- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2024 United KingdomPublisher:American Association for the Advancement of Science (AAAS) Heather D. Graven; Hamish Warren; Holly K. Gibbs; Samar Khatiwala; Charles Koven; Joanna Lester; Ingeborg Levin; Seth A. Spawn-Lee; Will Wieder;Vegetation and soils are taking up approximately 30% of anthropogenic carbon dioxide emissions because of small imbalances in large gross carbon exchanges from productivity and turnover that are poorly constrained. We combined a new budget of radiocarbon produced by nuclear bomb testing in the 1960s with model simulations to evaluate carbon cycling in terrestrial vegetation. We found that most state-of-the-art vegetation models used in the Coupled Model Intercomparison Project underestimated the radiocarbon accumulation in vegetation biomass. Our findings, combined with constraints on vegetation carbon stocks and productivity trends, imply that net primary productivity is likely at least 80 petagrams of carbon per year presently, compared with the 43 to 76 petagrams per year predicted by current models. Storage of anthropogenic carbon in terrestrial vegetation is likely more short-lived and vulnerable than previously predicted.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2024License: CC BYFull-Text: http://hdl.handle.net/10044/1/113010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.adl4443&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2024License: CC BYFull-Text: http://hdl.handle.net/10044/1/113010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.adl4443&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 United StatesPublisher:Proceedings of the National Academy of Sciences Funded by:UKRI | RootDetect: Remote Detect..., NSF | INFEWS/T1: Sustaining foo...UKRI| RootDetect: Remote Detection and Precision Management of Root Health ,NSF| INFEWS/T1: Sustaining food, energy, and water security in agricultural landscapes of the Upper Mississippi River BasinTyler J. Lark; Nathan P. Hendricks; Aaron Smith; Nicholas Pates; Seth A. Spawn-Lee; Matthew Bougie; Eric G. Booth; Christopher J. Kucharik; Holly K. Gibbs;SignificanceBiofuels are included in many proposed strategies to reduce anthropogenic greenhouse gas emissions and limit the magnitude of global warming. The US Renewable Fuel Standard is the world’s largest existing biofuel program, yet despite its prominence, there has been limited empirical assessment of the program’s environmental outcomes. Even without considering likely international land use effects, we find that the production of corn-based ethanol in the United States has failed to meet the policy’s own greenhouse gas emissions targets and negatively affected water quality, the area of land used for conservation, and other ecosystem processes. Our findings suggest that profound advances in technology and policy are still needed to achieve the intended environmental benefits of biofuel production and use.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2022License: CC BYFull-Text: https://escholarship.org/uc/item/9qn2q596Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefeScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2101084119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 138 citations 138 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2022License: CC BYFull-Text: https://escholarship.org/uc/item/9qn2q596Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefeScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2101084119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Preprint 2021Publisher:California Digital Library (CDL) Seth A Spawn-Lee; Tyler J Lark; Holly K Gibbs; Richard A Houghton; Christopher J Kucharik; Chris Malins; Rylie E O Pelton; G Philip Robertson;Abstract In their recent contribution, Scully et al (2021 Environ. Res. Lett. 16 043001) review and revise past life cycle assessments of corn-grain ethanol’s carbon (C) intensity to suggest that a current ‘central best estimate’ is considerably less than all prior estimates. Their conclusion emerges from selection and recombination of sector-specific greenhouse gas emission predictions from disparate studies in a way that disproportionately favors small values and optimistic assumptions without rigorous justification nor empirical support. Their revisions most profoundly reduce predicted land use change (LUC) emissions, for which they propose a central estimate that is roughly half the smallest comparable value they review (figure 1). This LUC estimate represents the midpoint of (a) values retained after filtering the predictions of past studies based on a set of unfounded criteria; and (b) a new estimate they generate for domestic (i.e. U.S.) LUC emissions. The filter the authors apply endorses a singular means of LUC assessment which they assert as the ‘best practice’ despite a recent unacknowledged review (Malins et al 2020 J. Clean. Prod. 258 120716) that shows this method almost certainly underestimates LUC. Moreover, their domestic C intensity estimate surprisingly suggests that cropland expansion newly sequesters soil C, counter to ecological theory and empirical evidence. These issues, among others, prove to grossly underestimate the C intensity of corn-grain ethanol and mischaracterize the state of our science at the risk of perversely affecting policy outcomes.
https://doi.org/10.3... arrow_drop_down https://doi.org/10.32942/osf.i...Article . 2021 . Peer-reviewedLicense: CC BY SAData sources: CrossrefEcoEvoRxiv PreprintsPreprint . 2021Full-Text: https://ecoevorxiv.org/cxhz5/downloadData sources: EcoEvoRxiv Preprintsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.32942/osf.io/cxhz5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.3... arrow_drop_down https://doi.org/10.32942/osf.i...Article . 2021 . Peer-reviewedLicense: CC BY SAData sources: CrossrefEcoEvoRxiv PreprintsPreprint . 2021Full-Text: https://ecoevorxiv.org/cxhz5/downloadData sources: EcoEvoRxiv Preprintsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.32942/osf.io/cxhz5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Proceedings of the National Academy of Sciences Funded by:UKRI | RootDetect: Remote Detect...UKRI| RootDetect: Remote Detection and Precision Management of Root HealthTyler J. Lark; Nathan P. Hendricks; Aaron Smith; Nicholas Pates; Seth A. Spawn-Lee; Matthew Bougie; Eric G. Booth; Christopher J. Kucharik; Holly K. Gibbs;Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2216091119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2216091119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 China (People's Republic of)Publisher:Wiley Kaiyu Guan; Seth A. Spawn-Lee; Ximing Cai; John L. Field; John L. Field; Bruno Basso; Tom L. Richard; Tom L. Richard; Luoye Chen; Tyler J. Lark; Madhu Khanna; Pan Yang; Chongya Jiang; Katherine Y. Zipp;doi: 10.1111/gcbb.12877
AbstractMarginal land has received wide attention for its potential to produce bioenergy feedstocks while minimizing diversion of productive agricultural land from food crop production. However, there has been no consensus in the literature on how to define or identify land that is marginal for food crops and beneficial for bioenergy crops. Studies have used different definitions to quantify the amount of such land available; these have largely been based on assumed biophysical thresholds for soil quality and productivity that are unchanging over space and time. We discuss the limitations of these definitions and the rationale for considering economic returns and environmental outcomes in classifying land as marginal. We then propose the concept of “socially” marginal which is defined as land that is earning close to zero returnsafteraccounting for the monetized costs of environmental externalities generated. We discuss a broad set of criteria for classifying land as socially marginal for food crops and suitable for bioenergy crops; with these criteria, this classification depends on spatially varying and time‐varying factors, such as climate and market conditions and policy incentives. While there are challenges related to identifying this marginal land, satellite and other large‐scale datasets increasingly enable such analysis at a fine spatial resolution. We also discuss reasons why landowners might choose not to convert bioenergy‐suitable land to bioenergy crops, and thus the need for policy incentives to support conversion of land that is socially beneficial for bioenergy crop production.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12877&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 77 citations 77 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12877&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Publisher:Springer Science and Business Media LLC Authors: Spawn, Seth A.; Sullivan, Clare C.; Lark, Tyler J.; Gibbs, Holly K.;AbstractRemotely sensed biomass carbon density maps are widely used for myriad scientific and policy applications, but all remain limited in scope. They often only represent a single vegetation type and rarely account for carbon stocks in belowground biomass. To date, no global product integrates these disparate estimates into an all-encompassing map at a scale appropriate for many modelling or decision-making applications. We developed an approach for harmonizing vegetation-specific maps of both above and belowground biomass into a single, comprehensive representation of each. We overlaid input maps and allocated their estimates in proportion to the relative spatial extent of each vegetation type using ancillary maps of percent tree cover and landcover, and a rule-based decision schema. The resulting maps consistently and seamlessly report biomass carbon density estimates across a wide range of vegetation types in 2010 with quantified uncertainty. They do so for the globe at an unprecedented 300-meter spatial resolution and can be used to more holistically account for diverse vegetation carbon stocks in global analyses and greenhouse gas inventories.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-020-0444-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 256 citations 256 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-020-0444-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2024 United KingdomPublisher:American Association for the Advancement of Science (AAAS) Heather D. Graven; Hamish Warren; Holly K. Gibbs; Samar Khatiwala; Charles Koven; Joanna Lester; Ingeborg Levin; Seth A. Spawn-Lee; Will Wieder;Vegetation and soils are taking up approximately 30% of anthropogenic carbon dioxide emissions because of small imbalances in large gross carbon exchanges from productivity and turnover that are poorly constrained. We combined a new budget of radiocarbon produced by nuclear bomb testing in the 1960s with model simulations to evaluate carbon cycling in terrestrial vegetation. We found that most state-of-the-art vegetation models used in the Coupled Model Intercomparison Project underestimated the radiocarbon accumulation in vegetation biomass. Our findings, combined with constraints on vegetation carbon stocks and productivity trends, imply that net primary productivity is likely at least 80 petagrams of carbon per year presently, compared with the 43 to 76 petagrams per year predicted by current models. Storage of anthropogenic carbon in terrestrial vegetation is likely more short-lived and vulnerable than previously predicted.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2024License: CC BYFull-Text: http://hdl.handle.net/10044/1/113010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.adl4443&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2024License: CC BYFull-Text: http://hdl.handle.net/10044/1/113010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.adl4443&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 United StatesPublisher:Proceedings of the National Academy of Sciences Funded by:UKRI | RootDetect: Remote Detect..., NSF | INFEWS/T1: Sustaining foo...UKRI| RootDetect: Remote Detection and Precision Management of Root Health ,NSF| INFEWS/T1: Sustaining food, energy, and water security in agricultural landscapes of the Upper Mississippi River BasinTyler J. Lark; Nathan P. Hendricks; Aaron Smith; Nicholas Pates; Seth A. Spawn-Lee; Matthew Bougie; Eric G. Booth; Christopher J. Kucharik; Holly K. Gibbs;SignificanceBiofuels are included in many proposed strategies to reduce anthropogenic greenhouse gas emissions and limit the magnitude of global warming. The US Renewable Fuel Standard is the world’s largest existing biofuel program, yet despite its prominence, there has been limited empirical assessment of the program’s environmental outcomes. Even without considering likely international land use effects, we find that the production of corn-based ethanol in the United States has failed to meet the policy’s own greenhouse gas emissions targets and negatively affected water quality, the area of land used for conservation, and other ecosystem processes. Our findings suggest that profound advances in technology and policy are still needed to achieve the intended environmental benefits of biofuel production and use.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2022License: CC BYFull-Text: https://escholarship.org/uc/item/9qn2q596Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefeScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2101084119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 138 citations 138 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2022License: CC BYFull-Text: https://escholarship.org/uc/item/9qn2q596Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefeScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2101084119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Preprint 2021Publisher:California Digital Library (CDL) Seth A Spawn-Lee; Tyler J Lark; Holly K Gibbs; Richard A Houghton; Christopher J Kucharik; Chris Malins; Rylie E O Pelton; G Philip Robertson;Abstract In their recent contribution, Scully et al (2021 Environ. Res. Lett. 16 043001) review and revise past life cycle assessments of corn-grain ethanol’s carbon (C) intensity to suggest that a current ‘central best estimate’ is considerably less than all prior estimates. Their conclusion emerges from selection and recombination of sector-specific greenhouse gas emission predictions from disparate studies in a way that disproportionately favors small values and optimistic assumptions without rigorous justification nor empirical support. Their revisions most profoundly reduce predicted land use change (LUC) emissions, for which they propose a central estimate that is roughly half the smallest comparable value they review (figure 1). This LUC estimate represents the midpoint of (a) values retained after filtering the predictions of past studies based on a set of unfounded criteria; and (b) a new estimate they generate for domestic (i.e. U.S.) LUC emissions. The filter the authors apply endorses a singular means of LUC assessment which they assert as the ‘best practice’ despite a recent unacknowledged review (Malins et al 2020 J. Clean. Prod. 258 120716) that shows this method almost certainly underestimates LUC. Moreover, their domestic C intensity estimate surprisingly suggests that cropland expansion newly sequesters soil C, counter to ecological theory and empirical evidence. These issues, among others, prove to grossly underestimate the C intensity of corn-grain ethanol and mischaracterize the state of our science at the risk of perversely affecting policy outcomes.
https://doi.org/10.3... arrow_drop_down https://doi.org/10.32942/osf.i...Article . 2021 . Peer-reviewedLicense: CC BY SAData sources: CrossrefEcoEvoRxiv PreprintsPreprint . 2021Full-Text: https://ecoevorxiv.org/cxhz5/downloadData sources: EcoEvoRxiv Preprintsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.32942/osf.io/cxhz5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.3... arrow_drop_down https://doi.org/10.32942/osf.i...Article . 2021 . Peer-reviewedLicense: CC BY SAData sources: CrossrefEcoEvoRxiv PreprintsPreprint . 2021Full-Text: https://ecoevorxiv.org/cxhz5/downloadData sources: EcoEvoRxiv Preprintsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.32942/osf.io/cxhz5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Proceedings of the National Academy of Sciences Funded by:UKRI | RootDetect: Remote Detect...UKRI| RootDetect: Remote Detection and Precision Management of Root HealthTyler J. Lark; Nathan P. Hendricks; Aaron Smith; Nicholas Pates; Seth A. Spawn-Lee; Matthew Bougie; Eric G. Booth; Christopher J. Kucharik; Holly K. Gibbs;Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2216091119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2216091119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 China (People's Republic of)Publisher:Wiley Kaiyu Guan; Seth A. Spawn-Lee; Ximing Cai; John L. Field; John L. Field; Bruno Basso; Tom L. Richard; Tom L. Richard; Luoye Chen; Tyler J. Lark; Madhu Khanna; Pan Yang; Chongya Jiang; Katherine Y. Zipp;doi: 10.1111/gcbb.12877
AbstractMarginal land has received wide attention for its potential to produce bioenergy feedstocks while minimizing diversion of productive agricultural land from food crop production. However, there has been no consensus in the literature on how to define or identify land that is marginal for food crops and beneficial for bioenergy crops. Studies have used different definitions to quantify the amount of such land available; these have largely been based on assumed biophysical thresholds for soil quality and productivity that are unchanging over space and time. We discuss the limitations of these definitions and the rationale for considering economic returns and environmental outcomes in classifying land as marginal. We then propose the concept of “socially” marginal which is defined as land that is earning close to zero returnsafteraccounting for the monetized costs of environmental externalities generated. We discuss a broad set of criteria for classifying land as socially marginal for food crops and suitable for bioenergy crops; with these criteria, this classification depends on spatially varying and time‐varying factors, such as climate and market conditions and policy incentives. While there are challenges related to identifying this marginal land, satellite and other large‐scale datasets increasingly enable such analysis at a fine spatial resolution. We also discuss reasons why landowners might choose not to convert bioenergy‐suitable land to bioenergy crops, and thus the need for policy incentives to support conversion of land that is socially beneficial for bioenergy crop production.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12877&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 77 citations 77 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12877&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Publisher:Springer Science and Business Media LLC Authors: Spawn, Seth A.; Sullivan, Clare C.; Lark, Tyler J.; Gibbs, Holly K.;AbstractRemotely sensed biomass carbon density maps are widely used for myriad scientific and policy applications, but all remain limited in scope. They often only represent a single vegetation type and rarely account for carbon stocks in belowground biomass. To date, no global product integrates these disparate estimates into an all-encompassing map at a scale appropriate for many modelling or decision-making applications. We developed an approach for harmonizing vegetation-specific maps of both above and belowground biomass into a single, comprehensive representation of each. We overlaid input maps and allocated their estimates in proportion to the relative spatial extent of each vegetation type using ancillary maps of percent tree cover and landcover, and a rule-based decision schema. The resulting maps consistently and seamlessly report biomass carbon density estimates across a wide range of vegetation types in 2010 with quantified uncertainty. They do so for the globe at an unprecedented 300-meter spatial resolution and can be used to more holistically account for diverse vegetation carbon stocks in global analyses and greenhouse gas inventories.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-020-0444-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 256 citations 256 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-020-0444-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu