- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2016 France, United KingdomPublisher:University of Chicago Press Portugal, Steven; Green, Jonathan; Halsey, Lewis; Arnold, Walter; Careau, Vincent; Dann, Peter; Frappell, Peter; Grémillet, David; Handrich, Yves; Martin, Graham; Ruf, Thomas; Guillemette, Magella; Butler, Patrick;doi: 10.1086/686322
pmid: 27153134
Energy management models provide theories and predictions for how animals manage their energy budgets within their energetic constraints, in terms of their resting metabolic rate (RMR) and daily energy expenditure (DEE). Thus, uncovering what associations exist between DEE and RMR is key to testing these models. Accordingly, there is considerable interest in the relationship between DEE and RMR at both inter- and intraspecific levels. Interpretation of the evidence for particular energy management models is enhanced by also considering the energy spent specifically on costly activities (activity energy expenditure [AEE] = DEE - RMR). However, to date there have been few intraspecific studies investigating such patterns. Our aim was to determine whether there is a generality of intraspecific relationships among RMR, DEE, and AEE using long-term data sets for bird and mammal species. For mammals, we use minimum heart rate (fH), mean fH, and activity fH as qualitative proxies for RMR, DEE, and AEE, respectively. For the birds, we take advantage of calibration equations to convert fH into rate of oxygen consumption in order to provide quantitative proxies for RMR, DEE, and AEE. For all 11 species, the DEE proxy was significantly positively correlated with the RMR proxy. There was also evidence of a significant positive correlation between AEE and RMR in all four mammal species but only in some of the bird species. Our results indicate there is no universal rule for birds and mammals governing the relationships among RMR, AEE, and DEE. Furthermore, they suggest that birds tend to have a different strategy for managing their energy budgets from those of mammals and that there are also differences in strategy between bird species. Future work in laboratory settings or highly controlled field settings can tease out the environmental and physiological processes contributing to variation in energy management strategies exhibited by different species.
HAL-IN2P3 (Institut ... arrow_drop_down HAL-IN2P3 (Institut national de physique nucléaire et de physique des particules)Article . 2016Full-Text: https://hal.science/hal-03561726Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1086/686322&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert HAL-IN2P3 (Institut ... arrow_drop_down HAL-IN2P3 (Institut national de physique nucléaire et de physique des particules)Article . 2016Full-Text: https://hal.science/hal-03561726Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1086/686322&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2018 United KingdomPublisher:The Royal Society Olivia Hicks; Sarah J. Burthe; Francis Daunt; Mark Newell; Adam Butler; Motohiro Ito; Katsufumi Sato; Jonathan A. Green;Parasites have profound fitness effects on their hosts, yet these are often sub-lethal, making them difficult to understand and quantify. A principal sub-lethal mechanism that reduces fitness is parasite-induced increase in energetic costs of specific behaviours, potentially resulting in changes to time and energy budgets. However, quantifying the influence of parasites on these costs has not been undertaken in free-living animals. We used accelerometers to estimate energy expenditure on flying, diving and resting, in relation to a natural gradient of endo-parasite loads in a wild population of European shagsPhalacrocorax aristotelis. We found that flight costs were 10% higher in adult females with higher parasite loads and these individuals spent 44% less time flying than females with lower parasite loads. There was no evidence for an effect of parasite load on daily energy expenditure, suggesting the existence of an energy ceiling, with the increase in cost of flight compensated for by a reduction in flight duration. These behaviour specific costs of parasitism will have knock-on effects on reproductive success, if constraints on foraging behaviour detrimentally affect provisioning of young. The findings emphasize the importance of natural parasite loads in shaping the ecology and life-history of their hosts, which can have significant population level consequences.
CORE arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the Royal Society B Biological SciencesArticleLicense: CC BYData sources: UnpayWallProceedings of the Royal Society B Biological SciencesConference objectData sources: OpenAPC Global InitiativeProceedings of the Royal Society B Biological SciencesArticle . 2018 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2019Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2018.0489&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the Royal Society B Biological SciencesArticleLicense: CC BYData sources: UnpayWallProceedings of the Royal Society B Biological SciencesConference objectData sources: OpenAPC Global InitiativeProceedings of the Royal Society B Biological SciencesArticle . 2018 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2019Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2018.0489&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 France, France, United KingdomPublisher:Wiley Lewis G. Halsey; Jonathan A. Green; Sean D. Twiss; Walter Arnold; Sarah J. Burthe; Patrick J. Butler; Steven J. Cooke; David Grémillet; Thomas Ruf; Olivia Hicks; Katarzyna J. Minta; Tanya S. Prystay; Claudia A. F. Wascher; Vincent Careau;Abstract Animals are expected to be judicious in the use of the energy they gain due to the costs and limits associated with its intake. The management of energy expenditure (EE) exhibited by animals has previously been considered in terms of three patterns: the constrained, independent and performance patterns of energy management. These patterns can be interpreted by regressing daily EE against maintenance EE measured over extended periods. From the multiple studies on this topic, there is equivocal evidence about the existence of universal patterns in certain aspects of energy management. The implicit assumption that animals exhibit specifically one of three discrete energy management patterns, and without variation, seems simplistic. We suggest that animals can exhibit gradations of different energy management patterns and that the exact pattern will fluctuate as their environmental context changes. To investigate these ideas, and for possible large‐scale patterns in energy management, we analysed long‐term heart rate data—a strong proxy for EE—across and within individuals in 16 species of birds, mammals and fish. Our analyses of 292 individuals representing 46,539 observation‐days suggest that vertebrates typically exhibit predominantly the independent or performance energy patterns at the across‐individual level, and that the pattern does not associate with taxonomic group. Within individuals, however, animals generally exhibit some degree of energy constraint. Together, these findings indicate that across diverse species, some individuals supply more energy to all aspects of their life than do others, however all individuals must trade‐off deployment of their available energy between competing functions. This demonstrates that within‐individual analyses are essential for the interpretation of energy management patterns. We also found that species do not necessarily exhibit a fixed energy management pattern but rather temporal variation in their energy management over the year. Animals’ energy management exhibited stronger energy constraint during periods of higher EE, which typically coincided with clear and key life cycle events such as reproduction, suggesting an adaptive plasticity to respond to fluctuating energy demands. A plain language summary is available for this article.
NERC Open Research A... arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Functional EcologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefDurham University: Durham Research OnlineArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2435.13264&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Functional EcologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefDurham University: Durham Research OnlineArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2435.13264&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Wiley L. M. Soanes; J. A. Green; M. Bolton; G. Milligan; F. Mukhida; L. G. Halsey;doi: 10.1111/jav.02670
The archetypal foraging behaviour of tropical seabirds is generally accepted to differ from that of their temperate and polar breeding counterparts, with the former exhibiting less predictable foraging behaviour associated with the less predictable prey of the tropical marine environment. Similarly, temperate and polar species have predictable, annual breeding seasons, enabling them to profit during periods of the year when prey availability is highest, while tropical seabird species exhibit considerable variability in their breeding strategies. Until now, the reasons for such variation in breeding strategies between tropical seabirds are yet to be investigated. We hypothesise that while some tropical species breed asynchronously in response to unpredictable fluctuations in prey availability, others adopt a seasonal breeding strategy for the same reasons that temperate and polar species do. Consequently, the predictability of seabird foraging behaviour in the tropics may be related to breeding strategy, with populations that breed seasonally exhibiting more predictable foraging behaviour than those that breed aseasonally. To test these predictions, we used GPS tracking to examine the foraging behaviour of two closely related tropical seabird species that colonise the same island yet exhibit markedly different breeding strategies: the asynchronously breeding brown booby Sula leucogaster and the seasonal breeding masked booby Sula dactylatra. We obtained tracks for 251 birds over five years. We found that brown boobies forage less predictably than masked boobies, indicated by larger core foraging areas, lower levels of foraging area overlap between individuals and exhibit more variability between breeding periods. Our results challenge the view that the foraging behaviour of tropical seabirds is always less predictable than that of seabirds breeding in temperate and polar regions and highlight the considerable variability in the breeding and foraging strategies adopted by tropical seabirds which demand further exploration.
CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jav.02670&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jav.02670&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010 AustraliaPublisher:Wiley Craig R. White; Craig R. White; David Grémillet; David Grémillet; Patrick J. Butler; Graham Martin; David Boertmann; Jonathan A. Green;Arctic seas have warmed and sea ice has retreated. This has resulted in range contraction and population declines in some species, but it could potentially be a boon for others. Great Cormorants Phalacrocorax carbo have a partially wettable plumage and seem poorly suited to foraging in Arctic waters. We show that rates of population change of Cormorant colonies around Disko Bay, Greenland, are positively correlated with sea surface temperature, suggesting that they may benefit from a warming Arctic. However, although Cormorant populations may increase in response to Arctic warming, the extent of expansion of their winter range may ultimately be limited by other factors, such as sensory constraints on foraging behaviour during long Arctic nights.
PURE Aarhus Universi... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1474-919x.2010.01068.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Average influence Average impulse Average Powered by BIP!
more_vert PURE Aarhus Universi... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1474-919x.2010.01068.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 Spain, Spain, Spain, United Kingdom, Argentina, Argentina, SpainPublisher:Inter-Research Science Center Lewison, R.; Oro, D.; Godley, B.J.; Underhill, L.; Bearhop, S.; Wilson, R.P.; Ainley, D.; Arcos, J.M.; Boersma, P.D.; Borboroglu, P.G.; Boulinier, T.; Frederiksen, M.; Genovart, M.; Gonzalez-Solis, J.; Green, J.A.; Gremillet, D.; Hamer, K.C.; Hilton, G.M.; Hyrenbach, K.D.; Martinez-Abrain, A.; Montevecchi, W.A.; Phillips, R.A.; Ryan, P.G.; Sagar, P.; Sydeman, W.J.; Wanless, S.; Watanuki, Y.; Weimerskirch, H.; Yorio, P.;doi: 10.3354/esr00419
handle: 10261/57195 , 11336/27093
Seabirds are facing a growing number of threats in both terrestrial and marine habitats, and many populations have experienced dramatic changes over past decades. Years of seabird research have improved our understanding of seabird populations and provided a broader understanding of marine ecological processes. In an effort to encourage future research and guide seabird conservation science, seabird researchers from 9 nations identified the 20 highest priority research questions and organized these into 6 general categories: (1) population dynamics, (2) spatial ecology, (3) tropho-dynamics, (4) fisheries interactions, (5) response to global change, and (6) management of anthropogenic impacts (focusing on invasive species, contaminants and protected areas). For each category, we provide an assessment of the current approaches, challenges and future directions. While this is not an exhaustive list of all research needed to address the myriad conservation challenges seabirds face, the results of this effort represent an important synthesis of current expert opinion across sub-disciplines within seabird ecology. As this synthesis highlights, research, in conjunction with direct management, education, and community engagement, can play an important role in facilitating the conservation and management of seabird populations and of the ocean ecosystems on which they and we depend.
NERC Open Research A... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de la Universitat de BarcelonaArticle . 2012License: CC BYData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2012Data sources: Recolector de Ciencia Abierta, RECOLECTANatural Environment Research Council: NERC Open Research ArchiveArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/esr00419&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 151 citations 151 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 108visibility views 108 download downloads 139 Powered bymore_vert NERC Open Research A... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de la Universitat de BarcelonaArticle . 2012License: CC BYData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2012Data sources: Recolector de Ciencia Abierta, RECOLECTANatural Environment Research Council: NERC Open Research ArchiveArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/esr00419&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 United KingdomPublisher:Wiley Funded by:UKRI | UK Status, Change and Pro..., UKRI | Adapting to the Challenge...UKRI| UK Status, Change and Projections of the Environment (UK-SCaPE) ,UKRI| Adapting to the Challenges of a Changing Environment (ACCE)Eve Merrall; Jonathan A. Green; Leonie A. Robinson; Adam Butler; Matt J. Wood; Mark A. Newell; Julie Black; Francis Daunt; Catharine Horswill;Abstract Many industries are required to perform population viability analysis (PVA) during the consenting process for new developments to establish potential impacts on protected populations. However, these assessments rarely account for density‐dependent regulation of demographic rates. Excluding density‐dependent regulation from PVA‐based impact assessments is often assumed to provide a maximum estimate of impact and therefore offer a precautionary approach to assessment. However, there is also concern that this practice may unnecessarily impede the development of important industries, such as offshore renewable energy. In this study, we assess density‐dependent regulation of breeding success in 31 populations of seabird. We then quantify the strength and form of this regulation using eight different formulations. Finally, we use PVA to examine how each formulation influences the recreation of observed dynamics (i.e. model validation), as well as the predicted absolute and relative population response to an extrinsic threat (i.e. model projection). We found evidence of both negative (n = 3) and positive (n = 5) regulation of seabird breeding success. In populations exhibiting negative regulation, excluding density‐dependent regulation from PVA‐based impact assessment allowed uncontrolled population growth, such that model outcomes became biologically implausible. By contrast, in populations exhibiting positive regulation, excluding density‐dependent regulation provided an appropriate reconstruction of observed dynamics, but population decline was underestimated in some populations. We find that multiple formulations of density dependence perform comparably at the detection, validation and projection stages of analysis. However, we tentatively recommend using a log‐linear or Weibull distribution to describe density‐dependent regulation of seabird breeding success in impact assessments to balance accuracy with caution. Finally, we show that relative PVA metrics of impact assessment cannot necessarily be used to overcome PVA misspecification by assuming density independence in positively regulated populations. Synthesis and applications: We suggest that a density‐dependent approach when performing PVA‐based assessments for seabird populations will prevent biologically unrealistic, unconstrained population growth and therefore ensure meaningful PVA metrics in populations experiencing negative regulation. It will also maintain a precautionary approach for populations experiencing positive regulation, crucial when estimating impacts for these more vulnerable populations. These conclusions have immediate international application within the consenting processes for marine industries.
NERC Open Research A... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2664.14750&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2664.14750&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 United Kingdom, AustraliaPublisher:Wiley Steven J. Portugal; Craig R. White; Peter B. Frappell; Jonathan A. Green; Patrick J. Butler;AbstractThe position of the Moon in relation to the Earth and the Sun gives rise to several predictable cycles, and natural changes in nighttime light intensity are known to cause alterations to physiological processes and behaviors in many animals. The limited research undertaken to date on the physiological responses of animals to the lunar illumination has exclusively focused on the synodic lunar cycle (full moon to full moon, or moon phase) but the moon's orbit—its distance from the Earth—may also be relevant. Every month, the moon moves from apogee, its most distant point from Earth—and then to perigee, its closest point to Earth. Here, we studied wild barnacle geese (Branta leucopsis) to investigate the influence of multiple interacting lunar cycles on the physiology of diurnally active animals. Our study, which uses biologging technology to continually monitor body temperature and heart rate for an entire annual cycle, asks whether there is evidence for a physiological response to natural cycles in lunar brightness in wild birds, particularly “supermoon” phenomena, where perigee coincides with a full moon. There was a three‐way interaction between lunar phase, lunar distance, and cloud cover as predictors of nighttime mean body temperature, such that body temperature was highest on clear nights when the full moon coincided with perigee moon. Our study is the first to report the physiological responses of wild birds to “supermoon” events; the wild geese responded to the combination of two independent lunar cycles, by significantly increasing their body temperature at night. That wild birds respond to natural fluctuations in nighttime ambient light levels support the documented responses of many species to anthropogenic sources of artificial light, that birds seem unable to override. As most biological systems are arguably organized foremost by light, this suggests that any interactions between lunar cycles and local weather conditions could have significant impacts on the energy budgets of birds.
CORE arrow_drop_down University of Tasmania: UTas ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ece3.5311&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down University of Tasmania: UTas ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ece3.5311&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 AustraliaPublisher:Wiley Craig R. White; Craig R. White; Patrick J. Butler; David Grémillet; David Grémillet; Graham Martin; Jonathan A. Green;AbstractFor many polar species, climate change is likely to result in range contractions and negative population trends. For those species whose distribution is limited by sea ice and cold water, however, polar warming could result in population increases and range expansion. Population increases of great cormorants Phalacrocorax carbo in Greenland are associated with warmer sea surface temperatures, but the actual impact of environmental change on cormorant spatial ecology remains unclear. In the present study, we investigate how Arctic warming is likely to influence the distribution of cormorants in Greenland. Using geolocation data, we show that many individuals that breed above the Arctic Circle migrate south and winter at lower latitude. We then couple estimates of migratory flight costs with a model that predicts daily energy expenditure during winter on the basis of water temperature, ambient illumination during diving, dive depth and day length. This model shows that the most energy efficient strategy predicted for any breeding location is to migrate as far south as possible, and that, for a given wintering location, it is more energetically expensive to breed at high latitude. We argue that cormorants currently undertake a winter migration to escape the polar night and reduce winter energy costs and that their wintering grounds in Greenland will remain largely unchanged under Arctic warming. This is because low levels of ambient illumination during the polar night will continue to restrict foraging opportunities at high latitude during winter. Northward expansion of the breeding range will result in increased energy expenditure associated with long migratory flights, and the cost of such flights may ultimately limit the breeding range of cormorants. Such limitations are likely to represent a general constraint on the capacity of visually guided predators to respond to climate warming, and may limit the predicted poleward range shifts of these species.
Journal of Zoology arrow_drop_down Journal of ZoologyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1469-7998.2012.00968.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu8 citations 8 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Journal of Zoology arrow_drop_down Journal of ZoologyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1469-7998.2012.00968.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2016 France, United KingdomPublisher:University of Chicago Press Portugal, Steven; Green, Jonathan; Halsey, Lewis; Arnold, Walter; Careau, Vincent; Dann, Peter; Frappell, Peter; Grémillet, David; Handrich, Yves; Martin, Graham; Ruf, Thomas; Guillemette, Magella; Butler, Patrick;doi: 10.1086/686322
pmid: 27153134
Energy management models provide theories and predictions for how animals manage their energy budgets within their energetic constraints, in terms of their resting metabolic rate (RMR) and daily energy expenditure (DEE). Thus, uncovering what associations exist between DEE and RMR is key to testing these models. Accordingly, there is considerable interest in the relationship between DEE and RMR at both inter- and intraspecific levels. Interpretation of the evidence for particular energy management models is enhanced by also considering the energy spent specifically on costly activities (activity energy expenditure [AEE] = DEE - RMR). However, to date there have been few intraspecific studies investigating such patterns. Our aim was to determine whether there is a generality of intraspecific relationships among RMR, DEE, and AEE using long-term data sets for bird and mammal species. For mammals, we use minimum heart rate (fH), mean fH, and activity fH as qualitative proxies for RMR, DEE, and AEE, respectively. For the birds, we take advantage of calibration equations to convert fH into rate of oxygen consumption in order to provide quantitative proxies for RMR, DEE, and AEE. For all 11 species, the DEE proxy was significantly positively correlated with the RMR proxy. There was also evidence of a significant positive correlation between AEE and RMR in all four mammal species but only in some of the bird species. Our results indicate there is no universal rule for birds and mammals governing the relationships among RMR, AEE, and DEE. Furthermore, they suggest that birds tend to have a different strategy for managing their energy budgets from those of mammals and that there are also differences in strategy between bird species. Future work in laboratory settings or highly controlled field settings can tease out the environmental and physiological processes contributing to variation in energy management strategies exhibited by different species.
HAL-IN2P3 (Institut ... arrow_drop_down HAL-IN2P3 (Institut national de physique nucléaire et de physique des particules)Article . 2016Full-Text: https://hal.science/hal-03561726Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1086/686322&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert HAL-IN2P3 (Institut ... arrow_drop_down HAL-IN2P3 (Institut national de physique nucléaire et de physique des particules)Article . 2016Full-Text: https://hal.science/hal-03561726Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1086/686322&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2018 United KingdomPublisher:The Royal Society Olivia Hicks; Sarah J. Burthe; Francis Daunt; Mark Newell; Adam Butler; Motohiro Ito; Katsufumi Sato; Jonathan A. Green;Parasites have profound fitness effects on their hosts, yet these are often sub-lethal, making them difficult to understand and quantify. A principal sub-lethal mechanism that reduces fitness is parasite-induced increase in energetic costs of specific behaviours, potentially resulting in changes to time and energy budgets. However, quantifying the influence of parasites on these costs has not been undertaken in free-living animals. We used accelerometers to estimate energy expenditure on flying, diving and resting, in relation to a natural gradient of endo-parasite loads in a wild population of European shagsPhalacrocorax aristotelis. We found that flight costs were 10% higher in adult females with higher parasite loads and these individuals spent 44% less time flying than females with lower parasite loads. There was no evidence for an effect of parasite load on daily energy expenditure, suggesting the existence of an energy ceiling, with the increase in cost of flight compensated for by a reduction in flight duration. These behaviour specific costs of parasitism will have knock-on effects on reproductive success, if constraints on foraging behaviour detrimentally affect provisioning of young. The findings emphasize the importance of natural parasite loads in shaping the ecology and life-history of their hosts, which can have significant population level consequences.
CORE arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the Royal Society B Biological SciencesArticleLicense: CC BYData sources: UnpayWallProceedings of the Royal Society B Biological SciencesConference objectData sources: OpenAPC Global InitiativeProceedings of the Royal Society B Biological SciencesArticle . 2018 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2019Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2018.0489&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the Royal Society B Biological SciencesArticleLicense: CC BYData sources: UnpayWallProceedings of the Royal Society B Biological SciencesConference objectData sources: OpenAPC Global InitiativeProceedings of the Royal Society B Biological SciencesArticle . 2018 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2019Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2018.0489&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 France, France, United KingdomPublisher:Wiley Lewis G. Halsey; Jonathan A. Green; Sean D. Twiss; Walter Arnold; Sarah J. Burthe; Patrick J. Butler; Steven J. Cooke; David Grémillet; Thomas Ruf; Olivia Hicks; Katarzyna J. Minta; Tanya S. Prystay; Claudia A. F. Wascher; Vincent Careau;Abstract Animals are expected to be judicious in the use of the energy they gain due to the costs and limits associated with its intake. The management of energy expenditure (EE) exhibited by animals has previously been considered in terms of three patterns: the constrained, independent and performance patterns of energy management. These patterns can be interpreted by regressing daily EE against maintenance EE measured over extended periods. From the multiple studies on this topic, there is equivocal evidence about the existence of universal patterns in certain aspects of energy management. The implicit assumption that animals exhibit specifically one of three discrete energy management patterns, and without variation, seems simplistic. We suggest that animals can exhibit gradations of different energy management patterns and that the exact pattern will fluctuate as their environmental context changes. To investigate these ideas, and for possible large‐scale patterns in energy management, we analysed long‐term heart rate data—a strong proxy for EE—across and within individuals in 16 species of birds, mammals and fish. Our analyses of 292 individuals representing 46,539 observation‐days suggest that vertebrates typically exhibit predominantly the independent or performance energy patterns at the across‐individual level, and that the pattern does not associate with taxonomic group. Within individuals, however, animals generally exhibit some degree of energy constraint. Together, these findings indicate that across diverse species, some individuals supply more energy to all aspects of their life than do others, however all individuals must trade‐off deployment of their available energy between competing functions. This demonstrates that within‐individual analyses are essential for the interpretation of energy management patterns. We also found that species do not necessarily exhibit a fixed energy management pattern but rather temporal variation in their energy management over the year. Animals’ energy management exhibited stronger energy constraint during periods of higher EE, which typically coincided with clear and key life cycle events such as reproduction, suggesting an adaptive plasticity to respond to fluctuating energy demands. A plain language summary is available for this article.
NERC Open Research A... arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Functional EcologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefDurham University: Durham Research OnlineArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2435.13264&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Functional EcologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefDurham University: Durham Research OnlineArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2435.13264&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Wiley L. M. Soanes; J. A. Green; M. Bolton; G. Milligan; F. Mukhida; L. G. Halsey;doi: 10.1111/jav.02670
The archetypal foraging behaviour of tropical seabirds is generally accepted to differ from that of their temperate and polar breeding counterparts, with the former exhibiting less predictable foraging behaviour associated with the less predictable prey of the tropical marine environment. Similarly, temperate and polar species have predictable, annual breeding seasons, enabling them to profit during periods of the year when prey availability is highest, while tropical seabird species exhibit considerable variability in their breeding strategies. Until now, the reasons for such variation in breeding strategies between tropical seabirds are yet to be investigated. We hypothesise that while some tropical species breed asynchronously in response to unpredictable fluctuations in prey availability, others adopt a seasonal breeding strategy for the same reasons that temperate and polar species do. Consequently, the predictability of seabird foraging behaviour in the tropics may be related to breeding strategy, with populations that breed seasonally exhibiting more predictable foraging behaviour than those that breed aseasonally. To test these predictions, we used GPS tracking to examine the foraging behaviour of two closely related tropical seabird species that colonise the same island yet exhibit markedly different breeding strategies: the asynchronously breeding brown booby Sula leucogaster and the seasonal breeding masked booby Sula dactylatra. We obtained tracks for 251 birds over five years. We found that brown boobies forage less predictably than masked boobies, indicated by larger core foraging areas, lower levels of foraging area overlap between individuals and exhibit more variability between breeding periods. Our results challenge the view that the foraging behaviour of tropical seabirds is always less predictable than that of seabirds breeding in temperate and polar regions and highlight the considerable variability in the breeding and foraging strategies adopted by tropical seabirds which demand further exploration.
CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jav.02670&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jav.02670&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010 AustraliaPublisher:Wiley Craig R. White; Craig R. White; David Grémillet; David Grémillet; Patrick J. Butler; Graham Martin; David Boertmann; Jonathan A. Green;Arctic seas have warmed and sea ice has retreated. This has resulted in range contraction and population declines in some species, but it could potentially be a boon for others. Great Cormorants Phalacrocorax carbo have a partially wettable plumage and seem poorly suited to foraging in Arctic waters. We show that rates of population change of Cormorant colonies around Disko Bay, Greenland, are positively correlated with sea surface temperature, suggesting that they may benefit from a warming Arctic. However, although Cormorant populations may increase in response to Arctic warming, the extent of expansion of their winter range may ultimately be limited by other factors, such as sensory constraints on foraging behaviour during long Arctic nights.
PURE Aarhus Universi... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1474-919x.2010.01068.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Average influence Average impulse Average Powered by BIP!
more_vert PURE Aarhus Universi... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1474-919x.2010.01068.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 Spain, Spain, Spain, United Kingdom, Argentina, Argentina, SpainPublisher:Inter-Research Science Center Lewison, R.; Oro, D.; Godley, B.J.; Underhill, L.; Bearhop, S.; Wilson, R.P.; Ainley, D.; Arcos, J.M.; Boersma, P.D.; Borboroglu, P.G.; Boulinier, T.; Frederiksen, M.; Genovart, M.; Gonzalez-Solis, J.; Green, J.A.; Gremillet, D.; Hamer, K.C.; Hilton, G.M.; Hyrenbach, K.D.; Martinez-Abrain, A.; Montevecchi, W.A.; Phillips, R.A.; Ryan, P.G.; Sagar, P.; Sydeman, W.J.; Wanless, S.; Watanuki, Y.; Weimerskirch, H.; Yorio, P.;doi: 10.3354/esr00419
handle: 10261/57195 , 11336/27093
Seabirds are facing a growing number of threats in both terrestrial and marine habitats, and many populations have experienced dramatic changes over past decades. Years of seabird research have improved our understanding of seabird populations and provided a broader understanding of marine ecological processes. In an effort to encourage future research and guide seabird conservation science, seabird researchers from 9 nations identified the 20 highest priority research questions and organized these into 6 general categories: (1) population dynamics, (2) spatial ecology, (3) tropho-dynamics, (4) fisheries interactions, (5) response to global change, and (6) management of anthropogenic impacts (focusing on invasive species, contaminants and protected areas). For each category, we provide an assessment of the current approaches, challenges and future directions. While this is not an exhaustive list of all research needed to address the myriad conservation challenges seabirds face, the results of this effort represent an important synthesis of current expert opinion across sub-disciplines within seabird ecology. As this synthesis highlights, research, in conjunction with direct management, education, and community engagement, can play an important role in facilitating the conservation and management of seabird populations and of the ocean ecosystems on which they and we depend.
NERC Open Research A... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de la Universitat de BarcelonaArticle . 2012License: CC BYData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2012Data sources: Recolector de Ciencia Abierta, RECOLECTANatural Environment Research Council: NERC Open Research ArchiveArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/esr00419&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 151 citations 151 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 108visibility views 108 download downloads 139 Powered bymore_vert NERC Open Research A... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de la Universitat de BarcelonaArticle . 2012License: CC BYData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2012Data sources: Recolector de Ciencia Abierta, RECOLECTANatural Environment Research Council: NERC Open Research ArchiveArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/esr00419&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 United KingdomPublisher:Wiley Funded by:UKRI | UK Status, Change and Pro..., UKRI | Adapting to the Challenge...UKRI| UK Status, Change and Projections of the Environment (UK-SCaPE) ,UKRI| Adapting to the Challenges of a Changing Environment (ACCE)Eve Merrall; Jonathan A. Green; Leonie A. Robinson; Adam Butler; Matt J. Wood; Mark A. Newell; Julie Black; Francis Daunt; Catharine Horswill;Abstract Many industries are required to perform population viability analysis (PVA) during the consenting process for new developments to establish potential impacts on protected populations. However, these assessments rarely account for density‐dependent regulation of demographic rates. Excluding density‐dependent regulation from PVA‐based impact assessments is often assumed to provide a maximum estimate of impact and therefore offer a precautionary approach to assessment. However, there is also concern that this practice may unnecessarily impede the development of important industries, such as offshore renewable energy. In this study, we assess density‐dependent regulation of breeding success in 31 populations of seabird. We then quantify the strength and form of this regulation using eight different formulations. Finally, we use PVA to examine how each formulation influences the recreation of observed dynamics (i.e. model validation), as well as the predicted absolute and relative population response to an extrinsic threat (i.e. model projection). We found evidence of both negative (n = 3) and positive (n = 5) regulation of seabird breeding success. In populations exhibiting negative regulation, excluding density‐dependent regulation from PVA‐based impact assessment allowed uncontrolled population growth, such that model outcomes became biologically implausible. By contrast, in populations exhibiting positive regulation, excluding density‐dependent regulation provided an appropriate reconstruction of observed dynamics, but population decline was underestimated in some populations. We find that multiple formulations of density dependence perform comparably at the detection, validation and projection stages of analysis. However, we tentatively recommend using a log‐linear or Weibull distribution to describe density‐dependent regulation of seabird breeding success in impact assessments to balance accuracy with caution. Finally, we show that relative PVA metrics of impact assessment cannot necessarily be used to overcome PVA misspecification by assuming density independence in positively regulated populations. Synthesis and applications: We suggest that a density‐dependent approach when performing PVA‐based assessments for seabird populations will prevent biologically unrealistic, unconstrained population growth and therefore ensure meaningful PVA metrics in populations experiencing negative regulation. It will also maintain a precautionary approach for populations experiencing positive regulation, crucial when estimating impacts for these more vulnerable populations. These conclusions have immediate international application within the consenting processes for marine industries.
NERC Open Research A... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2664.14750&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2664.14750&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 United Kingdom, AustraliaPublisher:Wiley Steven J. Portugal; Craig R. White; Peter B. Frappell; Jonathan A. Green; Patrick J. Butler;AbstractThe position of the Moon in relation to the Earth and the Sun gives rise to several predictable cycles, and natural changes in nighttime light intensity are known to cause alterations to physiological processes and behaviors in many animals. The limited research undertaken to date on the physiological responses of animals to the lunar illumination has exclusively focused on the synodic lunar cycle (full moon to full moon, or moon phase) but the moon's orbit—its distance from the Earth—may also be relevant. Every month, the moon moves from apogee, its most distant point from Earth—and then to perigee, its closest point to Earth. Here, we studied wild barnacle geese (Branta leucopsis) to investigate the influence of multiple interacting lunar cycles on the physiology of diurnally active animals. Our study, which uses biologging technology to continually monitor body temperature and heart rate for an entire annual cycle, asks whether there is evidence for a physiological response to natural cycles in lunar brightness in wild birds, particularly “supermoon” phenomena, where perigee coincides with a full moon. There was a three‐way interaction between lunar phase, lunar distance, and cloud cover as predictors of nighttime mean body temperature, such that body temperature was highest on clear nights when the full moon coincided with perigee moon. Our study is the first to report the physiological responses of wild birds to “supermoon” events; the wild geese responded to the combination of two independent lunar cycles, by significantly increasing their body temperature at night. That wild birds respond to natural fluctuations in nighttime ambient light levels support the documented responses of many species to anthropogenic sources of artificial light, that birds seem unable to override. As most biological systems are arguably organized foremost by light, this suggests that any interactions between lunar cycles and local weather conditions could have significant impacts on the energy budgets of birds.
CORE arrow_drop_down University of Tasmania: UTas ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ece3.5311&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down University of Tasmania: UTas ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ece3.5311&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 AustraliaPublisher:Wiley Craig R. White; Craig R. White; Patrick J. Butler; David Grémillet; David Grémillet; Graham Martin; Jonathan A. Green;AbstractFor many polar species, climate change is likely to result in range contractions and negative population trends. For those species whose distribution is limited by sea ice and cold water, however, polar warming could result in population increases and range expansion. Population increases of great cormorants Phalacrocorax carbo in Greenland are associated with warmer sea surface temperatures, but the actual impact of environmental change on cormorant spatial ecology remains unclear. In the present study, we investigate how Arctic warming is likely to influence the distribution of cormorants in Greenland. Using geolocation data, we show that many individuals that breed above the Arctic Circle migrate south and winter at lower latitude. We then couple estimates of migratory flight costs with a model that predicts daily energy expenditure during winter on the basis of water temperature, ambient illumination during diving, dive depth and day length. This model shows that the most energy efficient strategy predicted for any breeding location is to migrate as far south as possible, and that, for a given wintering location, it is more energetically expensive to breed at high latitude. We argue that cormorants currently undertake a winter migration to escape the polar night and reduce winter energy costs and that their wintering grounds in Greenland will remain largely unchanged under Arctic warming. This is because low levels of ambient illumination during the polar night will continue to restrict foraging opportunities at high latitude during winter. Northward expansion of the breeding range will result in increased energy expenditure associated with long migratory flights, and the cost of such flights may ultimately limit the breeding range of cormorants. Such limitations are likely to represent a general constraint on the capacity of visually guided predators to respond to climate warming, and may limit the predicted poleward range shifts of these species.
Journal of Zoology arrow_drop_down Journal of ZoologyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1469-7998.2012.00968.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu8 citations 8 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Journal of Zoology arrow_drop_down Journal of ZoologyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1469-7998.2012.00968.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu