Mahendran;In micro-grids, energy management is described as an information and control system that assures that both the generating and distribution systems deliver electricity at the lowest operating costs. Renewable energy sources (RESs), including electric vehicles (EVs), can be successfully used and carbon emissions reduced by establishing a DC multi-microgrid system (MMGS), which includes renewable energy sources (RESs) and the distribution network. A Multi-Microgrid based Energy Management (MM-GEM) system is suggested to increase the economics of MMGS and minimize the distribution network's network loss. MMG is a network of dispersed generators, energy storage, and adjustable loads in a distribution system that is linked. Furthermore, its operation is deconstructed to reduce communication and control costs with the decentralized structure. “Aside from enhancing system resilience, the MMGEMS substantially impacts energy efficiency, power quality, and dependability". Typical MMGEMS functionality and architecture are shown in detail. This is followed by examining current and developing technologies for monitoring and interacting with data among the MMG clusters. In addition, a wide range of MMG energy planning and control systems for interactive energy trading, multi-energy management, and resilient operations are fully examined and researched. The economic effect of the EVs’ energy transfer over time and place is examined.
Automatika arrow_drop_down AutomatikaArticle . 2023Full-Text: https://hrcak.srce.hr/file/456588Data sources: HRČAK - Portal of scientific journals of Croatiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/00051144.2023.2253065&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Automatika arrow_drop_down AutomatikaArticle . 2023Full-Text: https://hrcak.srce.hr/file/456588Data sources: HRČAK - Portal of scientific journals of Croatiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/00051144.2023.2253065&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Authors: Priyadharshini Ramu; Sivasankar Gangatharan; Sankar Rangasamy; Lucian Mihet-Popa;doi: 10.3390/su151612209
The inclusion of photovoltaics (PV) in electric power supply systems continues to be a significant factor in global interest. However, solar power exhibits intermittent uncertainty and is further unpredictable. Accurate solar generation prediction and efficient utilization are mandatory for power distribution management and demand-side management. Peak demand management and reducing energy costs can be effectively tackled through the implementation of a reliable solar power forecasting system and its efficient utilization. In this regard, the proposed work is related to efficiently managing solar PV power and optimizing power distribution using an enhanced reinforced binary particle swarm optimization (RBPSO) technique. This DSM (demand-side management) strategy involves utilizing a forecast of solar PV generation for the upcoming day and adjusting the consumption schedule of the load to decrease the highest energy demand. The proposed approach improves user comfort by adjusting the non-interruptible and flexible institutional load through clipping and shifting techniques. To evaluate the effectiveness of this approach, its performance is assessed by analyzing the peak demand range and PAR (peak-to-average ratio). It is then compared to the conventional genetic algorithm to determine its effectiveness. Simulation results obtained using MATLAB show that the PAR peak demand before DSM was found to be 1.8602 kW and 378.06 kW, and after DSM, it was reduced to 0.7211 kW and 266.54 kW. This indicates a 29% reduction in Peak demand and performance compared to the conventional genetic algorithm (GA).
Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151612209&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151612209&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2017Publisher:IEEE Authors: R. Sankar; S. Ananthesh Kumar; R. Rajarajan;Due to the increased usage of loads with power electronic control, utility service providers may enforce more strict power factor and harmonic standards in future. One of the solutions towards this is to employ Active Power Filters (APF). The primary objective of this paper is to analyse the performance of Unified Power Quality Compensator (UPQC) which is a combination of Series Active Power Filter (SAPF) and Shunt/Parallel Active Power Filter (PAPF). A Right Shunt UPQC (RS-UPQC) configuration of UPQC with a Combined Mode Control (CMC) when connected to a distribution system to protect sensitive loads against power quality tribulations under Non-Sinusoidal supply condition is used in this paper. The firing pulses for the SAPF of the UPQC are generated based on Sinusoidal Pulse Width Modulation (SPWM) control and the firing pulses for the PAPF of the UPQC are generated based on hysteresis Current control (HCC). This control is achieved without using any transformation for generating the reference voltages/currents and thus avoiding complex computations for implementation. Simulation studies are carried out in PSCAD/EMTDC to validate the performance of RS-UPQC with combined mode control for power quality augmentunder non sinusoidal supply condition.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/icecds.2017.8390194&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/icecds.2017.8390194&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2023Publisher:Institute of Advanced Engineering and Science Authors: Rangasamy Sankar; Durairaj Chandrakala; Rengaraj Hema; DakshnamurthyPadmapriya;<p>In recent, photov oltaic (PV) power generation has increased in importance. The growing significance of PV power production has generated the demand for enhancing energy efficiency via continuous operation at the maximum power point (MPP). To enable effective MPP trac king, the suggested system integrates a proportional - integral (PI) controller with the p erturb and observe (P&O) technique. In order to improve performance in a PV grid system, this work provides a unique method using a proportional - integral - derivative (PI D) controller optimized using a genetic algorithm (GA). The proposed controller architecture integrates the GA algorithm with a PID controller in the voltage source inverter (VSI) of the PV system. To enable effective grid integration, the GA is used to co ntinually optimize the PID controller settings. The converter’ s design criteria and computations are discussed, and MATLAB simulations are used to assess the system’ s performance. Compared to traditional PID controllers, the observed findings show increas ed efficiency, cheaper cost, and enhanced controllability. The suggested GA - PID controller offers opportunities for more study and development in this area while showing potential for improving PV grid system performance.</p>
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.11591/ijeecs.v32.i3.pp1327-1336&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.11591/ijeecs.v32.i3.pp1327-1336&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Authors: Sankar Rangasamy; Raghavendra Rajan Vijaya Raghavan; Rajvikram Madurai Elavarasan; Padmanathan Kasinathan;doi: 10.3390/su15064716
With the growing consumer demand in the electronics field, sustainable and effective cooling approaches are imperative to maximize operational efficiency. Heat pipes shave a major consideration in the field of heat transfer in a modern era of miniaturization of equipment. In current trends, the proportion of custom-designed electronic chips is increasing, given the space constraints of the application. Additionally, the use of nanofluids in heat pipes has drawn considerable attention because of their exceptional performance in heat transfer. This research is proposed primarily to investigate the effect of nanofluids on the performance of the partially flattened heat pipe. Here, the evaporator portion forms flat shape which is mostly suitable for fixing easily in electronic circuits. The remaining portions, such as the adiabatic and condenser, are left as circular. This work also covers the development of flattened heat pipes and analyzes their performance. Pure water, Titanium Oxide (TiO2), and Aluminum Oxide (Al2O3)-water-based nanofluids have been used in this research as working fluids. The heat transfer analysis on the customized partially flattened heat pipe was performed, and the results have been compared with fully flattened and circular heat pipes. The heat transfer parameters, such as the heat transfer coefficient and thermal resistance, have been determined from the heat input, evaporator temperature, and condenser temperature for various inclination angles including 0°, 45°, and 90° with the heat input varied between 50–300 W. The results have shown that the flattened heat pipe performed better with Al2O3 nanofluid at an inclination angle of 45° at all of the heat inputs and provided better thermal resistance compared with the other combinations. At 45°, the resistance of the heat pipe was reduced by 2% and 8% with Al2O3 nanofluid compared with water and TiO2 nanofluid. Furthermore, the heat transfer coefficient was found higher by 4 W/m2-K and 4.6 W/m2-K with Al2O3 and gives better results in terms of resistance and heat transfer coefficient.
Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/6/4716/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15064716&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/6/4716/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15064716&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2007Publisher:IEE Authors: R. Sankar; S. Ramareddy;doi: 10.1049/ic:20070632
This paper deals with the control of speed regulation of a separately excited PMDC motor fed from single phase fully controlled converter. In many industries , the PMDC motor plays a vital role for variety of control applications. The speed regulation of separately excited PMDC motor is poor in discontinuous mode when fed from single phase fully controlled converter. The aim of this work is to implement an efficient controller like PI, PD and PID for PMDC drive operating in discontinuous mode of the converter. In this work it is observed that the PI controller delivers superior performance than any other controller in the discontinuous mode of the converter, in achieving better speed regulation. Simulation results prove the effectiveness of the proposed PI controller compared with other controllers.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1049/ic:20070632&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1049/ic:20070632&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Padmanathan Kasinathan; Rishi Pugazhendhi; Rajvikram Madurai Elavarasan; Vigna Kumaran Ramachandaramurthy; +8 AuthorsPadmanathan Kasinathan; Rishi Pugazhendhi; Rajvikram Madurai Elavarasan; Vigna Kumaran Ramachandaramurthy; Vinoth Ramanathan; Senthilkumar Subramanian; Sachin Kumar; Kamalakannan Nandhagopal; Raghavendra Rajan Vijaya Raghavan; Sankar Rangasamy; Ramkumar Devendiran; Mohammed H. Alsharif;doi: 10.3390/su142215258
Significant changes in society were emphasized as being required to achieve Sustainable Development Goals, a need which was further intensified with the emergence of the pandemic. The prospective society should be directed towards sustainable development, a process in which technology plays a crucial role. The proposed study discusses the technological potential for attaining the Sustainable Development Goals via disruptive technologies. This study further analyzes the outcome of disruptive technologies from the aspects of product development, health care transformation, a pandemic case study, nature-inclusive business models, smart cities and villages. These outcomes are mapped as a direct influence on Sustainable Development Goals 3, 8, 9 and 11. Various disruptive technologies and the ways in which the Sustainable Development Goals are influenced are elaborated. The investigation into the potential of disruptive technologies highlighted that Industry 5.0 and Society 5.0 are the most supportive development to underpin the efforts to achieve the Sustainable Development Goals. The study proposes the scenario where both Industry 5.0 and Society 5.0 are integrated to form smart cities and villages where the prospects of achieving Sustainable Development Goals are more favorable due to the integrated framework and Sustainable Development Goals’ interactions. Furthermore, the study proposes an integrated framework for including new age technologies to establish the concepts of Industry 5.0 and Society 5.0 integrated into smart cities and villages. The corresponding influence on the Sustainable Development Goals are also mapped. A SWOT analysis is performed to assess the proposed integrated approach to achieve Sustainable Development Goals. Ultimately, this study can assist the industrialist, policy makers and researchers in envisioning Sustainable Development Goals from technological perspectives.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su142215258&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 117 citations 117 popularity Top 10% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su142215258&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 CroatiaPublisher:Informa UK Limited Authors: Siva Agora Sakthivel Murugan, K.; Beno, Marsaline; Sankar, R.; Ganesan, Mahendran;In micro-grids, energy management is described as an information and control system that assures that both the generating and distribution systems deliver electricity at the lowest operating costs. Renewable energy sources (RESs), including electric vehicles (EVs), can be successfully used and carbon emissions reduced by establishing a DC multi-microgrid system (MMGS), which includes renewable energy sources (RESs) and the distribution network. A Multi-Microgrid based Energy Management (MM-GEM) system is suggested to increase the economics of MMGS and minimize the distribution network's network loss. MMG is a network of dispersed generators, energy storage, and adjustable loads in a distribution system that is linked. Furthermore, its operation is deconstructed to reduce communication and control costs with the decentralized structure. “Aside from enhancing system resilience, the MMGEMS substantially impacts energy efficiency, power quality, and dependability". Typical MMGEMS functionality and architecture are shown in detail. This is followed by examining current and developing technologies for monitoring and interacting with data among the MMG clusters. In addition, a wide range of MMG energy planning and control systems for interactive energy trading, multi-energy management, and resilient operations are fully examined and researched. The economic effect of the EVs’ energy transfer over time and place is examined.
Automatika arrow_drop_down AutomatikaArticle . 2023Full-Text: https://hrcak.srce.hr/file/456588Data sources: HRČAK - Portal of scientific journals of Croatiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/00051144.2023.2253065&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Automatika arrow_drop_down AutomatikaArticle . 2023Full-Text: https://hrcak.srce.hr/file/456588Data sources: HRČAK - Portal of scientific journals of Croatiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/00051144.2023.2253065&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Authors: Priyadharshini Ramu; Sivasankar Gangatharan; Sankar Rangasamy; Lucian Mihet-Popa;doi: 10.3390/su151612209
The inclusion of photovoltaics (PV) in electric power supply systems continues to be a significant factor in global interest. However, solar power exhibits intermittent uncertainty and is further unpredictable. Accurate solar generation prediction and efficient utilization are mandatory for power distribution management and demand-side management. Peak demand management and reducing energy costs can be effectively tackled through the implementation of a reliable solar power forecasting system and its efficient utilization. In this regard, the proposed work is related to efficiently managing solar PV power and optimizing power distribution using an enhanced reinforced binary particle swarm optimization (RBPSO) technique. This DSM (demand-side management) strategy involves utilizing a forecast of solar PV generation for the upcoming day and adjusting the consumption schedule of the load to decrease the highest energy demand. The proposed approach improves user comfort by adjusting the non-interruptible and flexible institutional load through clipping and shifting techniques. To evaluate the effectiveness of this approach, its performance is assessed by analyzing the peak demand range and PAR (peak-to-average ratio). It is then compared to the conventional genetic algorithm to determine its effectiveness. Simulation results obtained using MATLAB show that the PAR peak demand before DSM was found to be 1.8602 kW and 378.06 kW, and after DSM, it was reduced to 0.7211 kW and 266.54 kW. This indicates a 29% reduction in Peak demand and performance compared to the conventional genetic algorithm (GA).
Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151612209&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151612209&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2017Publisher:IEEE Authors: R. Sankar; S. Ananthesh Kumar; R. Rajarajan;Due to the increased usage of loads with power electronic control, utility service providers may enforce more strict power factor and harmonic standards in future. One of the solutions towards this is to employ Active Power Filters (APF). The primary objective of this paper is to analyse the performance of Unified Power Quality Compensator (UPQC) which is a combination of Series Active Power Filter (SAPF) and Shunt/Parallel Active Power Filter (PAPF). A Right Shunt UPQC (RS-UPQC) configuration of UPQC with a Combined Mode Control (CMC) when connected to a distribution system to protect sensitive loads against power quality tribulations under Non-Sinusoidal supply condition is used in this paper. The firing pulses for the SAPF of the UPQC are generated based on Sinusoidal Pulse Width Modulation (SPWM) control and the firing pulses for the PAPF of the UPQC are generated based on hysteresis Current control (HCC). This control is achieved without using any transformation for generating the reference voltages/currents and thus avoiding complex computations for implementation. Simulation studies are carried out in PSCAD/EMTDC to validate the performance of RS-UPQC with combined mode control for power quality augmentunder non sinusoidal supply condition.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/icecds.2017.8390194&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/icecds.2017.8390194&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2023Publisher:Institute of Advanced Engineering and Science Authors: Rangasamy Sankar; Durairaj Chandrakala; Rengaraj Hema; DakshnamurthyPadmapriya;<p>In recent, photov oltaic (PV) power generation has increased in importance. The growing significance of PV power production has generated the demand for enhancing energy efficiency via continuous operation at the maximum power point (MPP). To enable effective MPP trac king, the suggested system integrates a proportional - integral (PI) controller with the p erturb and observe (P&O) technique. In order to improve performance in a PV grid system, this work provides a unique method using a proportional - integral - derivative (PI D) controller optimized using a genetic algorithm (GA). The proposed controller architecture integrates the GA algorithm with a PID controller in the voltage source inverter (VSI) of the PV system. To enable effective grid integration, the GA is used to co ntinually optimize the PID controller settings. The converter’ s design criteria and computations are discussed, and MATLAB simulations are used to assess the system’ s performance. Compared to traditional PID controllers, the observed findings show increas ed efficiency, cheaper cost, and enhanced controllability. The suggested GA - PID controller offers opportunities for more study and development in this area while showing potential for improving PV grid system performance.</p>
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.11591/ijeecs.v32.i3.pp1327-1336&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.11591/ijeecs.v32.i3.pp1327-1336&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Authors: Sankar Rangasamy; Raghavendra Rajan Vijaya Raghavan; Rajvikram Madurai Elavarasan; Padmanathan Kasinathan;doi: 10.3390/su15064716
With the growing consumer demand in the electronics field, sustainable and effective cooling approaches are imperative to maximize operational efficiency. Heat pipes shave a major consideration in the field of heat transfer in a modern era of miniaturization of equipment. In current trends, the proportion of custom-designed electronic chips is increasing, given the space constraints of the application. Additionally, the use of nanofluids in heat pipes has drawn considerable attention because of their exceptional performance in heat transfer. This research is proposed primarily to investigate the effect of nanofluids on the performance of the partially flattened heat pipe. Here, the evaporator portion forms flat shape which is mostly suitable for fixing easily in electronic circuits. The remaining portions, such as the adiabatic and condenser, are left as circular. This work also covers the development of flattened heat pipes and analyzes their performance. Pure water, Titanium Oxide (TiO2), and Aluminum Oxide (Al2O3)-water-based nanofluids have been used in this research as working fluids. The heat transfer analysis on the customized partially flattened heat pipe was performed, and the results have been compared with fully flattened and circular heat pipes. The heat transfer parameters, such as the heat transfer coefficient and thermal resistance, have been determined from the heat input, evaporator temperature, and condenser temperature for various inclination angles including 0°, 45°, and 90° with the heat input varied between 50–300 W. The results have shown that the flattened heat pipe performed better with Al2O3 nanofluid at an inclination angle of 45° at all of the heat inputs and provided better thermal resistance compared with the other combinations. At 45°, the resistance of the heat pipe was reduced by 2% and 8% with Al2O3 nanofluid compared with water and TiO2 nanofluid. Furthermore, the heat transfer coefficient was found higher by 4 W/m2-K and 4.6 W/m2-K with Al2O3 and gives better results in terms of resistance and heat transfer coefficient.
Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/6/4716/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15064716&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/6/4716/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15064716&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2007Publisher:IEE Authors: R. Sankar; S. Ramareddy;doi: 10.1049/ic:20070632
This paper deals with the control of speed regulation of a separately excited PMDC motor fed from single phase fully controlled converter. In many industries , the PMDC motor plays a vital role for variety of control applications. The speed regulation of separately excited PMDC motor is poor in discontinuous mode when fed from single phase fully controlled converter. The aim of this work is to implement an efficient controller like PI, PD and PID for PMDC drive operating in discontinuous mode of the converter. In this work it is observed that the PI controller delivers superior performance than any other controller in the discontinuous mode of the converter, in achieving better speed regulation. Simulation results prove the effectiveness of the proposed PI controller compared with other controllers.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1049/ic:20070632&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1049/ic:20070632&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu