- home
- Advanced Search
- Energy Research
- Closed Access
- Energy Research
- Closed Access
description Publicationkeyboard_double_arrow_right Article 2022 NetherlandsPublisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Pengling Wang; Nikola Besinovic; Rob M. P. Goverde; Francesco Corman;Employing regenerative braking in trains contributes to reducing the amount of energy used, especially when applied to commuter trains and to those used on very dense suburban networks. This paper presents a method to fine-tune the periodic timetable to improve the utilization of regenerative energy and to shave power peaks while maintaining the structure and robustness of the original timetable. First, a mixed-integer linear programming model based on the periodic event scheduling framework is proposed. A set of feasible timetables is determined and optimized with the aim of increasing synchronized acceleration and braking events at the same station, and maintaining the timetable robustness at the specified level. Next, a local search algorithm is developed to optimize the timetable such that the power peak value is minimized. The max-plus system model is adopted to estimate the delay propagation. Monte Carlo simulation is used to evaluate the utilization of regenerative energy and power peaks in random delayed circumstances. The proposed method was adopted to fine-tune the 2019 timetable for a sub-network of the Dutch railway. In the case of on- time scenarios, the optimized timetable increases the regenerative energy usage by almost 290% and decreases the 15-minute power peaks by 8.5%. In the case of delay scenarios, the optimized timetable outperforms the original timetable in terms of using regenerative energy and shaving power peaks. ; Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public. ; Transport and Planning ; Transport and Planning ; Transport Engineering and Logistics
IEEE Transactions on... arrow_drop_down IEEE Transactions on Intelligent Transportation SystemsArticle . 2022 . Peer-reviewedLicense: IEEE CopyrightData sources: CrossrefDelft University of Technology: Institutional RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tits.2022.3145390&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Intelligent Transportation SystemsArticle . 2022 . Peer-reviewedLicense: IEEE CopyrightData sources: CrossrefDelft University of Technology: Institutional RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tits.2022.3145390&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022 NetherlandsPublisher:Institute of Electrical and Electronics Engineers (IEEE) Lingbin Ning; Min Zhou; Zhuopu Hou; Rob M.P. Goverde; Fei-Yue Wang; Hairong Dong;This paper proposes a novel train trajectory optimization approach for high-speed railways. We restrict our attention to single train operation scenarios with different scheduled/rescheduled running times aiming at generating optimal train recommended trajectories in real time, which can ensure punctuality and energy efficiency of train operation. A learning-based approach deep deterministic policy gradient (DDPG) is designed to generate optimal train trajectories based on the offline training from the interaction between the agent and the trajectory simulation environment. An allocating running time and selecting operation modes (ARTSOM) algorithm is proposed to improve train punctuality and give a series of discrete operation modes (full traction, cruising, coasting, full braking), and thus to produce a feasible training set for DDPG, which can speed up the training process. Numerical experiments show that an optimized speed profile can be generated by DDPG within seconds on a realistic railway line. In addition, the results demonstrate the generalization ability of trained DDPG in solving TTO problems with different running times and line conditions.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Intelligent Transportation SystemsArticle . 2022 . Peer-reviewedLicense: IEEE CopyrightData sources: CrossrefIEEE Transactions on Intelligent Transportation SystemsJournalData sources: Microsoft Academic GraphDelft University of Technology: Institutional RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tits.2021.3105380&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Intelligent Transportation SystemsArticle . 2022 . Peer-reviewedLicense: IEEE CopyrightData sources: CrossrefIEEE Transactions on Intelligent Transportation SystemsJournalData sources: Microsoft Academic GraphDelft University of Technology: Institutional RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tits.2021.3105380&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2022 NetherlandsPublisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Pengling Wang; Nikola Besinovic; Rob M. P. Goverde; Francesco Corman;Employing regenerative braking in trains contributes to reducing the amount of energy used, especially when applied to commuter trains and to those used on very dense suburban networks. This paper presents a method to fine-tune the periodic timetable to improve the utilization of regenerative energy and to shave power peaks while maintaining the structure and robustness of the original timetable. First, a mixed-integer linear programming model based on the periodic event scheduling framework is proposed. A set of feasible timetables is determined and optimized with the aim of increasing synchronized acceleration and braking events at the same station, and maintaining the timetable robustness at the specified level. Next, a local search algorithm is developed to optimize the timetable such that the power peak value is minimized. The max-plus system model is adopted to estimate the delay propagation. Monte Carlo simulation is used to evaluate the utilization of regenerative energy and power peaks in random delayed circumstances. The proposed method was adopted to fine-tune the 2019 timetable for a sub-network of the Dutch railway. In the case of on- time scenarios, the optimized timetable increases the regenerative energy usage by almost 290% and decreases the 15-minute power peaks by 8.5%. In the case of delay scenarios, the optimized timetable outperforms the original timetable in terms of using regenerative energy and shaving power peaks. ; Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public. ; Transport and Planning ; Transport and Planning ; Transport Engineering and Logistics
IEEE Transactions on... arrow_drop_down IEEE Transactions on Intelligent Transportation SystemsArticle . 2022 . Peer-reviewedLicense: IEEE CopyrightData sources: CrossrefDelft University of Technology: Institutional RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tits.2022.3145390&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Intelligent Transportation SystemsArticle . 2022 . Peer-reviewedLicense: IEEE CopyrightData sources: CrossrefDelft University of Technology: Institutional RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tits.2022.3145390&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022 NetherlandsPublisher:Institute of Electrical and Electronics Engineers (IEEE) Lingbin Ning; Min Zhou; Zhuopu Hou; Rob M.P. Goverde; Fei-Yue Wang; Hairong Dong;This paper proposes a novel train trajectory optimization approach for high-speed railways. We restrict our attention to single train operation scenarios with different scheduled/rescheduled running times aiming at generating optimal train recommended trajectories in real time, which can ensure punctuality and energy efficiency of train operation. A learning-based approach deep deterministic policy gradient (DDPG) is designed to generate optimal train trajectories based on the offline training from the interaction between the agent and the trajectory simulation environment. An allocating running time and selecting operation modes (ARTSOM) algorithm is proposed to improve train punctuality and give a series of discrete operation modes (full traction, cruising, coasting, full braking), and thus to produce a feasible training set for DDPG, which can speed up the training process. Numerical experiments show that an optimized speed profile can be generated by DDPG within seconds on a realistic railway line. In addition, the results demonstrate the generalization ability of trained DDPG in solving TTO problems with different running times and line conditions.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Intelligent Transportation SystemsArticle . 2022 . Peer-reviewedLicense: IEEE CopyrightData sources: CrossrefIEEE Transactions on Intelligent Transportation SystemsJournalData sources: Microsoft Academic GraphDelft University of Technology: Institutional RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tits.2021.3105380&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Intelligent Transportation SystemsArticle . 2022 . Peer-reviewedLicense: IEEE CopyrightData sources: CrossrefIEEE Transactions on Intelligent Transportation SystemsJournalData sources: Microsoft Academic GraphDelft University of Technology: Institutional RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tits.2021.3105380&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu