- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Jinyue Yan; Fei Shen; Mats Eklund; Amit Kumar; Charles (Chunbao) Xu; Joann K. Whalen;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.05.079&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.05.079&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Wiley Illimar Altosaar; Victoria M.T. Truong-Trieu; Shen Wan; Tonya Ward; Joann K. Whalen;doi: 10.1002/bbb.1777
AbstractBiodiesel is a low‐carbon‐intensity renewable fuel with up to 99% lower greenhouse gas emissions than petroleum‐based diesel. The use of oil crops for biodiesel is under critical examination. It is expensive and suffers from the food versus fuel risk/benefit problem. Consequently, many countries (e.g. Malaysia and countries in the EU) are scaling back the use of oil crops as feedstock for biofuel production. The limitations of these traditional crops are leading the renewable fuels industry to consider innovative, sustainable, and profitable biomass‐based platforms. Plant genetic engineering and other new breeding technologies are essential for developing such biomass‐based platforms because they enhance plant tolerance to abiotic and biotic stresses, resulting in higher feedstock yields, greater net energy gain, and the generation of high‐value co‐products. We review and summarize the recent improvements of oil crops through plant genetic engineering that may increase widespread and cost‐effective production of biodiesel and value‐added co‐products for green chemistry applications. © 2017 Society of Chemical Industry and John Wiley & Sons, Ltd
Biofuels Bioproducts... arrow_drop_down Biofuels Bioproducts and BiorefiningArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bbb.1777&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Biofuels Bioproducts... arrow_drop_down Biofuels Bioproducts and BiorefiningArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bbb.1777&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008Publisher:Elsevier BV Authors: Joann K. Whalen; Richard Jeannotte; Chantal Hamel; Suha Jabaji;pmid: 18804620
The extraction and transesterification of soil lipids into fatty acid methyl esters (FAMEs) is a useful technique for studying soil microbial communities. The objective of this study was to find the best solvent mixture to extract soil lipids with a pressurized solvent extractor system. Four solvent mixtures were selected for testing: chloroform:methanol:phosphate buffer (1:2:0.8, v/v/v), chloroform:methanol (1:2, v/v), hexane:2-propanol (3:2, v/v) and acetone. Soils were from agricultural fields and had a wide range of clay, organic matter and microbial biomass contents. Total lipid fatty acid methyl esters (TL-FAMEs) were the extractable soil lipids identified and quantified with gas chromatography and flame ionization detection. Concentrations of TL-FAMEs ranged from 57.3 to 542.2 nmole g(-1) soil (dry weight basis). The highest concentrations of TL-FAMEs were extracted with chloroform:methanol:buffer or chloroform:methanol mixtures than with the hexane:2-propanol or acetone solvents. The concentrations of TL-FAMEs in chemical groups, including saturated, branched, mono- and poly-unsaturated and hydroxy fatty acids were assessed, and biological groups (soil bacteria, mycorrhizal fungi, saprophytic fungi and higher plants) was distinguished. The extraction efficiency for the chemical and biological groups followed the general trend of: chloroform:methanol:buffer> or =chloroform:methanol>hexane:2-propanol=acetone. Discriminant analysis revealed differences in TL-FAME profiles based on the solvent mixture and the soil type. Although solvent mixtures containing chloroform and methanol were the most efficient for extracting lipids from the agricultural soils in this study, soil properties and the lipid groups to be studied should be considered when selecting a solvent mixture. According to our knowledge, this is the first report of soil lipid extraction with hexane:2-propanol or acetone in a pressurized solvent extraction system.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.talanta.2008.06.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.talanta.2008.06.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal , External research report , Preprint , Report 2019 Argentina, United Kingdom, Croatia, Italy, Finland, Netherlands, United Kingdom, Netherlands, Spain, Netherlands, Argentina, France, Spain, United Kingdom, Poland, Netherlands, CroatiaPublisher:American Association for the Advancement of Science (AAAS) Publicly fundedFunded by:FCT | LA 1, EC | BIOBIO, AKA | Macrodetritivore range sh... +13 projectsFCT| LA 1 ,EC| BIOBIO ,AKA| Macrodetritivore range shifts and implications for aboveground-belowground interactions ,EC| FUNDIVEUROPE ,NSF| Predicting Regional Invasion Dynamic Processes (PRIDE)-Developing a Cross-scale, Functional-trait Based Modeling Framework ,FWF| Litter decomposition and humus formation in highalpine soils ,EC| ECOWORM ,DFG| German Centre for Integrative Biodiversity Research - iDiv ,EC| SPECIALS ,EC| AGFORWARD ,EC| TERRESTREVOL ,EC| Gradual_Change ,NWO| EV Diagnostics for monitoring therapy byliquid tuneable Coulter flowcytometry (project 3.2) ,NSERC ,FWF| The macrofauna decomposer food web on alpine pastureland ,NSF| IGERT: Ecology, Management and Restoration of Integrated Human/Natural LandscapesDevin Routh; Aidan M. Keith; Geoff H. Baker; Boris Schröder; Fredrick O. Ayuke; Iñigo Virto; Thomas W. Crowther; Anahí Domínguez; Yvan Capowiez; Irina V. Zenkova; Konstantin B. Gongalsky; Martin Holmstrup; Sandy M. Smith; Mark E. Caulfield; Christian Mulder; Robin Beauséjour; Shishir Paudel; Matthias C. Rillig; Michael Steinwandter; Michiel Rutgers; Takuo Hishi; Loes van Schaik; Jérôme Mathieu; Guillaume Xavier Rousseau; José Antonio Talavera; Miguel Á. Rodríguez; Nico Eisenhauer; Carlos Fragoso; H. Lalthanzara; Thibaud Decaëns; Luis M. Hernández; Adrian A. Wackett; David J. Russell; Weixin Zhang; David A. Wardle; Scott R. Loss; Steven J. Fonte; Liliana B. Falco; Olaf Schmidt; Radim Matula; Shaieste Gholami; Darío J. Díaz Cosín; Anna Rożen; Robert L. Bradley; Wim H. van der Putten; Michael J. Gundale; Andrea Dávalos; Andrea Dávalos; Rosa Fernández; Johan van den Hoogen; Franciska T. de Vries; Victoria Nuzzo; Mujeeb Rahman P; André L.C. Franco; Jan Hendrik Moos; Joann K. Whalen; Martine Fugère; Mac A. Callaham; Miwa Arai; Elizabeth M. Bach; Yiqing Li; Raphaël Marichal; Jonatan Klaminder; Monika Joschko; George G. Brown; Michael B. Wironen; Dolores Trigo; Nathaniel H. Wehr; Maria Kernecker; Kristine N. Hopfensperger; Amy Choi; Esperanza Huerta Lwanga; Sanna T. Kukkonen; Basil V. Iannone; Veikko Huhta; Birgitta König-Ries; Guénola Pérès; Salvador Rebollo; Olga Ferlian; Nick van Eekeren; Anne W. de Valença; Eric Blanchart; Matthew W. Warren; Johan Pansu; Christoph Emmerling; Courtland Kelly; Javier Rodeiro-Iglesias; Armand W. Koné; Muhammad Rashid; Muhammad Rashid; Alexander M. Roth; Davorka K. Hackenberger; Michael Schirrmann; Alberto Orgiazzi; Bryant C. Scharenbroch; Ulrich Brose; Helen Phillips; Diana H. Wall; Noa Kekuewa Lincoln; Andrew R. Holdsworth; Raúl Piñeiro; Tunsisa T. Hurisso; Tunsisa T. Hurisso; Mónica Gutiérrez López; Klaus Birkhofer; Yahya Kooch; Michel Loreau; Julia Seeber; Jaswinder Singh; Volkmar Wolters; Radoslava Kanianska; Jiro Tsukamoto; Visa Nuutinen; Gerardo Moreno; Marie Luise Carolina Bartz; Juan B. Jesús Lidón; Daniel R. Lammel; Daniel R. Lammel; Madhav P. Thakur; Felicity Crotty; Julia Krebs; Iurii M. Lebedev; Steven J. Vanek; Marta Novo; Carlos A. Guerra; José Camilo Bedano; Bernd Blossey; Lorenzo Pérez-Camacho; Joanne M. Bennett; Nobuhiro Kaneko; Madalina Iordache; Andrés Esteban Duhour; Maria J. I. Briones; Abegail T Fusilero; Maxim Shashkov; Maxim Shashkov; Ehsan Sayad; Thomas Bolger; Alejandro Morón-Ríos; Lindsey Norgrove; Benjamin Schwarz; Bart Muys; Johan Neirynck; Jean-François Ponge; Erin K. Cameron; Kelly S. Ramirez;pmid: 31649197
pmc: PMC7335308
Earthworm distribution in global soils Earthworms are key components of soil ecological communities, performing vital functions in decomposition and nutrient cycling through ecosystems. Using data from more than 7000 sites, Phillips et al. developed global maps of the distribution of earthworm diversity, abundance, and biomass (see the Perspective by Fierer). The patterns differ from those typically found in aboveground taxa; there are peaks of diversity and abundance in the mid-latitude regions and peaks of biomass in the tropics. Climate variables strongly influence these patterns, and changes are likely to have cascading effects on other soil organisms and wider ecosystem functions. Science , this issue p. 480 ; see also p. 425
NERC Open Research A... arrow_drop_down Hyper Article en LignePreprint . 2019License: CC BYFull-Text: https://hal.inrae.fr/hal-02788558/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationPreprint . 2019License: CC BYFull-Text: https://hal.inrae.fr/hal-02788558/documentInstitut National de la Recherche Agronomique: ProdINRAArticle . 2019License: PDMFull-Text: https://hal.science/hal-02337185Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2019License: PDMFull-Text: https://hal.science/hal-02337185Data sources: Bielefeld Academic Search Engine (BASE)Royal Agricultural University Repository (RAU Cirencester - CREST)Article . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAReport . 2019Full-Text: https://hal.inrae.fr/hal-02788558Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUReport . 2019Full-Text: https://hal.inrae.fr/hal-02788558Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019License: PDMFull-Text: https://hal.science/hal-02337185Data sources: Bielefeld Academic Search Engine (BASE)Croatian Scientific Bibliography - CROSBIArticle . 2019Data sources: Croatian Scientific Bibliography - CROSBIRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAIRIS - Università degli Studi di CataniaArticle . 2019Data sources: IRIS - Università degli Studi di CataniaUniversiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aax4851&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 320 citations 320 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 72visibility views 72 download downloads 104 Powered bymore_vert NERC Open Research A... arrow_drop_down Hyper Article en LignePreprint . 2019License: CC BYFull-Text: https://hal.inrae.fr/hal-02788558/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationPreprint . 2019License: CC BYFull-Text: https://hal.inrae.fr/hal-02788558/documentInstitut National de la Recherche Agronomique: ProdINRAArticle . 2019License: PDMFull-Text: https://hal.science/hal-02337185Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2019License: PDMFull-Text: https://hal.science/hal-02337185Data sources: Bielefeld Academic Search Engine (BASE)Royal Agricultural University Repository (RAU Cirencester - CREST)Article . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAReport . 2019Full-Text: https://hal.inrae.fr/hal-02788558Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUReport . 2019Full-Text: https://hal.inrae.fr/hal-02788558Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019License: PDMFull-Text: https://hal.science/hal-02337185Data sources: Bielefeld Academic Search Engine (BASE)Croatian Scientific Bibliography - CROSBIArticle . 2019Data sources: Croatian Scientific Bibliography - CROSBIRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAIRIS - Università degli Studi di CataniaArticle . 2019Data sources: IRIS - Università degli Studi di CataniaUniversiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aax4851&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Wiley Emily A. Heaton; Mark Lefsrud; Donald L. Smith; Camilo Perez Lee; David B. Neale; Bruce Coulman; David B. Levin; Joann K. Whalen; Ajay K. Dalai; Sharon P. Shoemaker; Peggy G. Lemaux; Jaswinder Singh;doi: 10.1002/bbb.1418
AbstractThere is an urgent need to develop viable, renewable, sustainable energy systems that can reduce global dependence on fossil fuel sources of energy. Biofuels such as ethanol are being utilized as blends in surface transportation fuels and have the potential to improve sustainability and reduce greenhouse gas emissions in the short term. Bioethanol, the most widely used liquid biofuel, is currently produced by converting sugars or starches from feed crops into ethanol. Use of this fuel source displaces and draws water consumption away from agricultural crops, increases soil erosion by shifting land from perennial grasses to annual crops, and increases use of fertilizers and insecticides. In contrast, bioethanol made from lignocellulosic biomass feedstocks does not have these limitations and in addition, offers a larger resource base: the amount of cellulosic material available for potential use vastly outweighs the amount of available starch‐based feedstock. Therefore, bioethanol from lignocellulosic biomass has attracted considerable interest from biofuel developers. This review is an update of some developments to optimize cellulose extraction from feedstock crops and to improve crop yields and logistics. It concludes that agricultural and forestry systems that incorporate lignocellulosic biomass crops can be designed for improved ecological function and energy use efficiency. Development of crops that have both desirable cell‐wall traits and high biomass productivity under sustainable low‐input conditions can significantly enhance the economics and efficiency of the conversion process. Optimizing the logistics of moving feedstock from field or forest to bio‐refinery can significantly reduce costs of using lignocellulosic feedstocks. © 2013 Society of Chemical Industry and John Wiley & Sons, Ltd
Biofuels Bioproducts... arrow_drop_down Biofuels Bioproducts and BiorefiningArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bbb.1418&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Average influence Average impulse Average Powered by BIP!
more_vert Biofuels Bioproducts... arrow_drop_down Biofuels Bioproducts and BiorefiningArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bbb.1418&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Authors: Mohamed Leila; Jeffrey M. Bergthorson; Joann K. Whalen;Abstract The United States (US) military plans to acquire drop-in biofuels (renewable diesel and biojet fuel) to reduce carbon emissions and diversify military energy portfolio. To expedite this endeavor, the military provided direct financial incentives to offset investment costs of selected drop-in biofuel demonstration facilities. It is not known if investment incentives alone will stimulate the creation of a full-scale advanced biofuel supply chain capable of meeting US military demands, given limited availability of low-cost sustainable biomass feedstocks in some areas and considering the uncertainty in global oil prices. The objective of this work is to determine 1) whether a state in the US can meet its share of military biofuel targets from local biomass resources, and 2) if direct financial incentives can expedite the development of the military biofuel supply chain, under two different oil price scenarios. The Biofuel supply chain GeoSpatial and Temporal Optimizer (BioGeSTO), was developed for that purpose and applied to the state of California, USA from 2020 to 2040. The BioGeSTO model determined that biomass resources in California can meet 12–19% of its annual military targets between 2020 and 2040 of renewable diesel and biojet fuel using the Fischer-Tropsch (FT) and Hydro-Treatment of Esters and Fatty Acids (HEFA) conversion technologies. However, under the reference oil price scenario, only HEFA conversion facilities introduced at 2027 in Kings County were found feasible. Under the high oil price scenario, both the HEFA and FT technologies were financially feasible and the supply chain production approaches the theoretical production limit by 2032. In both scenarios, providing investment incentives has a modest impact on expediting the supply chain, as facilities are introduced only 1–3 years earlier when receiving direct investment incentives. Sensitivity analysis shows that biomass availability has the greatest impact on the supply chain performance such that a 50% increase in the baseline amount of biomass feedstock results in a 150% surge in the total cumulative production. In conclusion, the reference oil price scenario drastically limits the ability of California to meet its military drop-in biofuel targets. Assuming a high oil price scenario, the state may be able to meet military biofuel targets by subsidizing local biomass production and importing the rest of the biomass required for this purpose from the northwestern states of Washington and Oregon.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2018.04.196&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2018.04.196&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Frontiers Media SA Emmanuel A. Badewa; Chun C. Yeung; Fereidoun Rezanezhad; Joann K. Whalen; Maren Oelbermann;In temperate cold regions, the gradual resurgence of soil microbial activity during spring freeze-thaw events is frequently associated with greenhouse gas emissions. Enhanced greenhouse gas fluxes during spring freeze-thaw are related to the mineralization of bioavailable substrates, which may be elevated when soil is amended with organic residues (e.g., biobased residues such as compost, digestate, biosolids). The objective of this study was to determine the impact of biobased residues, compared to urea fertilizer, on greenhouse gas emissions during spring freeze-thaw events. The field treatments included urea (170 kg N ha−1 y−1), composted food waste (240 kg N ha−1 y−1), hydrolyzed biosolids (215 kg N ha−1 y−1), and anaerobic digestate (231 kg N ha−1 y−1). Headspace gases were sampled from a closed static chamber in each replicate plot (n = 4) and categorized with three transient spring freeze-thaw phases (waterlogged, wet, and dry). Among the treatments, nitrous oxide (N2O) flux was significantly different (p < 0.05) where compost had the highest emission and digestate lowest while carbon dioxide (CO2) and methane (CH4) fluxes were not significantly different (p > 0.05). The greenhouse gas fluxes were significantly different among the freeze-thaw events (p < 0.05) likely due to intense microbial activity and anaerobic conditions. The CO2 and CH4 emissions were related to N2O emission (p < 0.05), and soil temperature strongly correlated with CO2 fluxes. This suggested that soil warming driven by ambient conditions as well as the type and quantity of carbon input influenced soil microbial activity, leading to greenhouse gases production. Therefore, soil amended with biobased residues may either increase or reduce greenhouse gas fluxes during spring freeze-thaw events depending on the source and production method of the organic material.
Frontiers in Environ... arrow_drop_down Frontiers in Environmental ScienceArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenvs.2022.909683&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Frontiers in Environ... arrow_drop_down Frontiers in Environmental ScienceArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenvs.2022.909683&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Nahid Shanta; Timothy Schwinghamer; Rachel Backer; Suzanne E. Allaire; Inna Teshler; Anne Vanasse; Joann Whalen; Benjamin Baril; Sebastien Lange; John MacKay; Xiaomin Zhou; Donald L. Smith;Abstract Switchgrass ( Panicum virgatum L.) is a fast growing native C 4 perennial and a lignocellulosic biomass crop for North America. In combination with biochar, an active plant growth promoting rhizobacterial (PGPR) community can contribute to the long-term sequestration of carbon in soil, fix nitrogen, and enhance the availability of other nutrients to plants. Biochar and PGPR have the potential to improve grass biomass production, but they have not been tested together under high-latitude temperate zone field conditions. Therefore, the objective of this three-year field study was to determine whether there were effects on biomass yield and yield components of switchgrass (cv. Cave-in-Rock) due to a rhizobacterium that was able to mobilize soil phosphorus ( Pseudomonas rhodesiae ), a bacterial consortium that was able to supply nitrogen ( Paenibacillus polymyxa , Rahnella sp., and Serrati sp.), and pine wood chip biochar applied as a soil amendment at 20 Mg ha −1 . The incorporation of biochar, or inoculation with the N-fixing consortium, and the combined inoculation of the experimental bacteria had positive effects on switchgrass height. At a loam soil site in Sainte-Anne-de-Bellevue, Quebec, when nitrogen fertilizer was not applied, the addition of biochar had a positive effect on stand count (tillers m −1 row). On the sandy soil in Sainte-Anne-de-Bellevue, when biochar was applied with 100 kg N ha −1 , biomass yield increased over the control but did not provide additional benefits over plots receiving only 50 kg N ha −1 . It remains unclear whether or not the increased C sequestration of this management system justifies increased N fertilizer usage.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2016.10.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2016.10.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal , Data Paper 2021 Portugal, Sweden, Italy, Australia, Finland, Netherlands, Spain, Netherlands, Spain, Netherlands, Australia, Netherlands, Finland, United Kingdom, Croatia, Netherlands, United Kingdom, Belgium, United Kingdom, Finland, Argentina, Germany, Germany, Switzerland, Spain, Germany, Argentina, Spain, Finland, Spain, Spain, France, CroatiaPublisher:Springer Science and Business Media LLC Funded by:NSF | Predicting Regional Invas..., NSERC, UKRI | The root to stability - t... +15 projectsNSF| Predicting Regional Invasion Dynamic Processes (PRIDE)-Developing a Cross-scale, Functional-trait Based Modeling Framework ,NSERC ,UKRI| The root to stability - the role of plant roots in ecosystem response to climate change ,FWF| The macrofauna decomposer food web on alpine pastureland ,ARC| Soil ecology in the 21st century _ a crucial role in land management ,EC| TERRESTREVOL ,AKA| Macrodetritivore range shifts and implications for aboveground-belowground interactions ,EC| ECOWORM ,RSF| The accumulation of carbon in forest soils and forest succession status ,EC| Gradual_Change ,EC| FUNDIVEUROPE ,EC| AGFORWARD ,NSF| IGERT: Ecology, Management and Restoration of Integrated Human/Natural Landscapes ,EC| BIOBIO ,DFG| German Centre for Integrative Biodiversity Research - iDiv ,EC| SPECIALS ,EC| ROUTES ,FWF| Litter decomposition and humus formation in highalpine soilsAuthors: Phillips, Helen R. P.; Bach, Elizabeth M.; Bartz, Marie L. C.; Bennett, Joanne M.; +196 AuthorsPhillips, Helen R. P.; Bach, Elizabeth M.; Bartz, Marie L. C.; Bennett, Joanne M.; Beugnon, Rémy; Briones, Maria J. I.; Brown, George G.; Ferlian, Olga; Gongalsky, Konstantin B.; Guerra, Carlos A.; König-Ries, Birgitta; Krebs, Julia J.; Orgiazzi, Alberto; Ramirez, Kelly S.; Russell, David J.; Schwarz, Benjamin; Wall, Diana H.; Brose, Ulrich; Decaëns, Thibaud; Lavelle, Patrick; Loreau, Michel; Mathieu, Jérôme; Mulder, Christian; van der Putten, Wim H.; Rillig, Matthias C.; Thakur, Madhav P.; de Vries, Franciska T.; Wardle, David A.; Ammer, Christian; Ammer, Sabine; Arai, Miwa; Ayuke, Fredrick O.; Baker, Geoff H.; Baretta, Dilmar; Barkusky, Dietmar; Beauséjour, Robin; Bedano, Jose C.; Birkhofer, Klaus; Blanchart, Eric; Blossey, Bernd; Bolger, Thomas; Bradley, Robert L.; Brossard, Michel; Burtis, James C.; Capowiez, Yvan; Cavagnaro, Timothy R.; Choi, Amy; Clause, Julia; Cluzeau, Daniel; Coors, Anja; Crotty, Felicity V.; Crumsey, Jasmine M.; Dávalos, Andrea; Cosín, Darío J. Díaz; Dobson, Annise M.; Domínguez, Anahí; Duhour, Andrés Esteban; van Eekeren, Nick; Emmerling, Christoph; Falco, Liliana B.; Fernández, Rosa; Fonte, Steven J.; Fragoso, Carlos; Franco, André L. C.; Fusilero, Abegail; Geraskina, Anna P.; Gholami, Shaieste; González, Grizelle; Gundale, Michael J.; López, Mónica Gutiérrez; Hackenberger, Branimir K.; Hackenberger, Davorka K.; Hernández, Luis M.; Hirth, Jeff R.; Hishi, Takuo; Holdsworth, Andrew R.; Holmstrup, Martin; Hopfensperger, Kristine N.; Lwanga, Esperanza Huerta; Huhta, Veikko; Hurisso, Tunsisa T.; Iannone, Basil V.; Iordache, Madalina; Irmler, Ulrich; Ivask, Mari; Jesús, Juan B.; Johnson-Maynard, Jodi L.; Joschko, Monika; Kaneko, Nobuhiro; Kanianska, Radoslava; Keith, Aidan M.; Kernecker, Maria L.; Koné, Armand W.; Kooch, Yahya; Kukkonen, Sanna T.; Lalthanzara, H.; Lammel, Daniel R.; Lebedev, Iurii M.; Le Cadre, Edith; Lincoln, Noa K.; López-Hernández, Danilo; Loss, Scott R.; Marichal, Raphael; Matula, Radim; Minamiya, Yukio; Moos, Jan Hendrik; Moreno, Gerardo; Morón-Ríos, Alejandro; Motohiro, Hasegawa; Muys, Bart; Neirynck, Johan; Norgrove, Lindsey; Novo, Marta; Nuutinen, Visa; Nuzzo, Victoria; Mujeeb Rahman, P.; Pansu, Johan; Paudel, Shishir; Pérès, Guénola; Pérez-Camacho, Lorenzo; Ponge, Jean-François; Prietzel, Jörg; Rapoport, Irina B.; Rashid, Muhammad Imtiaz; Rebollo, Salvador; Rodríguez, Miguel Á.; Roth, Alexander M.; Rousseau, Guillaume X.; Rozen, Anna; Sayad, Ehsan; van Schaik, Loes; Scharenbroch, Bryant; Schirrmann, Michael; Schmidt, Olaf; Schröder, Boris; Seeber, Julia; Shashkov, Maxim P.; Singh, Jaswinder; Smith, Sandy M.; Steinwandter, Michael; Szlavecz, Katalin; Talavera, José Antonio; Trigo, Dolores; Tsukamoto, Jiro; Uribe-López, Sheila; de Valença, Anne W.; Virto, Iñigo; Wackett, Adrian A.; Warren, Matthew W.; Webster, Emily R.; Wehr, Nathaniel H.; Whalen, Joann K.; Wironen, Michael B.; Wolters, Volkmar; Wu, Pengfei; Zenkova, Irina V.; Zhang, Weixin; Cameron, Erin K.; Eisenhauer, Nico; Phillips, Helen R. P.; Department of Environmental Science, Saint Mary’s University, Halifax, Canada; Bach, Elizabeth M.; Department of Biology, Colorado State University, Fort Collins, USA; Bartz, Marie L. C.; Center of Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martins de Freitas, Coimbra, Portugal; Bennett, Joanne M.; Centre for Applied Water Science, Institute for Applied Ecology, Faculty of Science and Technology, University of Canberra, Canberra, Australia; Beugnon, Rémy; Institute of Biology, Leipzig University, Leipzig, Germany; Briones, Maria J. I.; Departamento de Ecología y Biología Animal, Universidad de Vigo, Vigo, Spain; Brown, George G.; Embrapa Forestry, Estrada da Ribeira, Colombo, Brazil; Ferlian, Olga; Institute of Biology, Leipzig University, Leipzig, Germany; Gongalsky, Konstantin B.; M.V. Lomonosov Moscow State University, Moscow, Russia; Guerra, Carlos A.; Institute of Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany; König-Ries, Birgitta; Institute of Computer Science, Friedrich Schiller University Jena, Jena, Germany; Krebs, Julia J.; Institute of Biology, Leipzig University, Leipzig, Germany; Orgiazzi, Alberto; European Commission, Joint Research Centre (JRC), Ispra, Italy; Ramirez, Kelly S.; Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands; Russell, David J.; Senckenberg Museum for Natural History Görlitz, Department of Soil Zoology, Görlitz, Germany; Schwarz, Benjamin; Biometry and Environmental System Analysis, University of Freiburg, Freiburg, Germany; Wall, Diana H.; Department of Biology, Colorado State University, Fort Collins, USA; Brose, Ulrich; Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany; Decaëns, Thibaud; CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France; Lavelle, Patrick; Sorbonne Université, Institut d’Ecologie et des Sciences de l’Environnement, Paris, France; Loreau, Michel; Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, CNRS, Moulis, France; Mathieu, Jérôme; INRA, IRD, Institut d’Ecologie et des Sciences de l’Environnement de Paris, Paris, France; Mulder, Christian; Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy; van der Putten, Wim H.; Laboratory of Nematology, Wageningen University, Wageningen, The Netherlands; Rillig, Matthias C.; Institute of Biology, Freie Universität Berlin, Berlin, Germany; Thakur, Madhav P.; Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands; de Vries, Franciska T.; Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands; Wardle, David A.; Asian School of the Environment, Nanyang Technological University, Singapore, Singapore; Ammer, Christian; Silviculture and Forest Ecology of the Temperate Zones, University of Göttingen, Göttingen, Germany; Ammer, Sabine; Forest Sciences and Forest Ecology, University of Göttingen, Göttingen, Germany; Arai, Miwa; Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan; Ayuke, Fredrick O.; Rwanda Institute for Conservation Agriculture, Kigali, Rwanda; Baker, Geoff H.; Health & Biosecurity, CSIRO, Canberra, Australia; Baretta, Dilmar; Department of Animal Science, Santa Catarina State University, Chapecó, Brazil; Barkusky, Dietmar; Experimental Infrastructure Platform (EIP), Leibniz Centre for Agricultural Landscape Research, Müncheberg, Germany; Beauséjour, Robin; Départment de biologie, Université de Sherbrooke, Sherbrooke, Canada; Bedano, Jose C.; Geology Department, FCEFQyN, ICBIA-CONICET (National Scientific and Technical Research Council), National University of Rio Cuarto, Río Cuarto, Argentina; Birkhofer, Klaus; Department of Ecology, Brandenburg University of Technology, Cottbus, Germany; Blanchart, Eric; Eco&Sols, Univ Montpellier, IRD, INRAE, CIRAD, Institut Agro, Montpellier, France; Blossey, Bernd; Natural Resources, Cornell University, Ithaca, USA; Bolger, Thomas; School of Biology and Environmental Science, University College Dublin, Belfield, Dublin, Ireland;pmid: 34021166
pmc: PMC8140120
AbstractEarthworms are an important soil taxon as ecosystem engineers, providing a variety of crucial ecosystem functions and services. Little is known about their diversity and distribution at large spatial scales, despite the availability of considerable amounts of local-scale data. Earthworm diversity data, obtained from the primary literature or provided directly by authors, were collated with information on site locations, including coordinates, habitat cover, and soil properties. Datasets were required, at a minimum, to include abundance or biomass of earthworms at a site. Where possible, site-level species lists were included, as well as the abundance and biomass of individual species and ecological groups. This global dataset contains 10,840 sites, with 184 species, from 60 countries and all continents except Antarctica. The data were obtained from 182 published articles, published between 1973 and 2017, and 17 unpublished datasets. Amalgamating data into a single global database will assist researchers in investigating and answering a wide variety of pressing questions, for example, jointly assessing aboveground and belowground biodiversity distributions and drivers of biodiversity change.
Scientific Data arrow_drop_down Universiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)Royal Agricultural University Repository (RAU Cirencester - CREST)Article . 2021License: CC BYFull-Text: https://rau.repository.guildhe.ac.uk/id/eprint/16454/1/Phillips_et_al-2021-Scientific_Data.pdfData sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://hal.science/hal-03233434Data sources: Bielefeld Academic Search Engine (BASE)University of Freiburg: FreiDokArticle . 2021Full-Text: https://freidok.uni-freiburg.de/data/236914Data sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Article . 2021Full-Text: https://hal.science/hal-03233434Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03233434Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAScientific DataArticle . 2021License: CC BYData sources: Universiteit van Amsterdam Digital Academic RepositoryJyväskylä University Digital ArchiveArticle . 2021 . Peer-reviewedData sources: Jyväskylä University Digital ArchiveHELDA - Digital Repository of the University of HelsinkiArticle . 2023 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiGöttingen Research Online PublicationsArticle . 2023License: CC BYData sources: Göttingen Research Online PublicationsWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff PublicationsBiblioteca Digital de la Universidad de AlcaláArticle . 2021License: CC BY NC NDData sources: Biblioteca Digital de la Universidad de AlcaláInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Croatian Scientific Bibliography - CROSBIArticle . 2021Data sources: Croatian Scientific Bibliography - CROSBIGhent University Academic BibliographyArticle . 2021Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-021-00912-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu41 citations 41 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Scientific Data arrow_drop_down Universiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)Royal Agricultural University Repository (RAU Cirencester - CREST)Article . 2021License: CC BYFull-Text: https://rau.repository.guildhe.ac.uk/id/eprint/16454/1/Phillips_et_al-2021-Scientific_Data.pdfData sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://hal.science/hal-03233434Data sources: Bielefeld Academic Search Engine (BASE)University of Freiburg: FreiDokArticle . 2021Full-Text: https://freidok.uni-freiburg.de/data/236914Data sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Article . 2021Full-Text: https://hal.science/hal-03233434Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03233434Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAScientific DataArticle . 2021License: CC BYData sources: Universiteit van Amsterdam Digital Academic RepositoryJyväskylä University Digital ArchiveArticle . 2021 . Peer-reviewedData sources: Jyväskylä University Digital ArchiveHELDA - Digital Repository of the University of HelsinkiArticle . 2023 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiGöttingen Research Online PublicationsArticle . 2023License: CC BYData sources: Göttingen Research Online PublicationsWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff PublicationsBiblioteca Digital de la Universidad de AlcaláArticle . 2021License: CC BY NC NDData sources: Biblioteca Digital de la Universidad de AlcaláInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Croatian Scientific Bibliography - CROSBIArticle . 2021Data sources: Croatian Scientific Bibliography - CROSBIGhent University Academic BibliographyArticle . 2021Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-021-00912-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Miodrag Darko Matovic; Yu Wang; Yu Wang; Yixin Shao; Joann K. Whalen;Abstract Biomass combustion generates renewable energy, which is optimized by designing a biomass combustion system that controls excess air intake and evaluates the ash fouling/slagging potential. The objective of this study was to (1) investigate the effect of excess air ratio (EAR) on the combustion of switchgrass ( Panicum vigratum L .) and hardwood, (2) assess their ash fouling and slagging tendencies, and (3) perform an in-depth thermogravimetric kinetic analysis to understand their combustion. Switchgrass and hardwood contained 17.5 and 17.7 MJ/kg of energy value, which was appropriate for heat generation. The greatest energy conversion efficiency and combustion completeness rate were obtained with an EAR of 20% for switchgrass and 30% for hardwood based on our combustion system with 4 mm particles of fuel. Kinetic analysis confirmed that increasing the oxygen availability resulted in superior energy conversion. In general, switchgrass ash had lower fouling and slagging tendencies than hardwood owing to its more acidic chemical composition. Heat and mass transfer delays were still observed from this combustion system, thus making the combustion request more air to even achieve a stoichiometric condition. However, rather than an ideal test (e.g. single particle combustion), the conclusions made by this study were a practical guidance for boiler operations, since the heat and mass transfer delays were a common phenomenon in real applications that should not be eliminated in our lab-scale studies.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2015.03.070&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2015.03.070&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Jinyue Yan; Fei Shen; Mats Eklund; Amit Kumar; Charles (Chunbao) Xu; Joann K. Whalen;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.05.079&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.05.079&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Wiley Illimar Altosaar; Victoria M.T. Truong-Trieu; Shen Wan; Tonya Ward; Joann K. Whalen;doi: 10.1002/bbb.1777
AbstractBiodiesel is a low‐carbon‐intensity renewable fuel with up to 99% lower greenhouse gas emissions than petroleum‐based diesel. The use of oil crops for biodiesel is under critical examination. It is expensive and suffers from the food versus fuel risk/benefit problem. Consequently, many countries (e.g. Malaysia and countries in the EU) are scaling back the use of oil crops as feedstock for biofuel production. The limitations of these traditional crops are leading the renewable fuels industry to consider innovative, sustainable, and profitable biomass‐based platforms. Plant genetic engineering and other new breeding technologies are essential for developing such biomass‐based platforms because they enhance plant tolerance to abiotic and biotic stresses, resulting in higher feedstock yields, greater net energy gain, and the generation of high‐value co‐products. We review and summarize the recent improvements of oil crops through plant genetic engineering that may increase widespread and cost‐effective production of biodiesel and value‐added co‐products for green chemistry applications. © 2017 Society of Chemical Industry and John Wiley & Sons, Ltd
Biofuels Bioproducts... arrow_drop_down Biofuels Bioproducts and BiorefiningArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bbb.1777&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Biofuels Bioproducts... arrow_drop_down Biofuels Bioproducts and BiorefiningArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bbb.1777&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008Publisher:Elsevier BV Authors: Joann K. Whalen; Richard Jeannotte; Chantal Hamel; Suha Jabaji;pmid: 18804620
The extraction and transesterification of soil lipids into fatty acid methyl esters (FAMEs) is a useful technique for studying soil microbial communities. The objective of this study was to find the best solvent mixture to extract soil lipids with a pressurized solvent extractor system. Four solvent mixtures were selected for testing: chloroform:methanol:phosphate buffer (1:2:0.8, v/v/v), chloroform:methanol (1:2, v/v), hexane:2-propanol (3:2, v/v) and acetone. Soils were from agricultural fields and had a wide range of clay, organic matter and microbial biomass contents. Total lipid fatty acid methyl esters (TL-FAMEs) were the extractable soil lipids identified and quantified with gas chromatography and flame ionization detection. Concentrations of TL-FAMEs ranged from 57.3 to 542.2 nmole g(-1) soil (dry weight basis). The highest concentrations of TL-FAMEs were extracted with chloroform:methanol:buffer or chloroform:methanol mixtures than with the hexane:2-propanol or acetone solvents. The concentrations of TL-FAMEs in chemical groups, including saturated, branched, mono- and poly-unsaturated and hydroxy fatty acids were assessed, and biological groups (soil bacteria, mycorrhizal fungi, saprophytic fungi and higher plants) was distinguished. The extraction efficiency for the chemical and biological groups followed the general trend of: chloroform:methanol:buffer> or =chloroform:methanol>hexane:2-propanol=acetone. Discriminant analysis revealed differences in TL-FAME profiles based on the solvent mixture and the soil type. Although solvent mixtures containing chloroform and methanol were the most efficient for extracting lipids from the agricultural soils in this study, soil properties and the lipid groups to be studied should be considered when selecting a solvent mixture. According to our knowledge, this is the first report of soil lipid extraction with hexane:2-propanol or acetone in a pressurized solvent extraction system.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.talanta.2008.06.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.talanta.2008.06.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal , External research report , Preprint , Report 2019 Argentina, United Kingdom, Croatia, Italy, Finland, Netherlands, United Kingdom, Netherlands, Spain, Netherlands, Argentina, France, Spain, United Kingdom, Poland, Netherlands, CroatiaPublisher:American Association for the Advancement of Science (AAAS) Publicly fundedFunded by:FCT | LA 1, EC | BIOBIO, AKA | Macrodetritivore range sh... +13 projectsFCT| LA 1 ,EC| BIOBIO ,AKA| Macrodetritivore range shifts and implications for aboveground-belowground interactions ,EC| FUNDIVEUROPE ,NSF| Predicting Regional Invasion Dynamic Processes (PRIDE)-Developing a Cross-scale, Functional-trait Based Modeling Framework ,FWF| Litter decomposition and humus formation in highalpine soils ,EC| ECOWORM ,DFG| German Centre for Integrative Biodiversity Research - iDiv ,EC| SPECIALS ,EC| AGFORWARD ,EC| TERRESTREVOL ,EC| Gradual_Change ,NWO| EV Diagnostics for monitoring therapy byliquid tuneable Coulter flowcytometry (project 3.2) ,NSERC ,FWF| The macrofauna decomposer food web on alpine pastureland ,NSF| IGERT: Ecology, Management and Restoration of Integrated Human/Natural LandscapesDevin Routh; Aidan M. Keith; Geoff H. Baker; Boris Schröder; Fredrick O. Ayuke; Iñigo Virto; Thomas W. Crowther; Anahí Domínguez; Yvan Capowiez; Irina V. Zenkova; Konstantin B. Gongalsky; Martin Holmstrup; Sandy M. Smith; Mark E. Caulfield; Christian Mulder; Robin Beauséjour; Shishir Paudel; Matthias C. Rillig; Michael Steinwandter; Michiel Rutgers; Takuo Hishi; Loes van Schaik; Jérôme Mathieu; Guillaume Xavier Rousseau; José Antonio Talavera; Miguel Á. Rodríguez; Nico Eisenhauer; Carlos Fragoso; H. Lalthanzara; Thibaud Decaëns; Luis M. Hernández; Adrian A. Wackett; David J. Russell; Weixin Zhang; David A. Wardle; Scott R. Loss; Steven J. Fonte; Liliana B. Falco; Olaf Schmidt; Radim Matula; Shaieste Gholami; Darío J. Díaz Cosín; Anna Rożen; Robert L. Bradley; Wim H. van der Putten; Michael J. Gundale; Andrea Dávalos; Andrea Dávalos; Rosa Fernández; Johan van den Hoogen; Franciska T. de Vries; Victoria Nuzzo; Mujeeb Rahman P; André L.C. Franco; Jan Hendrik Moos; Joann K. Whalen; Martine Fugère; Mac A. Callaham; Miwa Arai; Elizabeth M. Bach; Yiqing Li; Raphaël Marichal; Jonatan Klaminder; Monika Joschko; George G. Brown; Michael B. Wironen; Dolores Trigo; Nathaniel H. Wehr; Maria Kernecker; Kristine N. Hopfensperger; Amy Choi; Esperanza Huerta Lwanga; Sanna T. Kukkonen; Basil V. Iannone; Veikko Huhta; Birgitta König-Ries; Guénola Pérès; Salvador Rebollo; Olga Ferlian; Nick van Eekeren; Anne W. de Valença; Eric Blanchart; Matthew W. Warren; Johan Pansu; Christoph Emmerling; Courtland Kelly; Javier Rodeiro-Iglesias; Armand W. Koné; Muhammad Rashid; Muhammad Rashid; Alexander M. Roth; Davorka K. Hackenberger; Michael Schirrmann; Alberto Orgiazzi; Bryant C. Scharenbroch; Ulrich Brose; Helen Phillips; Diana H. Wall; Noa Kekuewa Lincoln; Andrew R. Holdsworth; Raúl Piñeiro; Tunsisa T. Hurisso; Tunsisa T. Hurisso; Mónica Gutiérrez López; Klaus Birkhofer; Yahya Kooch; Michel Loreau; Julia Seeber; Jaswinder Singh; Volkmar Wolters; Radoslava Kanianska; Jiro Tsukamoto; Visa Nuutinen; Gerardo Moreno; Marie Luise Carolina Bartz; Juan B. Jesús Lidón; Daniel R. Lammel; Daniel R. Lammel; Madhav P. Thakur; Felicity Crotty; Julia Krebs; Iurii M. Lebedev; Steven J. Vanek; Marta Novo; Carlos A. Guerra; José Camilo Bedano; Bernd Blossey; Lorenzo Pérez-Camacho; Joanne M. Bennett; Nobuhiro Kaneko; Madalina Iordache; Andrés Esteban Duhour; Maria J. I. Briones; Abegail T Fusilero; Maxim Shashkov; Maxim Shashkov; Ehsan Sayad; Thomas Bolger; Alejandro Morón-Ríos; Lindsey Norgrove; Benjamin Schwarz; Bart Muys; Johan Neirynck; Jean-François Ponge; Erin K. Cameron; Kelly S. Ramirez;pmid: 31649197
pmc: PMC7335308
Earthworm distribution in global soils Earthworms are key components of soil ecological communities, performing vital functions in decomposition and nutrient cycling through ecosystems. Using data from more than 7000 sites, Phillips et al. developed global maps of the distribution of earthworm diversity, abundance, and biomass (see the Perspective by Fierer). The patterns differ from those typically found in aboveground taxa; there are peaks of diversity and abundance in the mid-latitude regions and peaks of biomass in the tropics. Climate variables strongly influence these patterns, and changes are likely to have cascading effects on other soil organisms and wider ecosystem functions. Science , this issue p. 480 ; see also p. 425
NERC Open Research A... arrow_drop_down Hyper Article en LignePreprint . 2019License: CC BYFull-Text: https://hal.inrae.fr/hal-02788558/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationPreprint . 2019License: CC BYFull-Text: https://hal.inrae.fr/hal-02788558/documentInstitut National de la Recherche Agronomique: ProdINRAArticle . 2019License: PDMFull-Text: https://hal.science/hal-02337185Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2019License: PDMFull-Text: https://hal.science/hal-02337185Data sources: Bielefeld Academic Search Engine (BASE)Royal Agricultural University Repository (RAU Cirencester - CREST)Article . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAReport . 2019Full-Text: https://hal.inrae.fr/hal-02788558Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUReport . 2019Full-Text: https://hal.inrae.fr/hal-02788558Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019License: PDMFull-Text: https://hal.science/hal-02337185Data sources: Bielefeld Academic Search Engine (BASE)Croatian Scientific Bibliography - CROSBIArticle . 2019Data sources: Croatian Scientific Bibliography - CROSBIRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAIRIS - Università degli Studi di CataniaArticle . 2019Data sources: IRIS - Università degli Studi di CataniaUniversiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aax4851&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 320 citations 320 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 72visibility views 72 download downloads 104 Powered bymore_vert NERC Open Research A... arrow_drop_down Hyper Article en LignePreprint . 2019License: CC BYFull-Text: https://hal.inrae.fr/hal-02788558/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationPreprint . 2019License: CC BYFull-Text: https://hal.inrae.fr/hal-02788558/documentInstitut National de la Recherche Agronomique: ProdINRAArticle . 2019License: PDMFull-Text: https://hal.science/hal-02337185Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2019License: PDMFull-Text: https://hal.science/hal-02337185Data sources: Bielefeld Academic Search Engine (BASE)Royal Agricultural University Repository (RAU Cirencester - CREST)Article . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAReport . 2019Full-Text: https://hal.inrae.fr/hal-02788558Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUReport . 2019Full-Text: https://hal.inrae.fr/hal-02788558Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019License: PDMFull-Text: https://hal.science/hal-02337185Data sources: Bielefeld Academic Search Engine (BASE)Croatian Scientific Bibliography - CROSBIArticle . 2019Data sources: Croatian Scientific Bibliography - CROSBIRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAIRIS - Università degli Studi di CataniaArticle . 2019Data sources: IRIS - Università degli Studi di CataniaUniversiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aax4851&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Wiley Emily A. Heaton; Mark Lefsrud; Donald L. Smith; Camilo Perez Lee; David B. Neale; Bruce Coulman; David B. Levin; Joann K. Whalen; Ajay K. Dalai; Sharon P. Shoemaker; Peggy G. Lemaux; Jaswinder Singh;doi: 10.1002/bbb.1418
AbstractThere is an urgent need to develop viable, renewable, sustainable energy systems that can reduce global dependence on fossil fuel sources of energy. Biofuels such as ethanol are being utilized as blends in surface transportation fuels and have the potential to improve sustainability and reduce greenhouse gas emissions in the short term. Bioethanol, the most widely used liquid biofuel, is currently produced by converting sugars or starches from feed crops into ethanol. Use of this fuel source displaces and draws water consumption away from agricultural crops, increases soil erosion by shifting land from perennial grasses to annual crops, and increases use of fertilizers and insecticides. In contrast, bioethanol made from lignocellulosic biomass feedstocks does not have these limitations and in addition, offers a larger resource base: the amount of cellulosic material available for potential use vastly outweighs the amount of available starch‐based feedstock. Therefore, bioethanol from lignocellulosic biomass has attracted considerable interest from biofuel developers. This review is an update of some developments to optimize cellulose extraction from feedstock crops and to improve crop yields and logistics. It concludes that agricultural and forestry systems that incorporate lignocellulosic biomass crops can be designed for improved ecological function and energy use efficiency. Development of crops that have both desirable cell‐wall traits and high biomass productivity under sustainable low‐input conditions can significantly enhance the economics and efficiency of the conversion process. Optimizing the logistics of moving feedstock from field or forest to bio‐refinery can significantly reduce costs of using lignocellulosic feedstocks. © 2013 Society of Chemical Industry and John Wiley & Sons, Ltd
Biofuels Bioproducts... arrow_drop_down Biofuels Bioproducts and BiorefiningArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bbb.1418&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Average influence Average impulse Average Powered by BIP!
more_vert Biofuels Bioproducts... arrow_drop_down Biofuels Bioproducts and BiorefiningArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bbb.1418&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Authors: Mohamed Leila; Jeffrey M. Bergthorson; Joann K. Whalen;Abstract The United States (US) military plans to acquire drop-in biofuels (renewable diesel and biojet fuel) to reduce carbon emissions and diversify military energy portfolio. To expedite this endeavor, the military provided direct financial incentives to offset investment costs of selected drop-in biofuel demonstration facilities. It is not known if investment incentives alone will stimulate the creation of a full-scale advanced biofuel supply chain capable of meeting US military demands, given limited availability of low-cost sustainable biomass feedstocks in some areas and considering the uncertainty in global oil prices. The objective of this work is to determine 1) whether a state in the US can meet its share of military biofuel targets from local biomass resources, and 2) if direct financial incentives can expedite the development of the military biofuel supply chain, under two different oil price scenarios. The Biofuel supply chain GeoSpatial and Temporal Optimizer (BioGeSTO), was developed for that purpose and applied to the state of California, USA from 2020 to 2040. The BioGeSTO model determined that biomass resources in California can meet 12–19% of its annual military targets between 2020 and 2040 of renewable diesel and biojet fuel using the Fischer-Tropsch (FT) and Hydro-Treatment of Esters and Fatty Acids (HEFA) conversion technologies. However, under the reference oil price scenario, only HEFA conversion facilities introduced at 2027 in Kings County were found feasible. Under the high oil price scenario, both the HEFA and FT technologies were financially feasible and the supply chain production approaches the theoretical production limit by 2032. In both scenarios, providing investment incentives has a modest impact on expediting the supply chain, as facilities are introduced only 1–3 years earlier when receiving direct investment incentives. Sensitivity analysis shows that biomass availability has the greatest impact on the supply chain performance such that a 50% increase in the baseline amount of biomass feedstock results in a 150% surge in the total cumulative production. In conclusion, the reference oil price scenario drastically limits the ability of California to meet its military drop-in biofuel targets. Assuming a high oil price scenario, the state may be able to meet military biofuel targets by subsidizing local biomass production and importing the rest of the biomass required for this purpose from the northwestern states of Washington and Oregon.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2018.04.196&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2018.04.196&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Frontiers Media SA Emmanuel A. Badewa; Chun C. Yeung; Fereidoun Rezanezhad; Joann K. Whalen; Maren Oelbermann;In temperate cold regions, the gradual resurgence of soil microbial activity during spring freeze-thaw events is frequently associated with greenhouse gas emissions. Enhanced greenhouse gas fluxes during spring freeze-thaw are related to the mineralization of bioavailable substrates, which may be elevated when soil is amended with organic residues (e.g., biobased residues such as compost, digestate, biosolids). The objective of this study was to determine the impact of biobased residues, compared to urea fertilizer, on greenhouse gas emissions during spring freeze-thaw events. The field treatments included urea (170 kg N ha−1 y−1), composted food waste (240 kg N ha−1 y−1), hydrolyzed biosolids (215 kg N ha−1 y−1), and anaerobic digestate (231 kg N ha−1 y−1). Headspace gases were sampled from a closed static chamber in each replicate plot (n = 4) and categorized with three transient spring freeze-thaw phases (waterlogged, wet, and dry). Among the treatments, nitrous oxide (N2O) flux was significantly different (p < 0.05) where compost had the highest emission and digestate lowest while carbon dioxide (CO2) and methane (CH4) fluxes were not significantly different (p > 0.05). The greenhouse gas fluxes were significantly different among the freeze-thaw events (p < 0.05) likely due to intense microbial activity and anaerobic conditions. The CO2 and CH4 emissions were related to N2O emission (p < 0.05), and soil temperature strongly correlated with CO2 fluxes. This suggested that soil warming driven by ambient conditions as well as the type and quantity of carbon input influenced soil microbial activity, leading to greenhouse gases production. Therefore, soil amended with biobased residues may either increase or reduce greenhouse gas fluxes during spring freeze-thaw events depending on the source and production method of the organic material.
Frontiers in Environ... arrow_drop_down Frontiers in Environmental ScienceArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenvs.2022.909683&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Frontiers in Environ... arrow_drop_down Frontiers in Environmental ScienceArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenvs.2022.909683&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Nahid Shanta; Timothy Schwinghamer; Rachel Backer; Suzanne E. Allaire; Inna Teshler; Anne Vanasse; Joann Whalen; Benjamin Baril; Sebastien Lange; John MacKay; Xiaomin Zhou; Donald L. Smith;Abstract Switchgrass ( Panicum virgatum L.) is a fast growing native C 4 perennial and a lignocellulosic biomass crop for North America. In combination with biochar, an active plant growth promoting rhizobacterial (PGPR) community can contribute to the long-term sequestration of carbon in soil, fix nitrogen, and enhance the availability of other nutrients to plants. Biochar and PGPR have the potential to improve grass biomass production, but they have not been tested together under high-latitude temperate zone field conditions. Therefore, the objective of this three-year field study was to determine whether there were effects on biomass yield and yield components of switchgrass (cv. Cave-in-Rock) due to a rhizobacterium that was able to mobilize soil phosphorus ( Pseudomonas rhodesiae ), a bacterial consortium that was able to supply nitrogen ( Paenibacillus polymyxa , Rahnella sp., and Serrati sp.), and pine wood chip biochar applied as a soil amendment at 20 Mg ha −1 . The incorporation of biochar, or inoculation with the N-fixing consortium, and the combined inoculation of the experimental bacteria had positive effects on switchgrass height. At a loam soil site in Sainte-Anne-de-Bellevue, Quebec, when nitrogen fertilizer was not applied, the addition of biochar had a positive effect on stand count (tillers m −1 row). On the sandy soil in Sainte-Anne-de-Bellevue, when biochar was applied with 100 kg N ha −1 , biomass yield increased over the control but did not provide additional benefits over plots receiving only 50 kg N ha −1 . It remains unclear whether or not the increased C sequestration of this management system justifies increased N fertilizer usage.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2016.10.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2016.10.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal , Data Paper 2021 Portugal, Sweden, Italy, Australia, Finland, Netherlands, Spain, Netherlands, Spain, Netherlands, Australia, Netherlands, Finland, United Kingdom, Croatia, Netherlands, United Kingdom, Belgium, United Kingdom, Finland, Argentina, Germany, Germany, Switzerland, Spain, Germany, Argentina, Spain, Finland, Spain, Spain, France, CroatiaPublisher:Springer Science and Business Media LLC Funded by:NSF | Predicting Regional Invas..., NSERC, UKRI | The root to stability - t... +15 projectsNSF| Predicting Regional Invasion Dynamic Processes (PRIDE)-Developing a Cross-scale, Functional-trait Based Modeling Framework ,NSERC ,UKRI| The root to stability - the role of plant roots in ecosystem response to climate change ,FWF| The macrofauna decomposer food web on alpine pastureland ,ARC| Soil ecology in the 21st century _ a crucial role in land management ,EC| TERRESTREVOL ,AKA| Macrodetritivore range shifts and implications for aboveground-belowground interactions ,EC| ECOWORM ,RSF| The accumulation of carbon in forest soils and forest succession status ,EC| Gradual_Change ,EC| FUNDIVEUROPE ,EC| AGFORWARD ,NSF| IGERT: Ecology, Management and Restoration of Integrated Human/Natural Landscapes ,EC| BIOBIO ,DFG| German Centre for Integrative Biodiversity Research - iDiv ,EC| SPECIALS ,EC| ROUTES ,FWF| Litter decomposition and humus formation in highalpine soilsAuthors: Phillips, Helen R. P.; Bach, Elizabeth M.; Bartz, Marie L. C.; Bennett, Joanne M.; +196 AuthorsPhillips, Helen R. P.; Bach, Elizabeth M.; Bartz, Marie L. C.; Bennett, Joanne M.; Beugnon, Rémy; Briones, Maria J. I.; Brown, George G.; Ferlian, Olga; Gongalsky, Konstantin B.; Guerra, Carlos A.; König-Ries, Birgitta; Krebs, Julia J.; Orgiazzi, Alberto; Ramirez, Kelly S.; Russell, David J.; Schwarz, Benjamin; Wall, Diana H.; Brose, Ulrich; Decaëns, Thibaud; Lavelle, Patrick; Loreau, Michel; Mathieu, Jérôme; Mulder, Christian; van der Putten, Wim H.; Rillig, Matthias C.; Thakur, Madhav P.; de Vries, Franciska T.; Wardle, David A.; Ammer, Christian; Ammer, Sabine; Arai, Miwa; Ayuke, Fredrick O.; Baker, Geoff H.; Baretta, Dilmar; Barkusky, Dietmar; Beauséjour, Robin; Bedano, Jose C.; Birkhofer, Klaus; Blanchart, Eric; Blossey, Bernd; Bolger, Thomas; Bradley, Robert L.; Brossard, Michel; Burtis, James C.; Capowiez, Yvan; Cavagnaro, Timothy R.; Choi, Amy; Clause, Julia; Cluzeau, Daniel; Coors, Anja; Crotty, Felicity V.; Crumsey, Jasmine M.; Dávalos, Andrea; Cosín, Darío J. Díaz; Dobson, Annise M.; Domínguez, Anahí; Duhour, Andrés Esteban; van Eekeren, Nick; Emmerling, Christoph; Falco, Liliana B.; Fernández, Rosa; Fonte, Steven J.; Fragoso, Carlos; Franco, André L. C.; Fusilero, Abegail; Geraskina, Anna P.; Gholami, Shaieste; González, Grizelle; Gundale, Michael J.; López, Mónica Gutiérrez; Hackenberger, Branimir K.; Hackenberger, Davorka K.; Hernández, Luis M.; Hirth, Jeff R.; Hishi, Takuo; Holdsworth, Andrew R.; Holmstrup, Martin; Hopfensperger, Kristine N.; Lwanga, Esperanza Huerta; Huhta, Veikko; Hurisso, Tunsisa T.; Iannone, Basil V.; Iordache, Madalina; Irmler, Ulrich; Ivask, Mari; Jesús, Juan B.; Johnson-Maynard, Jodi L.; Joschko, Monika; Kaneko, Nobuhiro; Kanianska, Radoslava; Keith, Aidan M.; Kernecker, Maria L.; Koné, Armand W.; Kooch, Yahya; Kukkonen, Sanna T.; Lalthanzara, H.; Lammel, Daniel R.; Lebedev, Iurii M.; Le Cadre, Edith; Lincoln, Noa K.; López-Hernández, Danilo; Loss, Scott R.; Marichal, Raphael; Matula, Radim; Minamiya, Yukio; Moos, Jan Hendrik; Moreno, Gerardo; Morón-Ríos, Alejandro; Motohiro, Hasegawa; Muys, Bart; Neirynck, Johan; Norgrove, Lindsey; Novo, Marta; Nuutinen, Visa; Nuzzo, Victoria; Mujeeb Rahman, P.; Pansu, Johan; Paudel, Shishir; Pérès, Guénola; Pérez-Camacho, Lorenzo; Ponge, Jean-François; Prietzel, Jörg; Rapoport, Irina B.; Rashid, Muhammad Imtiaz; Rebollo, Salvador; Rodríguez, Miguel Á.; Roth, Alexander M.; Rousseau, Guillaume X.; Rozen, Anna; Sayad, Ehsan; van Schaik, Loes; Scharenbroch, Bryant; Schirrmann, Michael; Schmidt, Olaf; Schröder, Boris; Seeber, Julia; Shashkov, Maxim P.; Singh, Jaswinder; Smith, Sandy M.; Steinwandter, Michael; Szlavecz, Katalin; Talavera, José Antonio; Trigo, Dolores; Tsukamoto, Jiro; Uribe-López, Sheila; de Valença, Anne W.; Virto, Iñigo; Wackett, Adrian A.; Warren, Matthew W.; Webster, Emily R.; Wehr, Nathaniel H.; Whalen, Joann K.; Wironen, Michael B.; Wolters, Volkmar; Wu, Pengfei; Zenkova, Irina V.; Zhang, Weixin; Cameron, Erin K.; Eisenhauer, Nico; Phillips, Helen R. P.; Department of Environmental Science, Saint Mary’s University, Halifax, Canada; Bach, Elizabeth M.; Department of Biology, Colorado State University, Fort Collins, USA; Bartz, Marie L. C.; Center of Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martins de Freitas, Coimbra, Portugal; Bennett, Joanne M.; Centre for Applied Water Science, Institute for Applied Ecology, Faculty of Science and Technology, University of Canberra, Canberra, Australia; Beugnon, Rémy; Institute of Biology, Leipzig University, Leipzig, Germany; Briones, Maria J. I.; Departamento de Ecología y Biología Animal, Universidad de Vigo, Vigo, Spain; Brown, George G.; Embrapa Forestry, Estrada da Ribeira, Colombo, Brazil; Ferlian, Olga; Institute of Biology, Leipzig University, Leipzig, Germany; Gongalsky, Konstantin B.; M.V. Lomonosov Moscow State University, Moscow, Russia; Guerra, Carlos A.; Institute of Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany; König-Ries, Birgitta; Institute of Computer Science, Friedrich Schiller University Jena, Jena, Germany; Krebs, Julia J.; Institute of Biology, Leipzig University, Leipzig, Germany; Orgiazzi, Alberto; European Commission, Joint Research Centre (JRC), Ispra, Italy; Ramirez, Kelly S.; Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands; Russell, David J.; Senckenberg Museum for Natural History Görlitz, Department of Soil Zoology, Görlitz, Germany; Schwarz, Benjamin; Biometry and Environmental System Analysis, University of Freiburg, Freiburg, Germany; Wall, Diana H.; Department of Biology, Colorado State University, Fort Collins, USA; Brose, Ulrich; Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany; Decaëns, Thibaud; CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France; Lavelle, Patrick; Sorbonne Université, Institut d’Ecologie et des Sciences de l’Environnement, Paris, France; Loreau, Michel; Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, CNRS, Moulis, France; Mathieu, Jérôme; INRA, IRD, Institut d’Ecologie et des Sciences de l’Environnement de Paris, Paris, France; Mulder, Christian; Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy; van der Putten, Wim H.; Laboratory of Nematology, Wageningen University, Wageningen, The Netherlands; Rillig, Matthias C.; Institute of Biology, Freie Universität Berlin, Berlin, Germany; Thakur, Madhav P.; Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands; de Vries, Franciska T.; Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands; Wardle, David A.; Asian School of the Environment, Nanyang Technological University, Singapore, Singapore; Ammer, Christian; Silviculture and Forest Ecology of the Temperate Zones, University of Göttingen, Göttingen, Germany; Ammer, Sabine; Forest Sciences and Forest Ecology, University of Göttingen, Göttingen, Germany; Arai, Miwa; Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan; Ayuke, Fredrick O.; Rwanda Institute for Conservation Agriculture, Kigali, Rwanda; Baker, Geoff H.; Health & Biosecurity, CSIRO, Canberra, Australia; Baretta, Dilmar; Department of Animal Science, Santa Catarina State University, Chapecó, Brazil; Barkusky, Dietmar; Experimental Infrastructure Platform (EIP), Leibniz Centre for Agricultural Landscape Research, Müncheberg, Germany; Beauséjour, Robin; Départment de biologie, Université de Sherbrooke, Sherbrooke, Canada; Bedano, Jose C.; Geology Department, FCEFQyN, ICBIA-CONICET (National Scientific and Technical Research Council), National University of Rio Cuarto, Río Cuarto, Argentina; Birkhofer, Klaus; Department of Ecology, Brandenburg University of Technology, Cottbus, Germany; Blanchart, Eric; Eco&Sols, Univ Montpellier, IRD, INRAE, CIRAD, Institut Agro, Montpellier, France; Blossey, Bernd; Natural Resources, Cornell University, Ithaca, USA; Bolger, Thomas; School of Biology and Environmental Science, University College Dublin, Belfield, Dublin, Ireland;pmid: 34021166
pmc: PMC8140120
AbstractEarthworms are an important soil taxon as ecosystem engineers, providing a variety of crucial ecosystem functions and services. Little is known about their diversity and distribution at large spatial scales, despite the availability of considerable amounts of local-scale data. Earthworm diversity data, obtained from the primary literature or provided directly by authors, were collated with information on site locations, including coordinates, habitat cover, and soil properties. Datasets were required, at a minimum, to include abundance or biomass of earthworms at a site. Where possible, site-level species lists were included, as well as the abundance and biomass of individual species and ecological groups. This global dataset contains 10,840 sites, with 184 species, from 60 countries and all continents except Antarctica. The data were obtained from 182 published articles, published between 1973 and 2017, and 17 unpublished datasets. Amalgamating data into a single global database will assist researchers in investigating and answering a wide variety of pressing questions, for example, jointly assessing aboveground and belowground biodiversity distributions and drivers of biodiversity change.
Scientific Data arrow_drop_down Universiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)Royal Agricultural University Repository (RAU Cirencester - CREST)Article . 2021License: CC BYFull-Text: https://rau.repository.guildhe.ac.uk/id/eprint/16454/1/Phillips_et_al-2021-Scientific_Data.pdfData sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://hal.science/hal-03233434Data sources: Bielefeld Academic Search Engine (BASE)University of Freiburg: FreiDokArticle . 2021Full-Text: https://freidok.uni-freiburg.de/data/236914Data sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Article . 2021Full-Text: https://hal.science/hal-03233434Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03233434Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAScientific DataArticle . 2021License: CC BYData sources: Universiteit van Amsterdam Digital Academic RepositoryJyväskylä University Digital ArchiveArticle . 2021 . Peer-reviewedData sources: Jyväskylä University Digital ArchiveHELDA - Digital Repository of the University of HelsinkiArticle . 2023 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiGöttingen Research Online PublicationsArticle . 2023License: CC BYData sources: Göttingen Research Online PublicationsWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff PublicationsBiblioteca Digital de la Universidad de AlcaláArticle . 2021License: CC BY NC NDData sources: Biblioteca Digital de la Universidad de AlcaláInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Croatian Scientific Bibliography - CROSBIArticle . 2021Data sources: Croatian Scientific Bibliography - CROSBIGhent University Academic BibliographyArticle . 2021Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-021-00912-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu41 citations 41 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Scientific Data arrow_drop_down Universiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)Royal Agricultural University Repository (RAU Cirencester - CREST)Article . 2021License: CC BYFull-Text: https://rau.repository.guildhe.ac.uk/id/eprint/16454/1/Phillips_et_al-2021-Scientific_Data.pdfData sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://hal.science/hal-03233434Data sources: Bielefeld Academic Search Engine (BASE)University of Freiburg: FreiDokArticle . 2021Full-Text: https://freidok.uni-freiburg.de/data/236914Data sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Article . 2021Full-Text: https://hal.science/hal-03233434Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03233434Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAScientific DataArticle . 2021License: CC BYData sources: Universiteit van Amsterdam Digital Academic RepositoryJyväskylä University Digital ArchiveArticle . 2021 . Peer-reviewedData sources: Jyväskylä University Digital ArchiveHELDA - Digital Repository of the University of HelsinkiArticle . 2023 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiGöttingen Research Online PublicationsArticle . 2023License: CC BYData sources: Göttingen Research Online PublicationsWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff PublicationsBiblioteca Digital de la Universidad de AlcaláArticle . 2021License: CC BY NC NDData sources: Biblioteca Digital de la Universidad de AlcaláInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Croatian Scientific Bibliography - CROSBIArticle . 2021Data sources: Croatian Scientific Bibliography - CROSBIGhent University Academic BibliographyArticle . 2021Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-021-00912-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Miodrag Darko Matovic; Yu Wang; Yu Wang; Yixin Shao; Joann K. Whalen;Abstract Biomass combustion generates renewable energy, which is optimized by designing a biomass combustion system that controls excess air intake and evaluates the ash fouling/slagging potential. The objective of this study was to (1) investigate the effect of excess air ratio (EAR) on the combustion of switchgrass ( Panicum vigratum L .) and hardwood, (2) assess their ash fouling and slagging tendencies, and (3) perform an in-depth thermogravimetric kinetic analysis to understand their combustion. Switchgrass and hardwood contained 17.5 and 17.7 MJ/kg of energy value, which was appropriate for heat generation. The greatest energy conversion efficiency and combustion completeness rate were obtained with an EAR of 20% for switchgrass and 30% for hardwood based on our combustion system with 4 mm particles of fuel. Kinetic analysis confirmed that increasing the oxygen availability resulted in superior energy conversion. In general, switchgrass ash had lower fouling and slagging tendencies than hardwood owing to its more acidic chemical composition. Heat and mass transfer delays were still observed from this combustion system, thus making the combustion request more air to even achieve a stoichiometric condition. However, rather than an ideal test (e.g. single particle combustion), the conclusions made by this study were a practical guidance for boiler operations, since the heat and mass transfer delays were a common phenomenon in real applications that should not be eliminated in our lab-scale studies.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2015.03.070&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2015.03.070&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu