- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2022Embargo end date: 01 Jan 2022 Italy, Switzerland, Switzerland, Denmark, Norway, United Kingdom, Qatar, Qatar, Norway, Finland, Canada, CanadaPublisher:Canadian Science Publishing Funded by:NSF | Arctic Plant Phenology - ..., SNSF | Plastic and evolutionary ..., NSF | Collaborative Research: S... +9 projectsNSF| Arctic Plant Phenology - Learning through Engaged Science ,SNSF| Plastic and evolutionary responses of High Arctic tundra species to climate warming and snow melt timing at different spatial and temporal scales ,NSF| Collaborative Research: Sustaining and amplifying the ITEX AON through automation and increased interdisciplinarity of observations. ,NSERC ,NSF| Arctic Observing Networks: Collaborative Research: Sustaining and amplifying the ITEX AON through automation and increased interdisciplinarity of observations ,NSF| PostDoctoral Research Fellowship ,RCN| The effect of snow depth and snow melt timing on arctic terrestrial ecosystems. ,EC| AIAS-COFUND II ,NSF| The Bonanza Creek (BNZ) LTER: Regional Consequences of Changing Climate-Disturbance Interactions for the Resilience of Alaska's Boreal Forest ,NSF| Timing is everything: seasonality and phenological dynamics linking species, communities, and trophic feedbacks in the Low- vs. High Arctic ,NSF| Collaborative Research: Linking belowground phenology and ecosystem function in a warming Arctic ,NSF| Warming and drying effects on tundra carbon balanceRobert G. Björk; Eric Post; Jakob J. Assmann; Sonja Wipf; Henrik Wahren; Elisabeth J. Cooper; Mats P. Björkman; Esther R. Frei; Esther R. Frei; Michele Carbognani; Christian Rixen; Robert D. Hollister; Isla H. Myers-Smith; Christopher W. Kopp; Bo Elberling; Sarah C. Elmendorf; Isabel W. Ashton; Tiffany G. Troxler; Karin Clark; Chelsea Chisholm; Marguerite Mauritz; Jeffrey T. Kerby; Kari Klanderud; Orjan Toteland; Ingibjörg S. Jónsdóttir; S. F. Oberbauer; Jeffery M. Welker; Jeffery M. Welker; Edward A. G. Schuur; Yue Yang; Yue Yang; Janet S. Prevéy; Niels Martin Schmidt; Greg H. R. Henry; Juha M. Alatalo; Zoe A. Panchen; Katherine N. Suding; Philipp R. Semenchuk; Philipp R. Semenchuk; Susan M. Natali; Esther Lévesque; Heidi Rodenhizer; Nicoletta Cannone; Jane G. Smith; Toke T. Høye; Sabine Rumpf; Anne D. Bjorkman; Courtney G. Collins; Ulf Molau; Alessandro Petraglia;Observations of changes in phenology have provided some of the strongest signals of the effects of climate change on terrestrial ecosystems. The International Tundra Experiment (ITEX), initiated in the early 1990s, established a common protocol to measure plant phenology in tundra study areas across the globe. Today, this valuable collection of phenology measurements depicts the responses of plants at the colder extremes of our planet to experimental and ambient changes in temperature over the past decades. The database contains 150 434 phenology observations of 278 plant species taken at 28 study areas for periods of 1–26 years. Here we describe the full data set to increase the visibility and use of these data in global analyses and to invite phenology data contributions from underrepresented tundra locations. Portions of this tundra phenology database have been used in three recent syntheses, some data sets are expanded, others are from entirely new study areas, and the entirety of these data are now available at the Polar Data Catalogue ( https://doi.org/10.21963/13215 ).
Université du Québec... arrow_drop_down Université du Québec à Trois-Rivières: Dépôt numérique de UQTRArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Qatar University Institutional RepositoryArticle . 2021Data sources: Qatar University Institutional RepositoryServeur académique lausannoisArticle . 2022License: CC BYData sources: Serveur académique lausannoisUniversity of Oulu Repository - JultikaArticle . 2022Data sources: University of Oulu Repository - JultikaCopenhagen University Research Information SystemArticle . 2022Data sources: Copenhagen University Research Information SystemMunin - Open Research ArchiveArticle . 2021 . Peer-reviewedData sources: Munin - Open Research ArchiveUniversity of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Qatar University: QU Institutional RepositoryArticleData sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1139/as-2020-0041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Université du Québec... arrow_drop_down Université du Québec à Trois-Rivières: Dépôt numérique de UQTRArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Qatar University Institutional RepositoryArticle . 2021Data sources: Qatar University Institutional RepositoryServeur académique lausannoisArticle . 2022License: CC BYData sources: Serveur académique lausannoisUniversity of Oulu Repository - JultikaArticle . 2022Data sources: University of Oulu Repository - JultikaCopenhagen University Research Information SystemArticle . 2022Data sources: Copenhagen University Research Information SystemMunin - Open Research ArchiveArticle . 2021 . Peer-reviewedData sources: Munin - Open Research ArchiveUniversity of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Qatar University: QU Institutional RepositoryArticleData sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1139/as-2020-0041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Yue Yang; Zhengfang Wu; Liang Guo; Hong S. He; Yuheng Ling; Lei Wang; Shengwei Zong; Risu Na; Haibo Du; Mai-He Li;pmid: 32298892
Regions at high latitudes and high altitudes are undergoing a more pronounced winter warming than spring warming, and such asymmetric warming will affect chilling and forcing processes and thus the spring phenology of plants. We analyzed winter chilling and spring forcing accumulation in relation to the spring phenology of three tree species (Ulmus pumila, Populus simonii, and Syringa oblata) growing in a cold region (CR) compared with trees in a warmer reference region (WR), using the Dynamic Model and the Growing Degree Hour (GDH) model. We tested that forcing rather than chilling affects the spring phenology of trees in CR (hypothesis I), and that trees in CR have both lower mean chilling and forcing temperature and thus longer accumulation periods than trees in WR (hypothesis II). The modeling results confirmed that chilling and forcing occur simultaneously during the early spring when temperature gradually increases. In line with our hypotheses, forcing played a crucial role in spring phenology in CR, but chilling and forcing combined to determine spring phenology in WR. The temperature during the chilling and forcing periods was lower and the accumulation period started earlier and ended later in CR than in WR. Moreover, the chilling accumulation was broken into two periods by the low deep winter temperature in CR, and that interruption will be removed by future strong winter warming. Future asymmetric warming, with a stronger temperature increase in winter than in spring, could decrease the forcing accumulation effects and increase the chilling effects on the spring phenology of plants in CR. This change in the balance between chilling and forcing will lead to a shift in plant phenology, which will further have major impacts on biogeochemical cycles and on ecosystem functions and services.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2020.138323&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu28 citations 28 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2020.138323&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Wiley Jie Liu; Ulf Büntgen; Mai-He Li; Yue Yang; Hong S. He; Hong S. He; Haibo Du; Lei Wang; Lei Wang; Zhengfang Wu;doi: 10.1111/gcb.13963
pmid: 29080270
AbstractTreeline responses to environmental changes describe an important phenomenon in global change research. Often conflicting results and generally too short observations are, however, still challenging our understanding of climate‐induced treeline dynamics. Here, we use a state‐of‐the‐art dendroecological approach to reconstruct long‐term changes in the position of the alpine treeline in relation to air temperature at two sides in the Changbai Mountains in northeast China. Over the past 160 years, the treeline increased by around 80 m, a process that can be divided into three phases of different rates and drives. The first phase was mainly influenced by vegetation recovery after an eruption of the Tianchi volcano in 1702. The slowly upward shift in the second phase was consistent with the slowly increasing temperature. The last phase coincided with rapid warming since 1985, and shows with 33 m per 1°C, the most intense upward shift. The spatial distribution and age structure of trees beyond the current treeline confirm the latest, warming‐induced upward shift. Our results suggest that the alpine treeline will continue to rise, and that the alpine tundra may disappear if temperatures will increase further. This study not only enhances mechanistic understanding of long‐term treeline dynamics, but also highlights the effects of rising temperatures on high‐elevation vegetation dynamics.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13963&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu95 citations 95 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13963&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2022Embargo end date: 01 Jan 2022 Italy, Switzerland, Switzerland, Denmark, Norway, United Kingdom, Qatar, Qatar, Norway, Finland, Canada, CanadaPublisher:Canadian Science Publishing Funded by:NSF | Arctic Plant Phenology - ..., SNSF | Plastic and evolutionary ..., NSF | Collaborative Research: S... +9 projectsNSF| Arctic Plant Phenology - Learning through Engaged Science ,SNSF| Plastic and evolutionary responses of High Arctic tundra species to climate warming and snow melt timing at different spatial and temporal scales ,NSF| Collaborative Research: Sustaining and amplifying the ITEX AON through automation and increased interdisciplinarity of observations. ,NSERC ,NSF| Arctic Observing Networks: Collaborative Research: Sustaining and amplifying the ITEX AON through automation and increased interdisciplinarity of observations ,NSF| PostDoctoral Research Fellowship ,RCN| The effect of snow depth and snow melt timing on arctic terrestrial ecosystems. ,EC| AIAS-COFUND II ,NSF| The Bonanza Creek (BNZ) LTER: Regional Consequences of Changing Climate-Disturbance Interactions for the Resilience of Alaska's Boreal Forest ,NSF| Timing is everything: seasonality and phenological dynamics linking species, communities, and trophic feedbacks in the Low- vs. High Arctic ,NSF| Collaborative Research: Linking belowground phenology and ecosystem function in a warming Arctic ,NSF| Warming and drying effects on tundra carbon balanceRobert G. Björk; Eric Post; Jakob J. Assmann; Sonja Wipf; Henrik Wahren; Elisabeth J. Cooper; Mats P. Björkman; Esther R. Frei; Esther R. Frei; Michele Carbognani; Christian Rixen; Robert D. Hollister; Isla H. Myers-Smith; Christopher W. Kopp; Bo Elberling; Sarah C. Elmendorf; Isabel W. Ashton; Tiffany G. Troxler; Karin Clark; Chelsea Chisholm; Marguerite Mauritz; Jeffrey T. Kerby; Kari Klanderud; Orjan Toteland; Ingibjörg S. Jónsdóttir; S. F. Oberbauer; Jeffery M. Welker; Jeffery M. Welker; Edward A. G. Schuur; Yue Yang; Yue Yang; Janet S. Prevéy; Niels Martin Schmidt; Greg H. R. Henry; Juha M. Alatalo; Zoe A. Panchen; Katherine N. Suding; Philipp R. Semenchuk; Philipp R. Semenchuk; Susan M. Natali; Esther Lévesque; Heidi Rodenhizer; Nicoletta Cannone; Jane G. Smith; Toke T. Høye; Sabine Rumpf; Anne D. Bjorkman; Courtney G. Collins; Ulf Molau; Alessandro Petraglia;Observations of changes in phenology have provided some of the strongest signals of the effects of climate change on terrestrial ecosystems. The International Tundra Experiment (ITEX), initiated in the early 1990s, established a common protocol to measure plant phenology in tundra study areas across the globe. Today, this valuable collection of phenology measurements depicts the responses of plants at the colder extremes of our planet to experimental and ambient changes in temperature over the past decades. The database contains 150 434 phenology observations of 278 plant species taken at 28 study areas for periods of 1–26 years. Here we describe the full data set to increase the visibility and use of these data in global analyses and to invite phenology data contributions from underrepresented tundra locations. Portions of this tundra phenology database have been used in three recent syntheses, some data sets are expanded, others are from entirely new study areas, and the entirety of these data are now available at the Polar Data Catalogue ( https://doi.org/10.21963/13215 ).
Université du Québec... arrow_drop_down Université du Québec à Trois-Rivières: Dépôt numérique de UQTRArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Qatar University Institutional RepositoryArticle . 2021Data sources: Qatar University Institutional RepositoryServeur académique lausannoisArticle . 2022License: CC BYData sources: Serveur académique lausannoisUniversity of Oulu Repository - JultikaArticle . 2022Data sources: University of Oulu Repository - JultikaCopenhagen University Research Information SystemArticle . 2022Data sources: Copenhagen University Research Information SystemMunin - Open Research ArchiveArticle . 2021 . Peer-reviewedData sources: Munin - Open Research ArchiveUniversity of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Qatar University: QU Institutional RepositoryArticleData sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1139/as-2020-0041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Université du Québec... arrow_drop_down Université du Québec à Trois-Rivières: Dépôt numérique de UQTRArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Qatar University Institutional RepositoryArticle . 2021Data sources: Qatar University Institutional RepositoryServeur académique lausannoisArticle . 2022License: CC BYData sources: Serveur académique lausannoisUniversity of Oulu Repository - JultikaArticle . 2022Data sources: University of Oulu Repository - JultikaCopenhagen University Research Information SystemArticle . 2022Data sources: Copenhagen University Research Information SystemMunin - Open Research ArchiveArticle . 2021 . Peer-reviewedData sources: Munin - Open Research ArchiveUniversity of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Qatar University: QU Institutional RepositoryArticleData sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1139/as-2020-0041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Yue Yang; Zhengfang Wu; Liang Guo; Hong S. He; Yuheng Ling; Lei Wang; Shengwei Zong; Risu Na; Haibo Du; Mai-He Li;pmid: 32298892
Regions at high latitudes and high altitudes are undergoing a more pronounced winter warming than spring warming, and such asymmetric warming will affect chilling and forcing processes and thus the spring phenology of plants. We analyzed winter chilling and spring forcing accumulation in relation to the spring phenology of three tree species (Ulmus pumila, Populus simonii, and Syringa oblata) growing in a cold region (CR) compared with trees in a warmer reference region (WR), using the Dynamic Model and the Growing Degree Hour (GDH) model. We tested that forcing rather than chilling affects the spring phenology of trees in CR (hypothesis I), and that trees in CR have both lower mean chilling and forcing temperature and thus longer accumulation periods than trees in WR (hypothesis II). The modeling results confirmed that chilling and forcing occur simultaneously during the early spring when temperature gradually increases. In line with our hypotheses, forcing played a crucial role in spring phenology in CR, but chilling and forcing combined to determine spring phenology in WR. The temperature during the chilling and forcing periods was lower and the accumulation period started earlier and ended later in CR than in WR. Moreover, the chilling accumulation was broken into two periods by the low deep winter temperature in CR, and that interruption will be removed by future strong winter warming. Future asymmetric warming, with a stronger temperature increase in winter than in spring, could decrease the forcing accumulation effects and increase the chilling effects on the spring phenology of plants in CR. This change in the balance between chilling and forcing will lead to a shift in plant phenology, which will further have major impacts on biogeochemical cycles and on ecosystem functions and services.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2020.138323&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu28 citations 28 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2020.138323&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Wiley Jie Liu; Ulf Büntgen; Mai-He Li; Yue Yang; Hong S. He; Hong S. He; Haibo Du; Lei Wang; Lei Wang; Zhengfang Wu;doi: 10.1111/gcb.13963
pmid: 29080270
AbstractTreeline responses to environmental changes describe an important phenomenon in global change research. Often conflicting results and generally too short observations are, however, still challenging our understanding of climate‐induced treeline dynamics. Here, we use a state‐of‐the‐art dendroecological approach to reconstruct long‐term changes in the position of the alpine treeline in relation to air temperature at two sides in the Changbai Mountains in northeast China. Over the past 160 years, the treeline increased by around 80 m, a process that can be divided into three phases of different rates and drives. The first phase was mainly influenced by vegetation recovery after an eruption of the Tianchi volcano in 1702. The slowly upward shift in the second phase was consistent with the slowly increasing temperature. The last phase coincided with rapid warming since 1985, and shows with 33 m per 1°C, the most intense upward shift. The spatial distribution and age structure of trees beyond the current treeline confirm the latest, warming‐induced upward shift. Our results suggest that the alpine treeline will continue to rise, and that the alpine tundra may disappear if temperatures will increase further. This study not only enhances mechanistic understanding of long‐term treeline dynamics, but also highlights the effects of rising temperatures on high‐elevation vegetation dynamics.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13963&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu95 citations 95 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13963&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu