- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Emerald Authors: Les Ruddock; Luke Smith; Richard Fitton; William Swan;PurposeThe study was designed to assess the knowledge, adoption and perceived effectiveness of sustainable retrofit technologies within the UK social housing sector.Design/methodology/approachThe study was undertaken using a structured questionnaire that was completed by 130 providers of social housing.FindingsThe study showed that social housing providers were evenly split in their reliance on internal or external information for sustainable retrofit knowledge. In terms of adoption identified that this was strongly driven by government‐funded programmes, leading to widespread adoption of low technology solutions. The respondents identified that many leading edge technologies were perceived to be less effective.Research limitations/implicationsThe study represents a snap‐shot of adoption and effectiveness issues, therefore does not show the trajectory of adoption which should be addressed in a follow‐up study.Practical implicationsThe social housing sector has been viewed as a market maker for some of the newer technologies. It indicates that some of the newer technologies, such as heat pumps are viewed as less effective than more established technologies.Social implicationsThe study has implications for the adoption of technology to address fuel poverty and climate change, as well as informing future policy such as Green Deal.Originality/valueThe study includes 130 responses from the social housing stock and gives a perspective of current views on adoption and effectiveness of retrofit technologies within the social housing sector. This is useful for both other social housing providers and policy makers.
Structural Survey arrow_drop_down Structural SurveyArticle . 2013 . Peer-reviewedLicense: Emerald Insight Site PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1108/ss-12-2012-0039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Structural Survey arrow_drop_down Structural SurveyArticle . 2013 . Peer-reviewedLicense: Emerald Insight Site PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1108/ss-12-2012-0039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Emerald Authors: Les Ruddock; Luke Smith; Richard Fitton; William Swan;PurposeThe study was designed to assess the knowledge, adoption and perceived effectiveness of sustainable retrofit technologies within the UK social housing sector.Design/methodology/approachThe study was undertaken using a structured questionnaire that was completed by 130 providers of social housing.FindingsThe study showed that social housing providers were evenly split in their reliance on internal or external information for sustainable retrofit knowledge. In terms of adoption identified that this was strongly driven by government‐funded programmes, leading to widespread adoption of low technology solutions. The respondents identified that many leading edge technologies were perceived to be less effective.Research limitations/implicationsThe study represents a snap‐shot of adoption and effectiveness issues, therefore does not show the trajectory of adoption which should be addressed in a follow‐up study.Practical implicationsThe social housing sector has been viewed as a market maker for some of the newer technologies. It indicates that some of the newer technologies, such as heat pumps are viewed as less effective than more established technologies.Social implicationsThe study has implications for the adoption of technology to address fuel poverty and climate change, as well as informing future policy such as Green Deal.Originality/valueThe study includes 130 responses from the social housing stock and gives a perspective of current views on adoption and effectiveness of retrofit technologies within the social housing sector. This is useful for both other social housing providers and policy makers.
Structural Survey arrow_drop_down Structural SurveyArticle . 2013 . Peer-reviewedLicense: Emerald Insight Site PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1108/ss-12-2012-0039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Structural Survey arrow_drop_down Structural SurveyArticle . 2013 . Peer-reviewedLicense: Emerald Insight Site PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1108/ss-12-2012-0039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Elsevier BV Marshall, AS; Fitton, R; Swan, W; Farmer, D; Johnston, D; Benjaber, MAA; Ji, Y;There is a growing body of evidence available to indicate that there is often a discrepancy between the in situ measured thermal performance of a building fabric and the steady-state predicted performance of that fabric, even when the building fabric has been modelled based upon what was actually built. However, much of the work that has been published to date does not fully investigate the validity of the assumptions within the model and whether they fully characterise the building. To investigate this issue, a typical pre-1920’s UK house is modelled in Designbuilder in order to recognise and reduce the gap between modelled and measured energy performance. A model was first built to the specifications of a measured survey of the Salford Energy House, a facility which is housed in a climate controlled chamber. Electric coheating tests were performed to calculate the building’s heat transfer coefficient; a difference of 18.5% was demonstrated between the modelled and measured data, indicating a significant ‘prediction gap’. Accurate measurements of air permeability and U-value were made in-situ; these were found to differ considerably from the standard values used in the initial model. The standard values in the model were modified to reflect these in-situ measurements, resulting in a reduction of the performance gap to 2.4%. This suggests that a better alignment between the modelling and measurement research communities could lead to more accurate models and a better understanding of performance gap issues.
CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2017.06.028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 68 citations 68 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2017.06.028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Elsevier BV Marshall, AS; Fitton, R; Swan, W; Farmer, D; Johnston, D; Benjaber, MAA; Ji, Y;There is a growing body of evidence available to indicate that there is often a discrepancy between the in situ measured thermal performance of a building fabric and the steady-state predicted performance of that fabric, even when the building fabric has been modelled based upon what was actually built. However, much of the work that has been published to date does not fully investigate the validity of the assumptions within the model and whether they fully characterise the building. To investigate this issue, a typical pre-1920’s UK house is modelled in Designbuilder in order to recognise and reduce the gap between modelled and measured energy performance. A model was first built to the specifications of a measured survey of the Salford Energy House, a facility which is housed in a climate controlled chamber. Electric coheating tests were performed to calculate the building’s heat transfer coefficient; a difference of 18.5% was demonstrated between the modelled and measured data, indicating a significant ‘prediction gap’. Accurate measurements of air permeability and U-value were made in-situ; these were found to differ considerably from the standard values used in the initial model. The standard values in the model were modified to reflect these in-situ measurements, resulting in a reduction of the performance gap to 2.4%. This suggests that a better alignment between the modelling and measurement research communities could lead to more accurate models and a better understanding of performance gap issues.
CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2017.06.028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 68 citations 68 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2017.06.028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:MDPI AG Funded by:UKRI | Future HomesUKRI| Future HomesLjubomir Jankovic; Grant Henshaw; Christopher Tsang; Xinyi Zhang; Richard Fitton; William Swan;The heat transfer coefficient, or the HTC, is an industry-standard indicator of building energy performance. It is predicated on an assumption that it is of a constant value, and several different methods have been developed to measure and calculate the HTC as a constant. Whilst there are limited variations in the results obtained from these different methods, none of these methods consider a possibility that the HTC could be dynamically variable. Our experimental work shows that the HTC is not a constant. The experimental evidence based on our environmental chambers, which contain detached houses and in which the ambient air temperature can be controlled between −24 °C and +51 °C, with additional relative humidity control and with weather rigs that can introduce solar radiation, rain, and snow, shows that the HTC is dynamically variable. The analysis of data from the fully instrumented and monitored houses in combination with calibrated simulation models and data processing scripts based on genetic algorithm optimization provide experimental evidence of the dynamic variability of the HTC. This research increases the understanding of buildings physics properties and has the potential to change the way the heat transfer coefficient is used in building performance analysis.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en18092182&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en18092182&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:MDPI AG Funded by:UKRI | Future HomesUKRI| Future HomesLjubomir Jankovic; Grant Henshaw; Christopher Tsang; Xinyi Zhang; Richard Fitton; William Swan;The heat transfer coefficient, or the HTC, is an industry-standard indicator of building energy performance. It is predicated on an assumption that it is of a constant value, and several different methods have been developed to measure and calculate the HTC as a constant. Whilst there are limited variations in the results obtained from these different methods, none of these methods consider a possibility that the HTC could be dynamically variable. Our experimental work shows that the HTC is not a constant. The experimental evidence based on our environmental chambers, which contain detached houses and in which the ambient air temperature can be controlled between −24 °C and +51 °C, with additional relative humidity control and with weather rigs that can introduce solar radiation, rain, and snow, shows that the HTC is dynamically variable. The analysis of data from the fully instrumented and monitored houses in combination with calibrated simulation models and data processing scripts based on genetic algorithm optimization provide experimental evidence of the dynamic variability of the HTC. This research increases the understanding of buildings physics properties and has the potential to change the way the heat transfer coefficient is used in building performance analysis.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en18092182&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en18092182&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Taleghani, M; Marshall, AS; Fitton, R; Swan, W;Higher air temperatures in large cities like Manchester, UK, reduce human thermal comfort. In this paper, the impact of land cover on microclimate, and consequently on indoor thermal comfort is studied. Through different stages, field measurements and computer modelling were carried out for a heat wave episode in summer 2017 in Manchester: \ud First, the urban heat island (UHI) was measured between the city centre of Manchester and the campus of the University of Salford (between May to October 2017). Maximum detected UHI was 2.3 °C at 4:00, during the hottest day of the summer. Parallel measurements within the university campus showed that the park was 0.9 °C cooler than the paved areas (maximum cooling effect was 3.6 °C at 14:45). \ud Finally, the impact of the current land cover of the campus, and a greener land cover (as a renaturing scenario) with more planted trees on indoor thermal comfort of a house within the campus was studied. It was found that by adding 17% more trees to the campus, indoor thermal comfort was improved by 20.8% during the hottest day of 2017 in Manchester. These showed that renaturing cities could be a solution for future warmer climates.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2019.02.062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2019.02.062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Taleghani, M; Marshall, AS; Fitton, R; Swan, W;Higher air temperatures in large cities like Manchester, UK, reduce human thermal comfort. In this paper, the impact of land cover on microclimate, and consequently on indoor thermal comfort is studied. Through different stages, field measurements and computer modelling were carried out for a heat wave episode in summer 2017 in Manchester: \ud First, the urban heat island (UHI) was measured between the city centre of Manchester and the campus of the University of Salford (between May to October 2017). Maximum detected UHI was 2.3 °C at 4:00, during the hottest day of the summer. Parallel measurements within the university campus showed that the park was 0.9 °C cooler than the paved areas (maximum cooling effect was 3.6 °C at 14:45). \ud Finally, the impact of the current land cover of the campus, and a greener land cover (as a renaturing scenario) with more planted trees on indoor thermal comfort of a house within the campus was studied. It was found that by adding 17% more trees to the campus, indoor thermal comfort was improved by 20.8% during the hottest day of 2017 in Manchester. These showed that renaturing cities could be a solution for future warmer climates.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2019.02.062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2019.02.062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United KingdomPublisher:Elsevier BV Funded by:EC | PERFORMEREC| PERFORMERAlezzo, F; Farmer, D; Fitton, R; Hughes, T; Swan, W; Saint Gobain Recherche; Leeds Beckett University; University of Salford;The accurate assessment of buildings to assess their performance across a range of parameters is an essential part of understanding both new and retrofit buildings. The growing understanding of the performance gap in terms of its assessment and characterisation relies on effective methods of analysis. Here, we evaluate an experimental whole house method, known as QUB. As with many whole building approaches the method establishes heat loss through transmission and ventilation losses. This study compares QUB against an alternative, established, whole house test known as coheating. It was applied in a whole house test facility under controlled conditions. The test property, a solid wall pre-1919 UK archetype, was retrofit using a set of commercially available products and then the retrofit was removed in stages. At each of these stages a QUB test, which commonly takes one night, and coheating test, which can take few weeks, were applied. The objective of the study was to provide a comparison between the new method and more established method in terms of accuracy. The two methods showed close agreement in terms of results, suggesting that the quicker test has great potential as a more practical and economic test. There were higher levels of uncertainty with the QUB method due to shorter measurement periods. The lack of full boundary conditions within the test facility should be considered a limitation in applying the findings directly to the field. However, this study indicates the potential for QUB in validating performance, warranting further investigation.
CORE arrow_drop_down Leeds Beckett RepositoryArticle . 2018Full-Text: http://eprints.leedsbeckett.ac.uk/4885/1/ComparisonofWholeHouseHeatLossTestMethodsAM-FARMER.pdfData sources: CORE (RIOXX-UK Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2018.03.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down Leeds Beckett RepositoryArticle . 2018Full-Text: http://eprints.leedsbeckett.ac.uk/4885/1/ComparisonofWholeHouseHeatLossTestMethodsAM-FARMER.pdfData sources: CORE (RIOXX-UK Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2018.03.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United KingdomPublisher:Elsevier BV Funded by:EC | PERFORMEREC| PERFORMERAlezzo, F; Farmer, D; Fitton, R; Hughes, T; Swan, W; Saint Gobain Recherche; Leeds Beckett University; University of Salford;The accurate assessment of buildings to assess their performance across a range of parameters is an essential part of understanding both new and retrofit buildings. The growing understanding of the performance gap in terms of its assessment and characterisation relies on effective methods of analysis. Here, we evaluate an experimental whole house method, known as QUB. As with many whole building approaches the method establishes heat loss through transmission and ventilation losses. This study compares QUB against an alternative, established, whole house test known as coheating. It was applied in a whole house test facility under controlled conditions. The test property, a solid wall pre-1919 UK archetype, was retrofit using a set of commercially available products and then the retrofit was removed in stages. At each of these stages a QUB test, which commonly takes one night, and coheating test, which can take few weeks, were applied. The objective of the study was to provide a comparison between the new method and more established method in terms of accuracy. The two methods showed close agreement in terms of results, suggesting that the quicker test has great potential as a more practical and economic test. There were higher levels of uncertainty with the QUB method due to shorter measurement periods. The lack of full boundary conditions within the test facility should be considered a limitation in applying the findings directly to the field. However, this study indicates the potential for QUB in validating performance, warranting further investigation.
CORE arrow_drop_down Leeds Beckett RepositoryArticle . 2018Full-Text: http://eprints.leedsbeckett.ac.uk/4885/1/ComparisonofWholeHouseHeatLossTestMethodsAM-FARMER.pdfData sources: CORE (RIOXX-UK Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2018.03.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down Leeds Beckett RepositoryArticle . 2018Full-Text: http://eprints.leedsbeckett.ac.uk/4885/1/ComparisonofWholeHouseHeatLossTestMethodsAM-FARMER.pdfData sources: CORE (RIOXX-UK Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2018.03.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Springer Science and Business Media LLC Funded by:UKRI | Tackling Fuel Poverty: Br...UKRI| Tackling Fuel Poverty: Bridging the divide for low income and vulnerable communitiesAuthors: Philip Brown; Sharon Chahal; William Swan;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12053-015-9381-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12053-015-9381-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Springer Science and Business Media LLC Funded by:UKRI | Tackling Fuel Poverty: Br...UKRI| Tackling Fuel Poverty: Bridging the divide for low income and vulnerable communitiesAuthors: Philip Brown; Sharon Chahal; William Swan;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12053-015-9381-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12053-015-9381-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Elsevier BV Farmer, DJ; Gorse, C; Swan, W; Fitton, R; Brooke-Peat, M; Miles-Shenton, D; Johnston, D;The methodology used for measuring the thermal performance of fabric retrofit systems which were applied to a solid wall UK Victorian house situated within an environmental chamber is explored in detail. The work describes how steady-state boundary conditions were approximated, then repeated at the Salford Energy House test facility. How established methods of measuring the fabric thermal performance of buildings in situ were adapted to test the effectiveness of retrofit measures within a steady-state environment. The results presented show that steady-state boundary conditions enable the change in fabric heat loss resulting from the retrofit of a whole house or individual element to be measured to a level of accuracy and precision that is unlikely to be achieved in the field. The test environment enabled identification of heat loss phenomena difficult to detect in the field. However, undertaking tests in an environment devoid of wind underestimates the potential reduction in ventilation heat loss resulting from an improvement in airtightness, and hides the susceptibility of retrofit measures to various heat loss mechanisms, such as wind washing. The strengths and weaknesses of the methods employed, the Energy House test facility, and a steady-state environment, for characterising retrofit building fabric thermal performance are demonstrated.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2017.09.086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2017.09.086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Elsevier BV Farmer, DJ; Gorse, C; Swan, W; Fitton, R; Brooke-Peat, M; Miles-Shenton, D; Johnston, D;The methodology used for measuring the thermal performance of fabric retrofit systems which were applied to a solid wall UK Victorian house situated within an environmental chamber is explored in detail. The work describes how steady-state boundary conditions were approximated, then repeated at the Salford Energy House test facility. How established methods of measuring the fabric thermal performance of buildings in situ were adapted to test the effectiveness of retrofit measures within a steady-state environment. The results presented show that steady-state boundary conditions enable the change in fabric heat loss resulting from the retrofit of a whole house or individual element to be measured to a level of accuracy and precision that is unlikely to be achieved in the field. The test environment enabled identification of heat loss phenomena difficult to detect in the field. However, undertaking tests in an environment devoid of wind underestimates the potential reduction in ventilation heat loss resulting from an improvement in airtightness, and hides the susceptibility of retrofit measures to various heat loss mechanisms, such as wind washing. The strengths and weaknesses of the methods employed, the Energy House test facility, and a steady-state environment, for characterising retrofit building fabric thermal performance are demonstrated.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2017.09.086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2017.09.086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Elsevier BV Funded by:UKRI | The UK Doctoral Training ..., UKRI | EPSRC Centre for Doctoral...UKRI| The UK Doctoral Training Centre in Energy Demand Reduction and the Built Environment ,UKRI| EPSRC Centre for Doctoral Training in Energy Demand (LoLo)Pelsmakers, S; Fitton, R; Biddulph, P; Swan, W; Croxford, B; Stamp, S; Calboli, FCF; Shipworth, D; Lowe, R; Elwell, CA;Reducing space heating energy demand supports the UK’s legislated carbon emission reduction targets and requires the effective characterisation of the UK’s existing housing stock to facilitate retrofitting decision-making. Approximately 6.6 million UK dwellings pre-date 1919 and are predominantly of suspended timber ground floor construction, the thermal performance of which has not been extensively investigated. This paper examines suspended timber ground floor heat-flow by presenting high resolution in-situ heat-flux measurements undertaken in a case study house at 15 point locations on the floor. The results highlight significant variability in observed heat-flow: point U-values range from 0.56 ± 0.05 to 1.18 ± 0.11 Wm−2 K−1. This highlights that observing only a few measurements is unlikely to be representative of the whole floor heat-flow and the extrapolation from such point values to whole floor U-value estimates could lead to its over- or under- estimation. Floor U-value models appear to underestimate the actual measured floor U-value in this case study. This paper highlights the care with which in-situ heat-flux measuring must be undertaken to enable comparison with models, literature and between studies and the findings support the unique, high-resolution in-situ monitoring methodology used in this study for further research in this area.
CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2016.12.051&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 9 citations 9 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2016.12.051&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Elsevier BV Funded by:UKRI | The UK Doctoral Training ..., UKRI | EPSRC Centre for Doctoral...UKRI| The UK Doctoral Training Centre in Energy Demand Reduction and the Built Environment ,UKRI| EPSRC Centre for Doctoral Training in Energy Demand (LoLo)Pelsmakers, S; Fitton, R; Biddulph, P; Swan, W; Croxford, B; Stamp, S; Calboli, FCF; Shipworth, D; Lowe, R; Elwell, CA;Reducing space heating energy demand supports the UK’s legislated carbon emission reduction targets and requires the effective characterisation of the UK’s existing housing stock to facilitate retrofitting decision-making. Approximately 6.6 million UK dwellings pre-date 1919 and are predominantly of suspended timber ground floor construction, the thermal performance of which has not been extensively investigated. This paper examines suspended timber ground floor heat-flow by presenting high resolution in-situ heat-flux measurements undertaken in a case study house at 15 point locations on the floor. The results highlight significant variability in observed heat-flow: point U-values range from 0.56 ± 0.05 to 1.18 ± 0.11 Wm−2 K−1. This highlights that observing only a few measurements is unlikely to be representative of the whole floor heat-flow and the extrapolation from such point values to whole floor U-value estimates could lead to its over- or under- estimation. Floor U-value models appear to underestimate the actual measured floor U-value in this case study. This paper highlights the care with which in-situ heat-flux measuring must be undertaken to enable comparison with models, literature and between studies and the findings support the unique, high-resolution in-situ monitoring methodology used in this study for further research in this area.
CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2016.12.051&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 9 citations 9 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2016.12.051&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Ji, Y; Lee, A; Swan, W;Thermal modelling tools have widely been used in the construction industry at the design stage, either for new build or retrofitting existing buildings, providing data for informed decision-making. The accuracy of thermal models has been subject of much research in recent decades due to the potential large difference between predicted and ‘in-use’ performance – the so called ‘performance gap’. A number of studies suggested that better representation of building physics and operation details in thermal models can improve the accuracy of predictions. However, full-scale model calibration has always been challenging as it is difficult to measure all the necessary boundary conditions in an open environment. Thus, the Energy House facility at the University of Salford – a full-sized end terrace house constructed within an environmental chamber – presents a unique opportunity to conduct full-scale model calibration.\ud \ud The aim of this research is to calibrate Energy House thermal models using various full-scale measurements. The measurements used in this research include the co-heating tests for a whole house retrofit case study, and thermal resistance from window coverings and heating controls with thermostatic radiator valves (TRVs). Thermal models were created using an IESVE (Integrated Environment Solutions Virtual Environment). IESVE is a well-established dynamic thermal simulation tool widely used in analysing the dynamic response of a building based on the hourly input of weather data. The evidence from this study suggests that thermal models using measured U-values and infiltration rates do perform better than the models using calculated thermal properties and assumed infiltration rates. The research suggests that better representations of building physics help thermal models reduce the performance gap. However, discrepancies still exist due to various other underlying uncertainties which need to be considered individually with each case. In relative terms, i.e., variations in percentage, the predictions from thermal models tend to be more reliable than predicting the absolute numbers.
CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2019.03.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 17 citations 17 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2019.03.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Ji, Y; Lee, A; Swan, W;Thermal modelling tools have widely been used in the construction industry at the design stage, either for new build or retrofitting existing buildings, providing data for informed decision-making. The accuracy of thermal models has been subject of much research in recent decades due to the potential large difference between predicted and ‘in-use’ performance – the so called ‘performance gap’. A number of studies suggested that better representation of building physics and operation details in thermal models can improve the accuracy of predictions. However, full-scale model calibration has always been challenging as it is difficult to measure all the necessary boundary conditions in an open environment. Thus, the Energy House facility at the University of Salford – a full-sized end terrace house constructed within an environmental chamber – presents a unique opportunity to conduct full-scale model calibration.\ud \ud The aim of this research is to calibrate Energy House thermal models using various full-scale measurements. The measurements used in this research include the co-heating tests for a whole house retrofit case study, and thermal resistance from window coverings and heating controls with thermostatic radiator valves (TRVs). Thermal models were created using an IESVE (Integrated Environment Solutions Virtual Environment). IESVE is a well-established dynamic thermal simulation tool widely used in analysing the dynamic response of a building based on the hourly input of weather data. The evidence from this study suggests that thermal models using measured U-values and infiltration rates do perform better than the models using calculated thermal properties and assumed infiltration rates. The research suggests that better representations of building physics help thermal models reduce the performance gap. However, discrepancies still exist due to various other underlying uncertainties which need to be considered individually with each case. In relative terms, i.e., variations in percentage, the predictions from thermal models tend to be more reliable than predicting the absolute numbers.
CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2019.03.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 17 citations 17 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2019.03.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Emerald Authors: Swan, W; Ruddock, L; Smith, L;Purpose– The study was designed to assess the attitudes, strategic readiness and drivers and barriers to the adoption of sustainable retrofit within the UK social housing sector.Design/methodology/approach– The study was undertaken using a structured questionnaire that was completed by 130 providers of social housing.Findings– The study showed that social housing providers were aware of the sustainable retrofit agenda, but with varying levels of strategic readiness. Immediate benefits to residents were seen as important drivers, as opposed to more remote issues such as climate change. The emerging nature of the sustainable retrofit market was seen as a major potential risk for residents.Research limitations/implications– The study represents a snap-shot of adoption and effectiveness issues, therefore does not show the trajectory of adoption which should be addressed in a follow-up study.Practical implications– The social housing sector has been viewed as a market maker for the sustainable retrofit market. The study shows the attitudes of the sector to this role.Social implications– The study has implications for the understanding social housing providers’ engagement with the sustainable retrofit market to address fuel poverty and climate change. Social housing's role as market maker has implications for policies such as Green Deal and Energy Company Obligation.Originality/value– The study covers approximately 20 per cent of the social housing stock under management and gives a robust perspective of current views on adoption and effectiveness of retrofit technologies within the social housing sector. This is useful for both other social housing providers and policy makers.
Engineering Construc... arrow_drop_down Engineering Construction & Architectural ManagementArticle . 2013 . Peer-reviewedLicense: Emerald Insight Site PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1108/ecam-12-2012-0112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 14 citations 14 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Engineering Construc... arrow_drop_down Engineering Construction & Architectural ManagementArticle . 2013 . Peer-reviewedLicense: Emerald Insight Site PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1108/ecam-12-2012-0112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Emerald Authors: Swan, W; Ruddock, L; Smith, L;Purpose– The study was designed to assess the attitudes, strategic readiness and drivers and barriers to the adoption of sustainable retrofit within the UK social housing sector.Design/methodology/approach– The study was undertaken using a structured questionnaire that was completed by 130 providers of social housing.Findings– The study showed that social housing providers were aware of the sustainable retrofit agenda, but with varying levels of strategic readiness. Immediate benefits to residents were seen as important drivers, as opposed to more remote issues such as climate change. The emerging nature of the sustainable retrofit market was seen as a major potential risk for residents.Research limitations/implications– The study represents a snap-shot of adoption and effectiveness issues, therefore does not show the trajectory of adoption which should be addressed in a follow-up study.Practical implications– The social housing sector has been viewed as a market maker for the sustainable retrofit market. The study shows the attitudes of the sector to this role.Social implications– The study has implications for the understanding social housing providers’ engagement with the sustainable retrofit market to address fuel poverty and climate change. Social housing's role as market maker has implications for policies such as Green Deal and Energy Company Obligation.Originality/value– The study covers approximately 20 per cent of the social housing stock under management and gives a robust perspective of current views on adoption and effectiveness of retrofit technologies within the social housing sector. This is useful for both other social housing providers and policy makers.
Engineering Construc... arrow_drop_down Engineering Construction & Architectural ManagementArticle . 2013 . Peer-reviewedLicense: Emerald Insight Site PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1108/ecam-12-2012-0112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 14 citations 14 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Engineering Construc... arrow_drop_down Engineering Construction & Architectural ManagementArticle . 2013 . Peer-reviewedLicense: Emerald Insight Site PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1108/ecam-12-2012-0112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Emerald Authors: Les Ruddock; Luke Smith; Richard Fitton; William Swan;PurposeThe study was designed to assess the knowledge, adoption and perceived effectiveness of sustainable retrofit technologies within the UK social housing sector.Design/methodology/approachThe study was undertaken using a structured questionnaire that was completed by 130 providers of social housing.FindingsThe study showed that social housing providers were evenly split in their reliance on internal or external information for sustainable retrofit knowledge. In terms of adoption identified that this was strongly driven by government‐funded programmes, leading to widespread adoption of low technology solutions. The respondents identified that many leading edge technologies were perceived to be less effective.Research limitations/implicationsThe study represents a snap‐shot of adoption and effectiveness issues, therefore does not show the trajectory of adoption which should be addressed in a follow‐up study.Practical implicationsThe social housing sector has been viewed as a market maker for some of the newer technologies. It indicates that some of the newer technologies, such as heat pumps are viewed as less effective than more established technologies.Social implicationsThe study has implications for the adoption of technology to address fuel poverty and climate change, as well as informing future policy such as Green Deal.Originality/valueThe study includes 130 responses from the social housing stock and gives a perspective of current views on adoption and effectiveness of retrofit technologies within the social housing sector. This is useful for both other social housing providers and policy makers.
Structural Survey arrow_drop_down Structural SurveyArticle . 2013 . Peer-reviewedLicense: Emerald Insight Site PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1108/ss-12-2012-0039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Structural Survey arrow_drop_down Structural SurveyArticle . 2013 . Peer-reviewedLicense: Emerald Insight Site PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1108/ss-12-2012-0039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Emerald Authors: Les Ruddock; Luke Smith; Richard Fitton; William Swan;PurposeThe study was designed to assess the knowledge, adoption and perceived effectiveness of sustainable retrofit technologies within the UK social housing sector.Design/methodology/approachThe study was undertaken using a structured questionnaire that was completed by 130 providers of social housing.FindingsThe study showed that social housing providers were evenly split in their reliance on internal or external information for sustainable retrofit knowledge. In terms of adoption identified that this was strongly driven by government‐funded programmes, leading to widespread adoption of low technology solutions. The respondents identified that many leading edge technologies were perceived to be less effective.Research limitations/implicationsThe study represents a snap‐shot of adoption and effectiveness issues, therefore does not show the trajectory of adoption which should be addressed in a follow‐up study.Practical implicationsThe social housing sector has been viewed as a market maker for some of the newer technologies. It indicates that some of the newer technologies, such as heat pumps are viewed as less effective than more established technologies.Social implicationsThe study has implications for the adoption of technology to address fuel poverty and climate change, as well as informing future policy such as Green Deal.Originality/valueThe study includes 130 responses from the social housing stock and gives a perspective of current views on adoption and effectiveness of retrofit technologies within the social housing sector. This is useful for both other social housing providers and policy makers.
Structural Survey arrow_drop_down Structural SurveyArticle . 2013 . Peer-reviewedLicense: Emerald Insight Site PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1108/ss-12-2012-0039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Structural Survey arrow_drop_down Structural SurveyArticle . 2013 . Peer-reviewedLicense: Emerald Insight Site PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1108/ss-12-2012-0039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Elsevier BV Marshall, AS; Fitton, R; Swan, W; Farmer, D; Johnston, D; Benjaber, MAA; Ji, Y;There is a growing body of evidence available to indicate that there is often a discrepancy between the in situ measured thermal performance of a building fabric and the steady-state predicted performance of that fabric, even when the building fabric has been modelled based upon what was actually built. However, much of the work that has been published to date does not fully investigate the validity of the assumptions within the model and whether they fully characterise the building. To investigate this issue, a typical pre-1920’s UK house is modelled in Designbuilder in order to recognise and reduce the gap between modelled and measured energy performance. A model was first built to the specifications of a measured survey of the Salford Energy House, a facility which is housed in a climate controlled chamber. Electric coheating tests were performed to calculate the building’s heat transfer coefficient; a difference of 18.5% was demonstrated between the modelled and measured data, indicating a significant ‘prediction gap’. Accurate measurements of air permeability and U-value were made in-situ; these were found to differ considerably from the standard values used in the initial model. The standard values in the model were modified to reflect these in-situ measurements, resulting in a reduction of the performance gap to 2.4%. This suggests that a better alignment between the modelling and measurement research communities could lead to more accurate models and a better understanding of performance gap issues.
CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2017.06.028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 68 citations 68 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2017.06.028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Elsevier BV Marshall, AS; Fitton, R; Swan, W; Farmer, D; Johnston, D; Benjaber, MAA; Ji, Y;There is a growing body of evidence available to indicate that there is often a discrepancy between the in situ measured thermal performance of a building fabric and the steady-state predicted performance of that fabric, even when the building fabric has been modelled based upon what was actually built. However, much of the work that has been published to date does not fully investigate the validity of the assumptions within the model and whether they fully characterise the building. To investigate this issue, a typical pre-1920’s UK house is modelled in Designbuilder in order to recognise and reduce the gap between modelled and measured energy performance. A model was first built to the specifications of a measured survey of the Salford Energy House, a facility which is housed in a climate controlled chamber. Electric coheating tests were performed to calculate the building’s heat transfer coefficient; a difference of 18.5% was demonstrated between the modelled and measured data, indicating a significant ‘prediction gap’. Accurate measurements of air permeability and U-value were made in-situ; these were found to differ considerably from the standard values used in the initial model. The standard values in the model were modified to reflect these in-situ measurements, resulting in a reduction of the performance gap to 2.4%. This suggests that a better alignment between the modelling and measurement research communities could lead to more accurate models and a better understanding of performance gap issues.
CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2017.06.028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 68 citations 68 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2017.06.028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:MDPI AG Funded by:UKRI | Future HomesUKRI| Future HomesLjubomir Jankovic; Grant Henshaw; Christopher Tsang; Xinyi Zhang; Richard Fitton; William Swan;The heat transfer coefficient, or the HTC, is an industry-standard indicator of building energy performance. It is predicated on an assumption that it is of a constant value, and several different methods have been developed to measure and calculate the HTC as a constant. Whilst there are limited variations in the results obtained from these different methods, none of these methods consider a possibility that the HTC could be dynamically variable. Our experimental work shows that the HTC is not a constant. The experimental evidence based on our environmental chambers, which contain detached houses and in which the ambient air temperature can be controlled between −24 °C and +51 °C, with additional relative humidity control and with weather rigs that can introduce solar radiation, rain, and snow, shows that the HTC is dynamically variable. The analysis of data from the fully instrumented and monitored houses in combination with calibrated simulation models and data processing scripts based on genetic algorithm optimization provide experimental evidence of the dynamic variability of the HTC. This research increases the understanding of buildings physics properties and has the potential to change the way the heat transfer coefficient is used in building performance analysis.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en18092182&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en18092182&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:MDPI AG Funded by:UKRI | Future HomesUKRI| Future HomesLjubomir Jankovic; Grant Henshaw; Christopher Tsang; Xinyi Zhang; Richard Fitton; William Swan;The heat transfer coefficient, or the HTC, is an industry-standard indicator of building energy performance. It is predicated on an assumption that it is of a constant value, and several different methods have been developed to measure and calculate the HTC as a constant. Whilst there are limited variations in the results obtained from these different methods, none of these methods consider a possibility that the HTC could be dynamically variable. Our experimental work shows that the HTC is not a constant. The experimental evidence based on our environmental chambers, which contain detached houses and in which the ambient air temperature can be controlled between −24 °C and +51 °C, with additional relative humidity control and with weather rigs that can introduce solar radiation, rain, and snow, shows that the HTC is dynamically variable. The analysis of data from the fully instrumented and monitored houses in combination with calibrated simulation models and data processing scripts based on genetic algorithm optimization provide experimental evidence of the dynamic variability of the HTC. This research increases the understanding of buildings physics properties and has the potential to change the way the heat transfer coefficient is used in building performance analysis.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en18092182&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en18092182&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Taleghani, M; Marshall, AS; Fitton, R; Swan, W;Higher air temperatures in large cities like Manchester, UK, reduce human thermal comfort. In this paper, the impact of land cover on microclimate, and consequently on indoor thermal comfort is studied. Through different stages, field measurements and computer modelling were carried out for a heat wave episode in summer 2017 in Manchester: \ud First, the urban heat island (UHI) was measured between the city centre of Manchester and the campus of the University of Salford (between May to October 2017). Maximum detected UHI was 2.3 °C at 4:00, during the hottest day of the summer. Parallel measurements within the university campus showed that the park was 0.9 °C cooler than the paved areas (maximum cooling effect was 3.6 °C at 14:45). \ud Finally, the impact of the current land cover of the campus, and a greener land cover (as a renaturing scenario) with more planted trees on indoor thermal comfort of a house within the campus was studied. It was found that by adding 17% more trees to the campus, indoor thermal comfort was improved by 20.8% during the hottest day of 2017 in Manchester. These showed that renaturing cities could be a solution for future warmer climates.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2019.02.062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2019.02.062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Taleghani, M; Marshall, AS; Fitton, R; Swan, W;Higher air temperatures in large cities like Manchester, UK, reduce human thermal comfort. In this paper, the impact of land cover on microclimate, and consequently on indoor thermal comfort is studied. Through different stages, field measurements and computer modelling were carried out for a heat wave episode in summer 2017 in Manchester: \ud First, the urban heat island (UHI) was measured between the city centre of Manchester and the campus of the University of Salford (between May to October 2017). Maximum detected UHI was 2.3 °C at 4:00, during the hottest day of the summer. Parallel measurements within the university campus showed that the park was 0.9 °C cooler than the paved areas (maximum cooling effect was 3.6 °C at 14:45). \ud Finally, the impact of the current land cover of the campus, and a greener land cover (as a renaturing scenario) with more planted trees on indoor thermal comfort of a house within the campus was studied. It was found that by adding 17% more trees to the campus, indoor thermal comfort was improved by 20.8% during the hottest day of 2017 in Manchester. These showed that renaturing cities could be a solution for future warmer climates.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2019.02.062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2019.02.062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United KingdomPublisher:Elsevier BV Funded by:EC | PERFORMEREC| PERFORMERAlezzo, F; Farmer, D; Fitton, R; Hughes, T; Swan, W; Saint Gobain Recherche; Leeds Beckett University; University of Salford;The accurate assessment of buildings to assess their performance across a range of parameters is an essential part of understanding both new and retrofit buildings. The growing understanding of the performance gap in terms of its assessment and characterisation relies on effective methods of analysis. Here, we evaluate an experimental whole house method, known as QUB. As with many whole building approaches the method establishes heat loss through transmission and ventilation losses. This study compares QUB against an alternative, established, whole house test known as coheating. It was applied in a whole house test facility under controlled conditions. The test property, a solid wall pre-1919 UK archetype, was retrofit using a set of commercially available products and then the retrofit was removed in stages. At each of these stages a QUB test, which commonly takes one night, and coheating test, which can take few weeks, were applied. The objective of the study was to provide a comparison between the new method and more established method in terms of accuracy. The two methods showed close agreement in terms of results, suggesting that the quicker test has great potential as a more practical and economic test. There were higher levels of uncertainty with the QUB method due to shorter measurement periods. The lack of full boundary conditions within the test facility should be considered a limitation in applying the findings directly to the field. However, this study indicates the potential for QUB in validating performance, warranting further investigation.
CORE arrow_drop_down Leeds Beckett RepositoryArticle . 2018Full-Text: http://eprints.leedsbeckett.ac.uk/4885/1/ComparisonofWholeHouseHeatLossTestMethodsAM-FARMER.pdfData sources: CORE (RIOXX-UK Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2018.03.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down Leeds Beckett RepositoryArticle . 2018Full-Text: http://eprints.leedsbeckett.ac.uk/4885/1/ComparisonofWholeHouseHeatLossTestMethodsAM-FARMER.pdfData sources: CORE (RIOXX-UK Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2018.03.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United KingdomPublisher:Elsevier BV Funded by:EC | PERFORMEREC| PERFORMERAlezzo, F; Farmer, D; Fitton, R; Hughes, T; Swan, W; Saint Gobain Recherche; Leeds Beckett University; University of Salford;The accurate assessment of buildings to assess their performance across a range of parameters is an essential part of understanding both new and retrofit buildings. The growing understanding of the performance gap in terms of its assessment and characterisation relies on effective methods of analysis. Here, we evaluate an experimental whole house method, known as QUB. As with many whole building approaches the method establishes heat loss through transmission and ventilation losses. This study compares QUB against an alternative, established, whole house test known as coheating. It was applied in a whole house test facility under controlled conditions. The test property, a solid wall pre-1919 UK archetype, was retrofit using a set of commercially available products and then the retrofit was removed in stages. At each of these stages a QUB test, which commonly takes one night, and coheating test, which can take few weeks, were applied. The objective of the study was to provide a comparison between the new method and more established method in terms of accuracy. The two methods showed close agreement in terms of results, suggesting that the quicker test has great potential as a more practical and economic test. There were higher levels of uncertainty with the QUB method due to shorter measurement periods. The lack of full boundary conditions within the test facility should be considered a limitation in applying the findings directly to the field. However, this study indicates the potential for QUB in validating performance, warranting further investigation.
CORE arrow_drop_down Leeds Beckett RepositoryArticle . 2018Full-Text: http://eprints.leedsbeckett.ac.uk/4885/1/ComparisonofWholeHouseHeatLossTestMethodsAM-FARMER.pdfData sources: CORE (RIOXX-UK Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2018.03.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down Leeds Beckett RepositoryArticle . 2018Full-Text: http://eprints.leedsbeckett.ac.uk/4885/1/ComparisonofWholeHouseHeatLossTestMethodsAM-FARMER.pdfData sources: CORE (RIOXX-UK Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2018.03.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Springer Science and Business Media LLC Funded by:UKRI | Tackling Fuel Poverty: Br...UKRI| Tackling Fuel Poverty: Bridging the divide for low income and vulnerable communitiesAuthors: Philip Brown; Sharon Chahal; William Swan;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12053-015-9381-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12053-015-9381-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Springer Science and Business Media LLC Funded by:UKRI | Tackling Fuel Poverty: Br...UKRI| Tackling Fuel Poverty: Bridging the divide for low income and vulnerable communitiesAuthors: Philip Brown; Sharon Chahal; William Swan;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12053-015-9381-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12053-015-9381-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Elsevier BV Farmer, DJ; Gorse, C; Swan, W; Fitton, R; Brooke-Peat, M; Miles-Shenton, D; Johnston, D;The methodology used for measuring the thermal performance of fabric retrofit systems which were applied to a solid wall UK Victorian house situated within an environmental chamber is explored in detail. The work describes how steady-state boundary conditions were approximated, then repeated at the Salford Energy House test facility. How established methods of measuring the fabric thermal performance of buildings in situ were adapted to test the effectiveness of retrofit measures within a steady-state environment. The results presented show that steady-state boundary conditions enable the change in fabric heat loss resulting from the retrofit of a whole house or individual element to be measured to a level of accuracy and precision that is unlikely to be achieved in the field. The test environment enabled identification of heat loss phenomena difficult to detect in the field. However, undertaking tests in an environment devoid of wind underestimates the potential reduction in ventilation heat loss resulting from an improvement in airtightness, and hides the susceptibility of retrofit measures to various heat loss mechanisms, such as wind washing. The strengths and weaknesses of the methods employed, the Energy House test facility, and a steady-state environment, for characterising retrofit building fabric thermal performance are demonstrated.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2017.09.086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2017.09.086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Elsevier BV Farmer, DJ; Gorse, C; Swan, W; Fitton, R; Brooke-Peat, M; Miles-Shenton, D; Johnston, D;The methodology used for measuring the thermal performance of fabric retrofit systems which were applied to a solid wall UK Victorian house situated within an environmental chamber is explored in detail. The work describes how steady-state boundary conditions were approximated, then repeated at the Salford Energy House test facility. How established methods of measuring the fabric thermal performance of buildings in situ were adapted to test the effectiveness of retrofit measures within a steady-state environment. The results presented show that steady-state boundary conditions enable the change in fabric heat loss resulting from the retrofit of a whole house or individual element to be measured to a level of accuracy and precision that is unlikely to be achieved in the field. The test environment enabled identification of heat loss phenomena difficult to detect in the field. However, undertaking tests in an environment devoid of wind underestimates the potential reduction in ventilation heat loss resulting from an improvement in airtightness, and hides the susceptibility of retrofit measures to various heat loss mechanisms, such as wind washing. The strengths and weaknesses of the methods employed, the Energy House test facility, and a steady-state environment, for characterising retrofit building fabric thermal performance are demonstrated.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2017.09.086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2017.09.086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Elsevier BV Funded by:UKRI | The UK Doctoral Training ..., UKRI | EPSRC Centre for Doctoral...UKRI| The UK Doctoral Training Centre in Energy Demand Reduction and the Built Environment ,UKRI| EPSRC Centre for Doctoral Training in Energy Demand (LoLo)Pelsmakers, S; Fitton, R; Biddulph, P; Swan, W; Croxford, B; Stamp, S; Calboli, FCF; Shipworth, D; Lowe, R; Elwell, CA;Reducing space heating energy demand supports the UK’s legislated carbon emission reduction targets and requires the effective characterisation of the UK’s existing housing stock to facilitate retrofitting decision-making. Approximately 6.6 million UK dwellings pre-date 1919 and are predominantly of suspended timber ground floor construction, the thermal performance of which has not been extensively investigated. This paper examines suspended timber ground floor heat-flow by presenting high resolution in-situ heat-flux measurements undertaken in a case study house at 15 point locations on the floor. The results highlight significant variability in observed heat-flow: point U-values range from 0.56 ± 0.05 to 1.18 ± 0.11 Wm−2 K−1. This highlights that observing only a few measurements is unlikely to be representative of the whole floor heat-flow and the extrapolation from such point values to whole floor U-value estimates could lead to its over- or under- estimation. Floor U-value models appear to underestimate the actual measured floor U-value in this case study. This paper highlights the care with which in-situ heat-flux measuring must be undertaken to enable comparison with models, literature and between studies and the findings support the unique, high-resolution in-situ monitoring methodology used in this study for further research in this area.
CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2016.12.051&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 9 citations 9 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2016.12.051&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Elsevier BV Funded by:UKRI | The UK Doctoral Training ..., UKRI | EPSRC Centre for Doctoral...UKRI| The UK Doctoral Training Centre in Energy Demand Reduction and the Built Environment ,UKRI| EPSRC Centre for Doctoral Training in Energy Demand (LoLo)Pelsmakers, S; Fitton, R; Biddulph, P; Swan, W; Croxford, B; Stamp, S; Calboli, FCF; Shipworth, D; Lowe, R; Elwell, CA;Reducing space heating energy demand supports the UK’s legislated carbon emission reduction targets and requires the effective characterisation of the UK’s existing housing stock to facilitate retrofitting decision-making. Approximately 6.6 million UK dwellings pre-date 1919 and are predominantly of suspended timber ground floor construction, the thermal performance of which has not been extensively investigated. This paper examines suspended timber ground floor heat-flow by presenting high resolution in-situ heat-flux measurements undertaken in a case study house at 15 point locations on the floor. The results highlight significant variability in observed heat-flow: point U-values range from 0.56 ± 0.05 to 1.18 ± 0.11 Wm−2 K−1. This highlights that observing only a few measurements is unlikely to be representative of the whole floor heat-flow and the extrapolation from such point values to whole floor U-value estimates could lead to its over- or under- estimation. Floor U-value models appear to underestimate the actual measured floor U-value in this case study. This paper highlights the care with which in-situ heat-flux measuring must be undertaken to enable comparison with models, literature and between studies and the findings support the unique, high-resolution in-situ monitoring methodology used in this study for further research in this area.
CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2016.12.051&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 9 citations 9 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2016.12.051&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Ji, Y; Lee, A; Swan, W;Thermal modelling tools have widely been used in the construction industry at the design stage, either for new build or retrofitting existing buildings, providing data for informed decision-making. The accuracy of thermal models has been subject of much research in recent decades due to the potential large difference between predicted and ‘in-use’ performance – the so called ‘performance gap’. A number of studies suggested that better representation of building physics and operation details in thermal models can improve the accuracy of predictions. However, full-scale model calibration has always been challenging as it is difficult to measure all the necessary boundary conditions in an open environment. Thus, the Energy House facility at the University of Salford – a full-sized end terrace house constructed within an environmental chamber – presents a unique opportunity to conduct full-scale model calibration.\ud \ud The aim of this research is to calibrate Energy House thermal models using various full-scale measurements. The measurements used in this research include the co-heating tests for a whole house retrofit case study, and thermal resistance from window coverings and heating controls with thermostatic radiator valves (TRVs). Thermal models were created using an IESVE (Integrated Environment Solutions Virtual Environment). IESVE is a well-established dynamic thermal simulation tool widely used in analysing the dynamic response of a building based on the hourly input of weather data. The evidence from this study suggests that thermal models using measured U-values and infiltration rates do perform better than the models using calculated thermal properties and assumed infiltration rates. The research suggests that better representations of building physics help thermal models reduce the performance gap. However, discrepancies still exist due to various other underlying uncertainties which need to be considered individually with each case. In relative terms, i.e., variations in percentage, the predictions from thermal models tend to be more reliable than predicting the absolute numbers.
CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2019.03.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 17 citations 17 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2019.03.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Ji, Y; Lee, A; Swan, W;Thermal modelling tools have widely been used in the construction industry at the design stage, either for new build or retrofitting existing buildings, providing data for informed decision-making. The accuracy of thermal models has been subject of much research in recent decades due to the potential large difference between predicted and ‘in-use’ performance – the so called ‘performance gap’. A number of studies suggested that better representation of building physics and operation details in thermal models can improve the accuracy of predictions. However, full-scale model calibration has always been challenging as it is difficult to measure all the necessary boundary conditions in an open environment. Thus, the Energy House facility at the University of Salford – a full-sized end terrace house constructed within an environmental chamber – presents a unique opportunity to conduct full-scale model calibration.\ud \ud The aim of this research is to calibrate Energy House thermal models using various full-scale measurements. The measurements used in this research include the co-heating tests for a whole house retrofit case study, and thermal resistance from window coverings and heating controls with thermostatic radiator valves (TRVs). Thermal models were created using an IESVE (Integrated Environment Solutions Virtual Environment). IESVE is a well-established dynamic thermal simulation tool widely used in analysing the dynamic response of a building based on the hourly input of weather data. The evidence from this study suggests that thermal models using measured U-values and infiltration rates do perform better than the models using calculated thermal properties and assumed infiltration rates. The research suggests that better representations of building physics help thermal models reduce the performance gap. However, discrepancies still exist due to various other underlying uncertainties which need to be considered individually with each case. In relative terms, i.e., variations in percentage, the predictions from thermal models tend to be more reliable than predicting the absolute numbers.
CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2019.03.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 17 citations 17 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2019.03.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Emerald Authors: Swan, W; Ruddock, L; Smith, L;Purpose– The study was designed to assess the attitudes, strategic readiness and drivers and barriers to the adoption of sustainable retrofit within the UK social housing sector.Design/methodology/approach– The study was undertaken using a structured questionnaire that was completed by 130 providers of social housing.Findings– The study showed that social housing providers were aware of the sustainable retrofit agenda, but with varying levels of strategic readiness. Immediate benefits to residents were seen as important drivers, as opposed to more remote issues such as climate change. The emerging nature of the sustainable retrofit market was seen as a major potential risk for residents.Research limitations/implications– The study represents a snap-shot of adoption and effectiveness issues, therefore does not show the trajectory of adoption which should be addressed in a follow-up study.Practical implications– The social housing sector has been viewed as a market maker for the sustainable retrofit market. The study shows the attitudes of the sector to this role.Social implications– The study has implications for the understanding social housing providers’ engagement with the sustainable retrofit market to address fuel poverty and climate change. Social housing's role as market maker has implications for policies such as Green Deal and Energy Company Obligation.Originality/value– The study covers approximately 20 per cent of the social housing stock under management and gives a robust perspective of current views on adoption and effectiveness of retrofit technologies within the social housing sector. This is useful for both other social housing providers and policy makers.
Engineering Construc... arrow_drop_down Engineering Construction & Architectural ManagementArticle . 2013 . Peer-reviewedLicense: Emerald Insight Site PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1108/ecam-12-2012-0112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 14 citations 14 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Engineering Construc... arrow_drop_down Engineering Construction & Architectural ManagementArticle . 2013 . Peer-reviewedLicense: Emerald Insight Site PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1108/ecam-12-2012-0112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Emerald Authors: Swan, W; Ruddock, L; Smith, L;Purpose– The study was designed to assess the attitudes, strategic readiness and drivers and barriers to the adoption of sustainable retrofit within the UK social housing sector.Design/methodology/approach– The study was undertaken using a structured questionnaire that was completed by 130 providers of social housing.Findings– The study showed that social housing providers were aware of the sustainable retrofit agenda, but with varying levels of strategic readiness. Immediate benefits to residents were seen as important drivers, as opposed to more remote issues such as climate change. The emerging nature of the sustainable retrofit market was seen as a major potential risk for residents.Research limitations/implications– The study represents a snap-shot of adoption and effectiveness issues, therefore does not show the trajectory of adoption which should be addressed in a follow-up study.Practical implications– The social housing sector has been viewed as a market maker for the sustainable retrofit market. The study shows the attitudes of the sector to this role.Social implications– The study has implications for the understanding social housing providers’ engagement with the sustainable retrofit market to address fuel poverty and climate change. Social housing's role as market maker has implications for policies such as Green Deal and Energy Company Obligation.Originality/value– The study covers approximately 20 per cent of the social housing stock under management and gives a robust perspective of current views on adoption and effectiveness of retrofit technologies within the social housing sector. This is useful for both other social housing providers and policy makers.
Engineering Construc... arrow_drop_down Engineering Construction & Architectural ManagementArticle . 2013 . Peer-reviewedLicense: Emerald Insight Site PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1108/ecam-12-2012-0112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 14 citations 14 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Engineering Construc... arrow_drop_down Engineering Construction & Architectural ManagementArticle . 2013 . Peer-reviewedLicense: Emerald Insight Site PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1108/ecam-12-2012-0112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu