- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Authors: Danielle De Castro; Amy Kim;doi: 10.3390/su13126697
Since people living in developed nations across Europe, North America, and Australia spend most of their lives indoors, protecting indoor environmental quality is critical for protecting human health. As stressors such as COVID-19 and climate change further complicate living conditions, conflicting system priorities underscore the need for resilience in all building systems. In the engineering and architectural fields, sustainability rating frameworks are used to note, reward, and motivate the use of sustainable practices. As such, it is crucial to ensure that these frameworks genuinely encourage resilience in building systems. This paper conducts a review of the Leadership in Energy and Environmental Design–Building Design and Construction (LEED BD+C v4.1) framework for New Construction through a credit-level analysis, to determine the extent to which the framework encourages the resilience of building systems beyond the scope of structure. Researchers identified, tabulated, and deconstructed relevant credits according to four key resilience factors: diversity, efficiency, adaptability, and cohesion. Findings indicated that, while efficiency is well supported, diversity, adaptability, and cohesion can be enhanced. The existing rating system provides a strong base upon which improvements can be made, but falls short of adequately encouraging the wide adoption of resilience needed for long-term sustainability. In short, while the LEED credits do reward resilient designs, they do not yet actively inspire them.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13126697&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13126697&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Publisher:MDPI AG Amy A. Kim; Dorothy A. Reed; Youngjun Choe; Shuoqi Wang; Carolina Recart;doi: 10.3390/su11205546
In order to meet renewable energy goals in the near future, the deployment of photovoltaic (PV) panels on buildings will dramatically increase. The objective of this paper is to introduce an improved design for PV cladding systems that will greatly contribute to meeting these renewable energy goals. Typically, building-integrated photovoltaic (BIPV) panels are vertically oriented as cladding and they are not coupled with individual storage batteries. The proposed cladding couples a tilted BIPV panel with one or more storage batteries at each building placement. Thus, the tilted BIPV plus battery system is independent of other power generation in the building and it is referred to as a “building perma-power link” (BPPL) cladding element. Each cladding panel is designed as a stand-alone system, which will be useful for installation, operation, and maintenance. The hyper-redundancy of multiple BPPL cladding panels for a typical building significantly enhances its overall energy resiliency. In order to foster manufacturing ease, each individual cladding unit has been designed at tilts of 45° and 60°. An example of a mid-rise building in Seattle, Washington is provided. The degree of building energy resiliency provided through multiple BPPLs is examined.
Sustainability arrow_drop_down SustainabilityOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2071-1050/11/20/5546/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11205546&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2071-1050/11/20/5546/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11205546&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:American Society of Civil Engineers (ASCE) Authors: Amy Kim; Stuart D. Anderson; Jeff Haberl;AbstractThe use of energy service performance contracts (ESPCs) has become a popular method for financing energy conservation upgrades. To date, the use of the stipulated savings approach, often expressed as tables and equations, has been a popular method for calculating energy savings in ESPCs. However, no studies to date have confirmed or denied the literature findings regarding the use and acceptance of this method in the current industry through a systematic investigation. Therefore, this research identified other practices by conducting an ethnographic study with subject-matter experts, by reviewing publicly available technical reference manuals, and by analyzing a typical utility assessment report from a recent ESPC. In particular, the methods for quantifying lighting and lighting control measures were explored in detail. The findings indicate that the current industry relies on a stipulated savings method as a foundation for determining the baseline and postretrofit savings. In addition, the curren...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1061/(asce)ae.1943-5568.0000191&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1061/(asce)ae.1943-5568.0000191&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: E.M. Johnson; Shuoqi Wang; Amy Kim;Abstract Plug load monitoring and associated occupant behavior interventions can play a critical role in reducing commercial building energy consumption. This study investigates whether the reduction in building energy consumption justify the added cost of plug load monitoring and occupant energy saving interventions. The objective of this study is to conduct deterministic and probabilistic return-on-investment (ROI) analysis of instrumenting workspaces, monitoring plug load usage, and applying interventions to promote building energy reduction. The study uses the findings of actual occupant energy saving intervention investigations conducted with city and federal government offices in which the association between occupant energy savings interventions and energy use risk was evaluated. While the deterministic approach led to a positive net present value, the interventions failed to recapture the initial investment, and operational expenses given the uncertainties in the estimate of costs and energy use. The mean ten-year net present value was −$3914 at a 6% discount rate considering all U.S. states. From the project manager’s perspective, other non-energy benefits can justify the additional resources.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.01.082&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.01.082&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Publisher:MDPI AG Authors: Amy Kim; Shuoqi Wang; Ji-Eun Kim; Dorothy Reed;In moderate climates, the operation of windows is the most common way to control for thermal comfort. Window-opening behavior (WOB) is a complex process influenced by multiple factors, yet only simple bi-variate analyses between variables obtained from longitudinal datasets have been examined. The goal of this study is to investigate the effects of indoor and outdoor environmental parameters on WOB using a statistical modeling approach called “structural equation modeling.” The results show that the indoor environmental parameters, such as operative temperature and air velocity, mediated the relationship between the outdoor environmental parameters, such as outdoor air temperature and wind gust, and the WOB. The indoor wet-bulb globe temperature rose as the solar radiation increased, and subsequently, both parameters affected the WOB. Also, an increase in outdoor wind gust led to higher indoor air velocity, which in turn resulted in a lower chance of occupants opening the window. By enhancing our understanding of the relationship between these theoretical parameters, improved design strategies on the mediating parameters can be prioritized and communicated early in the building design phase leading to more informed design decisions.
Buildings arrow_drop_down BuildingsOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2075-5309/9/4/94/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/buildings9040094&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Buildings arrow_drop_down BuildingsOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2075-5309/9/4/94/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/buildings9040094&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Yos Sunitiyoso; Amy Kim; Lysandra A. Medal;Abstract Education buildings, as the third highest consumer of energy in the United States, provides significant opportunities to lower greenhouse gas emissions by increasing energy efficiency (EE). Higher education institutions (HEIs) campuses exhibits multiple favorable but unique attributes, including access to capital, multiple stakeholders involved with differing needs, and control of heterogeneous buildings that are energy intensive, such as laboratories, medical research facilities, sports facilities, and food services. There is a great opportunity to conserve energy by retrofitting these buildings. The decision to retrofit involves many stakeholders and also many factors that are interrelated. This study aims to understand the decision-making processes in EE projects at a higher education institution, particularly the exhaustive list of factors that facilities managers consider when making decision and their interrelationships. Using in-depth semi-structured interviews of facilities managers and secondary data from reports and policy documents, a case study at a large higher education institution is conducted. The content analysis of the data identifies decision factors that are categorized into five major categories: economic feasibility, environmental impact, institutional characteristics, occupant impact, and technical practicality. Interactions among factors are depicted in a causal loop diagram that shows cause-effect relationships. Three main loops highlight the major concerns—economic feasibility, occupant impact, and technical practicality.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2019.06.044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2019.06.044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:ASME International Authors: Dorothy A. Reed; Shuoqi Wang; Amy Kim;doi: 10.1115/1.4035063
Recent disruptions of communities due to natural hazard events such as hurricanes and earthquakes have led to increased calls for improved resiliency of the built environment. The “built environment” denotes constructed facilities such as buildings and bridges, as well as infrastructure systems such as power delivery, transportation roadways, and water utilities. “Resiliency” is defined here as the “recovery and adaptability” during and after events which disrupt civil infrastructure services. In the context of this paper, the critically important service is energy delivery, on which many other services such as communications and transportation networks depend. The robustness of the building energy supply can be significantly enhanced through on-site renewable sources such as photovoltaic panels coupled with storage batteries. The degree to which the energy demand is met by the on-site capacity in the future will be determined largely upon advances in renewable energy generation and storage as well as in efficiency gains for commonly used equipment and appliances such as lighting fixtures and cooling systems. In this paper, we propose an improved design approach for the energy capacity of existing and new buildings as part of a greater regional community in which the total energy capacity requirements are met through increasingly enhanced on-site permanent power links, as opposed to increased reliance on the existing power grid. The metrics for characterizing resiliency will be “robustness,” “redundancy,” “resourcefulness,” and “rapidity,” with the associated metrics for sustainability being self-reliance and intergenerational equity enhancement.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.4035063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.4035063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Authors: Danielle De Castro; Amy Kim;doi: 10.3390/su13126697
Since people living in developed nations across Europe, North America, and Australia spend most of their lives indoors, protecting indoor environmental quality is critical for protecting human health. As stressors such as COVID-19 and climate change further complicate living conditions, conflicting system priorities underscore the need for resilience in all building systems. In the engineering and architectural fields, sustainability rating frameworks are used to note, reward, and motivate the use of sustainable practices. As such, it is crucial to ensure that these frameworks genuinely encourage resilience in building systems. This paper conducts a review of the Leadership in Energy and Environmental Design–Building Design and Construction (LEED BD+C v4.1) framework for New Construction through a credit-level analysis, to determine the extent to which the framework encourages the resilience of building systems beyond the scope of structure. Researchers identified, tabulated, and deconstructed relevant credits according to four key resilience factors: diversity, efficiency, adaptability, and cohesion. Findings indicated that, while efficiency is well supported, diversity, adaptability, and cohesion can be enhanced. The existing rating system provides a strong base upon which improvements can be made, but falls short of adequately encouraging the wide adoption of resilience needed for long-term sustainability. In short, while the LEED credits do reward resilient designs, they do not yet actively inspire them.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13126697&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13126697&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Publisher:MDPI AG Amy A. Kim; Dorothy A. Reed; Youngjun Choe; Shuoqi Wang; Carolina Recart;doi: 10.3390/su11205546
In order to meet renewable energy goals in the near future, the deployment of photovoltaic (PV) panels on buildings will dramatically increase. The objective of this paper is to introduce an improved design for PV cladding systems that will greatly contribute to meeting these renewable energy goals. Typically, building-integrated photovoltaic (BIPV) panels are vertically oriented as cladding and they are not coupled with individual storage batteries. The proposed cladding couples a tilted BIPV panel with one or more storage batteries at each building placement. Thus, the tilted BIPV plus battery system is independent of other power generation in the building and it is referred to as a “building perma-power link” (BPPL) cladding element. Each cladding panel is designed as a stand-alone system, which will be useful for installation, operation, and maintenance. The hyper-redundancy of multiple BPPL cladding panels for a typical building significantly enhances its overall energy resiliency. In order to foster manufacturing ease, each individual cladding unit has been designed at tilts of 45° and 60°. An example of a mid-rise building in Seattle, Washington is provided. The degree of building energy resiliency provided through multiple BPPLs is examined.
Sustainability arrow_drop_down SustainabilityOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2071-1050/11/20/5546/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11205546&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2071-1050/11/20/5546/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11205546&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:American Society of Civil Engineers (ASCE) Authors: Amy Kim; Stuart D. Anderson; Jeff Haberl;AbstractThe use of energy service performance contracts (ESPCs) has become a popular method for financing energy conservation upgrades. To date, the use of the stipulated savings approach, often expressed as tables and equations, has been a popular method for calculating energy savings in ESPCs. However, no studies to date have confirmed or denied the literature findings regarding the use and acceptance of this method in the current industry through a systematic investigation. Therefore, this research identified other practices by conducting an ethnographic study with subject-matter experts, by reviewing publicly available technical reference manuals, and by analyzing a typical utility assessment report from a recent ESPC. In particular, the methods for quantifying lighting and lighting control measures were explored in detail. The findings indicate that the current industry relies on a stipulated savings method as a foundation for determining the baseline and postretrofit savings. In addition, the curren...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1061/(asce)ae.1943-5568.0000191&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1061/(asce)ae.1943-5568.0000191&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: E.M. Johnson; Shuoqi Wang; Amy Kim;Abstract Plug load monitoring and associated occupant behavior interventions can play a critical role in reducing commercial building energy consumption. This study investigates whether the reduction in building energy consumption justify the added cost of plug load monitoring and occupant energy saving interventions. The objective of this study is to conduct deterministic and probabilistic return-on-investment (ROI) analysis of instrumenting workspaces, monitoring plug load usage, and applying interventions to promote building energy reduction. The study uses the findings of actual occupant energy saving intervention investigations conducted with city and federal government offices in which the association between occupant energy savings interventions and energy use risk was evaluated. While the deterministic approach led to a positive net present value, the interventions failed to recapture the initial investment, and operational expenses given the uncertainties in the estimate of costs and energy use. The mean ten-year net present value was −$3914 at a 6% discount rate considering all U.S. states. From the project manager’s perspective, other non-energy benefits can justify the additional resources.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.01.082&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.01.082&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Publisher:MDPI AG Authors: Amy Kim; Shuoqi Wang; Ji-Eun Kim; Dorothy Reed;In moderate climates, the operation of windows is the most common way to control for thermal comfort. Window-opening behavior (WOB) is a complex process influenced by multiple factors, yet only simple bi-variate analyses between variables obtained from longitudinal datasets have been examined. The goal of this study is to investigate the effects of indoor and outdoor environmental parameters on WOB using a statistical modeling approach called “structural equation modeling.” The results show that the indoor environmental parameters, such as operative temperature and air velocity, mediated the relationship between the outdoor environmental parameters, such as outdoor air temperature and wind gust, and the WOB. The indoor wet-bulb globe temperature rose as the solar radiation increased, and subsequently, both parameters affected the WOB. Also, an increase in outdoor wind gust led to higher indoor air velocity, which in turn resulted in a lower chance of occupants opening the window. By enhancing our understanding of the relationship between these theoretical parameters, improved design strategies on the mediating parameters can be prioritized and communicated early in the building design phase leading to more informed design decisions.
Buildings arrow_drop_down BuildingsOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2075-5309/9/4/94/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/buildings9040094&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Buildings arrow_drop_down BuildingsOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2075-5309/9/4/94/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/buildings9040094&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Yos Sunitiyoso; Amy Kim; Lysandra A. Medal;Abstract Education buildings, as the third highest consumer of energy in the United States, provides significant opportunities to lower greenhouse gas emissions by increasing energy efficiency (EE). Higher education institutions (HEIs) campuses exhibits multiple favorable but unique attributes, including access to capital, multiple stakeholders involved with differing needs, and control of heterogeneous buildings that are energy intensive, such as laboratories, medical research facilities, sports facilities, and food services. There is a great opportunity to conserve energy by retrofitting these buildings. The decision to retrofit involves many stakeholders and also many factors that are interrelated. This study aims to understand the decision-making processes in EE projects at a higher education institution, particularly the exhaustive list of factors that facilities managers consider when making decision and their interrelationships. Using in-depth semi-structured interviews of facilities managers and secondary data from reports and policy documents, a case study at a large higher education institution is conducted. The content analysis of the data identifies decision factors that are categorized into five major categories: economic feasibility, environmental impact, institutional characteristics, occupant impact, and technical practicality. Interactions among factors are depicted in a causal loop diagram that shows cause-effect relationships. Three main loops highlight the major concerns—economic feasibility, occupant impact, and technical practicality.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2019.06.044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2019.06.044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:ASME International Authors: Dorothy A. Reed; Shuoqi Wang; Amy Kim;doi: 10.1115/1.4035063
Recent disruptions of communities due to natural hazard events such as hurricanes and earthquakes have led to increased calls for improved resiliency of the built environment. The “built environment” denotes constructed facilities such as buildings and bridges, as well as infrastructure systems such as power delivery, transportation roadways, and water utilities. “Resiliency” is defined here as the “recovery and adaptability” during and after events which disrupt civil infrastructure services. In the context of this paper, the critically important service is energy delivery, on which many other services such as communications and transportation networks depend. The robustness of the building energy supply can be significantly enhanced through on-site renewable sources such as photovoltaic panels coupled with storage batteries. The degree to which the energy demand is met by the on-site capacity in the future will be determined largely upon advances in renewable energy generation and storage as well as in efficiency gains for commonly used equipment and appliances such as lighting fixtures and cooling systems. In this paper, we propose an improved design approach for the energy capacity of existing and new buildings as part of a greater regional community in which the total energy capacity requirements are met through increasingly enhanced on-site permanent power links, as opposed to increased reliance on the existing power grid. The metrics for characterizing resiliency will be “robustness,” “redundancy,” “resourcefulness,” and “rapidity,” with the associated metrics for sustainability being self-reliance and intergenerational equity enhancement.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.4035063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.4035063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu