- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2006 NetherlandsPublisher:American Chemical Society (ACS) Authors: Ivo H. M. van Stokkum; Mikas Vengris; Delmar S. Larsen; Emmanouil Papagiannakis; +2 AuthorsIvo H. M. van Stokkum; Mikas Vengris; Delmar S. Larsen; Emmanouil Papagiannakis; Richard J. Cogdell; Rienk van Grondelle;Dispersed transient absorption spectra collected at variable excitation intensities in combination with time-resolved signals were used to explore the underlying connectivity of the electronic excited-state manifold of the carotenoid rhodopin glucoside in the light-harvesting 2 complex isolated from Rhodopseudomonas acidophila. We find that the S state, which was recently identified as an excited state in carotenoids bound in bacterial light-harvesting complexes, exhibits a different response to the increase of excitation intensity than the S(1) state, which suggests that the models used so far to describe the excited states of carotenoids are incomplete. We propose two new models that can describe both the time-resolved and the intensity-dependent data; the first postulates that S(1) and S* are not populated in parallel after the decay of the initially excited S(2) state but instead result from the excitation of distinct ground-state subpopulations. The second model introduces a resonantly enhanced light-induced transition during excitation, which promotes population to higher-lying excited states that favors the formation of S* over S(1). Multiwavelength target analysis of the time-resolved and excitation-intensity dependence measurements were used to characterize the involved states and their responses. We show that both proposed models adequately fit the measured data, although it is not possible to determine which model is most apt. The physical origins and implications of both models are explored.
The Journal of Physi... arrow_drop_down The Journal of Physical Chemistry BArticle . 2006Data sources: DANS (Data Archiving and Networked Services)The Journal of Physical Chemistry BArticle . 2006add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/jp054633h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu94 citations 94 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert The Journal of Physi... arrow_drop_down The Journal of Physical Chemistry BArticle . 2006Data sources: DANS (Data Archiving and Networked Services)The Journal of Physical Chemistry BArticle . 2006add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/jp054633h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2001 NetherlandsPublisher:Elsevier BV Krueger, B.P.; Lampoura, S.; Stokkum, I.H.M. van; Papagiannakis, E.; Salverda, J.M.; Gradinaru, C.C.; Rutkauskas, D.; Hiller, R.G.; Grondelle, R. van;The peridinin chlorophyll-a protein (PCP) of dinoflagellates differs from the well-studied light-harvesting complexes of purple bacteria and green plants in its large (4:1) carotenoid to chlorophyll ratio and the unusual properties of its primary pigment, the carotenoid peridinin. We utilized ultrafast polarized transient absorption spectroscopy to examine the flow of energy in PCP after initial excitation into the strongly allowed peridinin S2 state. Global and target analysis of the isotropic and anisotropic decays reveals that significant excitation (25-50%) is transferred to chlorophyll-a directly from the peridinin S2 state. Because of overlapping positive and negative features, this pathway was unseen in earlier single-wavelength experiments. In addition, the anisotropy remains constant and high in the peridinin population, indicating that energy transfer from peridinin to peridinin represents a minor or negligible pathway. The carotenoids are also coupled directly to chlorophyll-a via a low-lying singlet state S1 or the recently identified SCT. We model this energy transfer time scale as 2.3 +/- 0.2 ps, driven by a coupling of approximately 47 cm(-1). This coupling strength allows us to estimate that the peridinin S1/SCT donor state transition moment is approximately 3 D.
Biophysical Journal arrow_drop_down Biophysical JournalArticle . 2001License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)Biophysical JournalArticle . 2001Biophysical JournalArticle . 2001 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0006-3495(01)76251-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 105 citations 105 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Biophysical Journal arrow_drop_down Biophysical JournalArticle . 2001License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)Biophysical JournalArticle . 2001Biophysical JournalArticle . 2001 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0006-3495(01)76251-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2004 NetherlandsPublisher:American Chemical Society (ACS) Papagiannakis, E.; Larsen, D.S.; Stokkum, I.H.M. van; Vengris, M.; Hiller, R.G.; Grondelle, R. van;The carotenoid peridinin is abundant in the biosphere, as it is the main pigment bound by the light-harvesting complexes of dinoflagellates, where it collects blue and green sunlight and transfers energy to chlorophyll a with high efficiency. Its molecular structure is particularly complex, giving rise to an intricate excited state manifold, which includes a state with charge-transfer character. To disentangle the excited states of peridinin and understand their function in vivo, we applied dispersed pump-probe and pump-dump-probe spectroscopy. The preferential depletion of population from the intramolecular charge transfer state by the dump pulse demonstrates that the S(1) and this charge transfer state are distinct entities. The ensuing dump-induced dynamics illustrates the equilibration of the two states which occurs on the time scale of a few picoseconds. Additionally, the dump pulse populates a short-lived ground state intermediate, which is suggestive of a complex relaxation pathway, probably including structural reorientation or solvation of the ground state. These findings indicate that the unique intramolecular charge transfer state of peridinin is an efficient energy donor to chlorophyll a in the peridinin-chlorophyll-protein complex and thus plays a significant role in global light harvesting.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/bi047977r&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu70 citations 70 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/bi047977r&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2002 NetherlandsPublisher:Proceedings of the National Academy of Sciences Authors: Ivo H. M. van Stokkum; Emmanouil Papagiannakis; Rienk van Grondelle; Richard J. Cogdell; +1 AuthorsIvo H. M. van Stokkum; Emmanouil Papagiannakis; Rienk van Grondelle; Richard J. Cogdell; John T. M. Kennis;Blue and green sunlight become available for photosynthetic energy conversion through the light-harvesting (LH) function of carotenoids, which involves transfer of carotenoid singlet excited states to nearby (bacterio)chlorophylls (BChls). The excited-state manifold of carotenoids usually is described in terms of two singlet states, S 1 and S 2 , of which only the latter can be populated from the ground state by the absorption of one photon. Both states are capable of energy transfer to (B)Chl. We recently showed that in the LH1 complex of the purple bacterium Rhodospirillum rubrum , which is rather inefficient in carotenoid-to-BChl energy transfer, a third additional carotenoid excited singlet state is formed. This state, which we termed S*, was found to be a precursor on an ultrafast fission reaction pathway to carotenoid triplet state formation. Here we present evidence that S* is formed with significant yield in the LH2 complex of Rhodobacter sphaeroides , which has a highly efficient carotenoid LH function. We demonstrate that S* is actively involved in the energy transfer process to BChl and thus have uncovered an alternative pathway of carotenoid-to-BChl energy transfer. In competition with energy transfer to BChl, fission occurs from S*, leading to ultrafast formation of carotenoid triplets. Analysis in terms of a kinetic model indicates that energy transfer through S* accounts for 10–15% of the total energy transfer to BChl, and that inclusion of this pathway is necessary to obtain a highly efficient LH function of carotenoids.
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2002Data sources: DANS (Data Archiving and Networked Services)Proceedings of the National Academy of SciencesArticle . 2002 . Peer-reviewedData sources: CrossrefProceedings of the National Academy of SciencesArticle . 2002add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.092626599&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 205 citations 205 popularity Top 10% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2002Data sources: DANS (Data Archiving and Networked Services)Proceedings of the National Academy of SciencesArticle . 2002 . Peer-reviewedData sources: CrossrefProceedings of the National Academy of SciencesArticle . 2002add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.092626599&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2006 NetherlandsPublisher:American Chemical Society (ACS) Rienk van Grondelle; Mikas Vengris; Emmanouil Papagiannakis; Delmar S. Larsen; Leonas Valkunas; Richard J. Cogdell;Dispersed multipump-probe (PPP) spectroscopy was used to explore the role of saturation, annihilation, and structured pulses in recent coherent control experiments on the light-harvesting 2 complex from Rhodopseudomonas acidophila (Herek et al. Nature 2002, 417, 533). We discuss the complimentary aspects between the PPP technique and coherent control studies, in particular the ability to dissect complicated pulse structures and the utility in exploring incoherent mechanisms. With the aid of a simple multistate model involving only population dynamics, we illustrate how the optimized structured pulses may be explained in terms of an interplay between excited-state populations, saturation, and annihilation. Furthermore, we discuss the experimental conditions that are required for incoherent effects to contribute to control experimental signals, with particular emphasis on pulse intensities, and show that the optimization of a ratio of conservative signals (i.e., not modulated by external dynamics) is required to exclude saturation effects from coherent control studies.
The Journal of Physi... arrow_drop_down The Journal of Physical Chemistry BArticle . 2006Data sources: DANS (Data Archiving and Networked Services)The Journal of Physical Chemistry BArticle . 2006add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/jp054634+&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert The Journal of Physi... arrow_drop_down The Journal of Physical Chemistry BArticle . 2006Data sources: DANS (Data Archiving and Networked Services)The Journal of Physical Chemistry BArticle . 2006add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/jp054634+&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2005 NetherlandsPublisher:Springer Science and Business Media LLC Authors: Ivo H. M. van Stokkum; Claudia Büchel; Rienk van Grondelle; Emmanouil Papagiannakis; +1 AuthorsIvo H. M. van Stokkum; Claudia Büchel; Rienk van Grondelle; Emmanouil Papagiannakis; Holger Fey;We characterized the energy transfer pathways in the fucoxanthin-chlorophyll protein (FCP) complex of the diatom Cyclotella meneghiniana by conducting ultrafast transient absorption measurements. This light harvesting antenna has a distinct pigment composition and binds chlorophyll a (Chl-a), fucoxanthin and chlorophyll c (Chl-c) molecules in a 4:4:1 ratio. We find that upon excitation of fucoxanthin to its S2 state, a significant amount of excitation energy is transferred rapidly to Chl-a. The ensuing dynamics illustrate the presence of a complex energy transfer network that also involves energy transfer from the unrelaxed or 'hot' intermediates. Chl-c to Chl-a energy transfer occurs on a timescale of a 100 fs. We observe no significant spectral evolution in the Chl-a region of the spectrum. We have applied global and target analysis to model the measured excited state dynamics and estimate the spectra of the states involved; the energy transfer network is discussed in relation to the pigment organization of the FCP complex.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11120-005-1003-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu165 citations 165 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11120-005-1003-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2006 NetherlandsPublisher:American Chemical Society (ACS) Authors: Ivo H. M. van Stokkum; Mikas Vengris; Delmar S. Larsen; Emmanouil Papagiannakis; +2 AuthorsIvo H. M. van Stokkum; Mikas Vengris; Delmar S. Larsen; Emmanouil Papagiannakis; Richard J. Cogdell; Rienk van Grondelle;Dispersed transient absorption spectra collected at variable excitation intensities in combination with time-resolved signals were used to explore the underlying connectivity of the electronic excited-state manifold of the carotenoid rhodopin glucoside in the light-harvesting 2 complex isolated from Rhodopseudomonas acidophila. We find that the S state, which was recently identified as an excited state in carotenoids bound in bacterial light-harvesting complexes, exhibits a different response to the increase of excitation intensity than the S(1) state, which suggests that the models used so far to describe the excited states of carotenoids are incomplete. We propose two new models that can describe both the time-resolved and the intensity-dependent data; the first postulates that S(1) and S* are not populated in parallel after the decay of the initially excited S(2) state but instead result from the excitation of distinct ground-state subpopulations. The second model introduces a resonantly enhanced light-induced transition during excitation, which promotes population to higher-lying excited states that favors the formation of S* over S(1). Multiwavelength target analysis of the time-resolved and excitation-intensity dependence measurements were used to characterize the involved states and their responses. We show that both proposed models adequately fit the measured data, although it is not possible to determine which model is most apt. The physical origins and implications of both models are explored.
The Journal of Physi... arrow_drop_down The Journal of Physical Chemistry BArticle . 2006Data sources: DANS (Data Archiving and Networked Services)The Journal of Physical Chemistry BArticle . 2006add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/jp054633h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu94 citations 94 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert The Journal of Physi... arrow_drop_down The Journal of Physical Chemistry BArticle . 2006Data sources: DANS (Data Archiving and Networked Services)The Journal of Physical Chemistry BArticle . 2006add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/jp054633h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2001 NetherlandsPublisher:Elsevier BV Krueger, B.P.; Lampoura, S.; Stokkum, I.H.M. van; Papagiannakis, E.; Salverda, J.M.; Gradinaru, C.C.; Rutkauskas, D.; Hiller, R.G.; Grondelle, R. van;The peridinin chlorophyll-a protein (PCP) of dinoflagellates differs from the well-studied light-harvesting complexes of purple bacteria and green plants in its large (4:1) carotenoid to chlorophyll ratio and the unusual properties of its primary pigment, the carotenoid peridinin. We utilized ultrafast polarized transient absorption spectroscopy to examine the flow of energy in PCP after initial excitation into the strongly allowed peridinin S2 state. Global and target analysis of the isotropic and anisotropic decays reveals that significant excitation (25-50%) is transferred to chlorophyll-a directly from the peridinin S2 state. Because of overlapping positive and negative features, this pathway was unseen in earlier single-wavelength experiments. In addition, the anisotropy remains constant and high in the peridinin population, indicating that energy transfer from peridinin to peridinin represents a minor or negligible pathway. The carotenoids are also coupled directly to chlorophyll-a via a low-lying singlet state S1 or the recently identified SCT. We model this energy transfer time scale as 2.3 +/- 0.2 ps, driven by a coupling of approximately 47 cm(-1). This coupling strength allows us to estimate that the peridinin S1/SCT donor state transition moment is approximately 3 D.
Biophysical Journal arrow_drop_down Biophysical JournalArticle . 2001License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)Biophysical JournalArticle . 2001Biophysical JournalArticle . 2001 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0006-3495(01)76251-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 105 citations 105 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Biophysical Journal arrow_drop_down Biophysical JournalArticle . 2001License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)Biophysical JournalArticle . 2001Biophysical JournalArticle . 2001 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0006-3495(01)76251-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2004 NetherlandsPublisher:American Chemical Society (ACS) Papagiannakis, E.; Larsen, D.S.; Stokkum, I.H.M. van; Vengris, M.; Hiller, R.G.; Grondelle, R. van;The carotenoid peridinin is abundant in the biosphere, as it is the main pigment bound by the light-harvesting complexes of dinoflagellates, where it collects blue and green sunlight and transfers energy to chlorophyll a with high efficiency. Its molecular structure is particularly complex, giving rise to an intricate excited state manifold, which includes a state with charge-transfer character. To disentangle the excited states of peridinin and understand their function in vivo, we applied dispersed pump-probe and pump-dump-probe spectroscopy. The preferential depletion of population from the intramolecular charge transfer state by the dump pulse demonstrates that the S(1) and this charge transfer state are distinct entities. The ensuing dump-induced dynamics illustrates the equilibration of the two states which occurs on the time scale of a few picoseconds. Additionally, the dump pulse populates a short-lived ground state intermediate, which is suggestive of a complex relaxation pathway, probably including structural reorientation or solvation of the ground state. These findings indicate that the unique intramolecular charge transfer state of peridinin is an efficient energy donor to chlorophyll a in the peridinin-chlorophyll-protein complex and thus plays a significant role in global light harvesting.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/bi047977r&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu70 citations 70 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/bi047977r&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2002 NetherlandsPublisher:Proceedings of the National Academy of Sciences Authors: Ivo H. M. van Stokkum; Emmanouil Papagiannakis; Rienk van Grondelle; Richard J. Cogdell; +1 AuthorsIvo H. M. van Stokkum; Emmanouil Papagiannakis; Rienk van Grondelle; Richard J. Cogdell; John T. M. Kennis;Blue and green sunlight become available for photosynthetic energy conversion through the light-harvesting (LH) function of carotenoids, which involves transfer of carotenoid singlet excited states to nearby (bacterio)chlorophylls (BChls). The excited-state manifold of carotenoids usually is described in terms of two singlet states, S 1 and S 2 , of which only the latter can be populated from the ground state by the absorption of one photon. Both states are capable of energy transfer to (B)Chl. We recently showed that in the LH1 complex of the purple bacterium Rhodospirillum rubrum , which is rather inefficient in carotenoid-to-BChl energy transfer, a third additional carotenoid excited singlet state is formed. This state, which we termed S*, was found to be a precursor on an ultrafast fission reaction pathway to carotenoid triplet state formation. Here we present evidence that S* is formed with significant yield in the LH2 complex of Rhodobacter sphaeroides , which has a highly efficient carotenoid LH function. We demonstrate that S* is actively involved in the energy transfer process to BChl and thus have uncovered an alternative pathway of carotenoid-to-BChl energy transfer. In competition with energy transfer to BChl, fission occurs from S*, leading to ultrafast formation of carotenoid triplets. Analysis in terms of a kinetic model indicates that energy transfer through S* accounts for 10–15% of the total energy transfer to BChl, and that inclusion of this pathway is necessary to obtain a highly efficient LH function of carotenoids.
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2002Data sources: DANS (Data Archiving and Networked Services)Proceedings of the National Academy of SciencesArticle . 2002 . Peer-reviewedData sources: CrossrefProceedings of the National Academy of SciencesArticle . 2002add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.092626599&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 205 citations 205 popularity Top 10% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2002Data sources: DANS (Data Archiving and Networked Services)Proceedings of the National Academy of SciencesArticle . 2002 . Peer-reviewedData sources: CrossrefProceedings of the National Academy of SciencesArticle . 2002add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.092626599&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2006 NetherlandsPublisher:American Chemical Society (ACS) Rienk van Grondelle; Mikas Vengris; Emmanouil Papagiannakis; Delmar S. Larsen; Leonas Valkunas; Richard J. Cogdell;Dispersed multipump-probe (PPP) spectroscopy was used to explore the role of saturation, annihilation, and structured pulses in recent coherent control experiments on the light-harvesting 2 complex from Rhodopseudomonas acidophila (Herek et al. Nature 2002, 417, 533). We discuss the complimentary aspects between the PPP technique and coherent control studies, in particular the ability to dissect complicated pulse structures and the utility in exploring incoherent mechanisms. With the aid of a simple multistate model involving only population dynamics, we illustrate how the optimized structured pulses may be explained in terms of an interplay between excited-state populations, saturation, and annihilation. Furthermore, we discuss the experimental conditions that are required for incoherent effects to contribute to control experimental signals, with particular emphasis on pulse intensities, and show that the optimization of a ratio of conservative signals (i.e., not modulated by external dynamics) is required to exclude saturation effects from coherent control studies.
The Journal of Physi... arrow_drop_down The Journal of Physical Chemistry BArticle . 2006Data sources: DANS (Data Archiving and Networked Services)The Journal of Physical Chemistry BArticle . 2006add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/jp054634+&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert The Journal of Physi... arrow_drop_down The Journal of Physical Chemistry BArticle . 2006Data sources: DANS (Data Archiving and Networked Services)The Journal of Physical Chemistry BArticle . 2006add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/jp054634+&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2005 NetherlandsPublisher:Springer Science and Business Media LLC Authors: Ivo H. M. van Stokkum; Claudia Büchel; Rienk van Grondelle; Emmanouil Papagiannakis; +1 AuthorsIvo H. M. van Stokkum; Claudia Büchel; Rienk van Grondelle; Emmanouil Papagiannakis; Holger Fey;We characterized the energy transfer pathways in the fucoxanthin-chlorophyll protein (FCP) complex of the diatom Cyclotella meneghiniana by conducting ultrafast transient absorption measurements. This light harvesting antenna has a distinct pigment composition and binds chlorophyll a (Chl-a), fucoxanthin and chlorophyll c (Chl-c) molecules in a 4:4:1 ratio. We find that upon excitation of fucoxanthin to its S2 state, a significant amount of excitation energy is transferred rapidly to Chl-a. The ensuing dynamics illustrate the presence of a complex energy transfer network that also involves energy transfer from the unrelaxed or 'hot' intermediates. Chl-c to Chl-a energy transfer occurs on a timescale of a 100 fs. We observe no significant spectral evolution in the Chl-a region of the spectrum. We have applied global and target analysis to model the measured excited state dynamics and estimate the spectra of the states involved; the energy transfer network is discussed in relation to the pigment organization of the FCP complex.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11120-005-1003-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu165 citations 165 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11120-005-1003-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu