- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
SDG [Beta]
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 SpainPublisher:MDPI AG Authors: Flavio R. Arroyo M.; Luis J. Miguel;doi: 10.3390/en13184731
This article describes the results of a study of Ecuador’s energy status, using the system dynamics methodology to model supply, demand and CO2 emissions scenarios for the year 2030. Primary energy production increased in the different projected scenarios, with oil as the most important source of energy. The increase observed in final energy consumption was mainly associated with the transport and industry sectors. A reduction in energy intensity was projected for the different scenarios, which could be associated with the projected economic growth. The results obtained were used to build a proposal for energy policies aimed at mitigating emissions. The proposed changes to the national energy matrix could be the factors that will contribute most to the achievement of carbon emission reductions projected by the different scenarios; changes in the energy matrix are mainly associated with the development of projects to replace fossil fuels with renewable energies, mainly hydropower.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/18/4731/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Documental de la Universidad de ValladolidArticle . 2020License: CC BY NC NDData sources: Repositorio Documental de la Universidad de Valladolidadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13184731&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/18/4731/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Documental de la Universidad de ValladolidArticle . 2020License: CC BY NC NDData sources: Repositorio Documental de la Universidad de Valladolidadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13184731&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 SpainPublisher:MDPI AG Authors: Arroyo Morocho, Flavio Roberto; Miguel González, Luis Javier;doi: 10.3390/en13153883
This article presents a comparative analysis of energy governance with respect to renewable energy sources in Ecuador. The use of renewable energy sources increases energy security and enables countries to achieve their climate mitigation goals. Ecuador’s energy mix is dominated using fossil fuels and produces only 7.8% of its energy supply from renewable energy. The scenario analysis suggests that using the example of international renewable energy policies will achieve sustainable energy development in Ecuador. Relying less on fossil fuels and decentralizing the electricity sector from the use of thermoelectric plants is the great challenge for the country. Using the enormous water potential that Ecuador has and taking advantage of the sources of solar, biomass and wind energy available in the country will reduce the forecast of 60,233.70 KT CO2 by 2030 that would be reached if current consumption conditions and energy mix are maintained, while designing a long-term energy planning with a greater participation of renewable energies would forecast a CO2 emission of 41,232.30 KT, that is, a reduction of 31.5% in emissions.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/15/3883/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Documental de la Universidad de ValladolidArticle . 2020License: CC BY NC NDData sources: Repositorio Documental de la Universidad de Valladolidadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13153883&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 69 citations 69 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/15/3883/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Documental de la Universidad de ValladolidArticle . 2020License: CC BY NC NDData sources: Repositorio Documental de la Universidad de Valladolidadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13153883&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 SpainPublisher:MDPI AG Authors: Arroyo Morocho, Flavio Roberto; Miguel González, Luis Javier;doi: 10.3390/su12010020
Climate change and global warming are related to the demand for energy, energy efficiency, and CO2 emissions. In this research, in order to project the trends in final energy demand, energy intensity, and CO2 emission production in Ecuador during a period between 2000 and 2030, a model has been developed based on the dynamics of the systems supported by Vensim simulation models. The energy matrix of Ecuador has changed in recent years, giving more importance to hydropower. It is conclusive that, if industrialized country policies or trends on the use of renewable energy and energy efficiency were applied, the production of CO2 emissions by 2030 in Ecuador would reach 42,191.4 KTCO2, a value well below the 75,182.6 KTCO2 that would be seen if the current conditions are maintained. In the same way, by 2030, energy intensity would be reduced to 54% compared to the beginning of the simulation period.
Sustainability arrow_drop_down SustainabilityOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/1/20/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Documental de la Universidad de ValladolidArticle . 2019License: CC BY NC NDData sources: Repositorio Documental de la Universidad de Valladolidadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12010020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 38 citations 38 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/1/20/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Documental de la Universidad de ValladolidArticle . 2019License: CC BY NC NDData sources: Repositorio Documental de la Universidad de Valladolidadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12010020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 SpainPublisher:MDPI AG Authors: Flavio R. Arroyo M.; Luis J. Miguel;doi: 10.3390/en13184731
This article describes the results of a study of Ecuador’s energy status, using the system dynamics methodology to model supply, demand and CO2 emissions scenarios for the year 2030. Primary energy production increased in the different projected scenarios, with oil as the most important source of energy. The increase observed in final energy consumption was mainly associated with the transport and industry sectors. A reduction in energy intensity was projected for the different scenarios, which could be associated with the projected economic growth. The results obtained were used to build a proposal for energy policies aimed at mitigating emissions. The proposed changes to the national energy matrix could be the factors that will contribute most to the achievement of carbon emission reductions projected by the different scenarios; changes in the energy matrix are mainly associated with the development of projects to replace fossil fuels with renewable energies, mainly hydropower.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/18/4731/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Documental de la Universidad de ValladolidArticle . 2020License: CC BY NC NDData sources: Repositorio Documental de la Universidad de Valladolidadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13184731&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/18/4731/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Documental de la Universidad de ValladolidArticle . 2020License: CC BY NC NDData sources: Repositorio Documental de la Universidad de Valladolidadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13184731&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 SpainPublisher:MDPI AG Authors: Arroyo Morocho, Flavio Roberto; Miguel González, Luis Javier;doi: 10.3390/en13153883
This article presents a comparative analysis of energy governance with respect to renewable energy sources in Ecuador. The use of renewable energy sources increases energy security and enables countries to achieve their climate mitigation goals. Ecuador’s energy mix is dominated using fossil fuels and produces only 7.8% of its energy supply from renewable energy. The scenario analysis suggests that using the example of international renewable energy policies will achieve sustainable energy development in Ecuador. Relying less on fossil fuels and decentralizing the electricity sector from the use of thermoelectric plants is the great challenge for the country. Using the enormous water potential that Ecuador has and taking advantage of the sources of solar, biomass and wind energy available in the country will reduce the forecast of 60,233.70 KT CO2 by 2030 that would be reached if current consumption conditions and energy mix are maintained, while designing a long-term energy planning with a greater participation of renewable energies would forecast a CO2 emission of 41,232.30 KT, that is, a reduction of 31.5% in emissions.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/15/3883/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Documental de la Universidad de ValladolidArticle . 2020License: CC BY NC NDData sources: Repositorio Documental de la Universidad de Valladolidadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13153883&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 69 citations 69 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/15/3883/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Documental de la Universidad de ValladolidArticle . 2020License: CC BY NC NDData sources: Repositorio Documental de la Universidad de Valladolidadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13153883&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 SpainPublisher:MDPI AG Authors: Arroyo Morocho, Flavio Roberto; Miguel González, Luis Javier;doi: 10.3390/su12010020
Climate change and global warming are related to the demand for energy, energy efficiency, and CO2 emissions. In this research, in order to project the trends in final energy demand, energy intensity, and CO2 emission production in Ecuador during a period between 2000 and 2030, a model has been developed based on the dynamics of the systems supported by Vensim simulation models. The energy matrix of Ecuador has changed in recent years, giving more importance to hydropower. It is conclusive that, if industrialized country policies or trends on the use of renewable energy and energy efficiency were applied, the production of CO2 emissions by 2030 in Ecuador would reach 42,191.4 KTCO2, a value well below the 75,182.6 KTCO2 that would be seen if the current conditions are maintained. In the same way, by 2030, energy intensity would be reduced to 54% compared to the beginning of the simulation period.
Sustainability arrow_drop_down SustainabilityOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/1/20/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Documental de la Universidad de ValladolidArticle . 2019License: CC BY NC NDData sources: Repositorio Documental de la Universidad de Valladolidadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12010020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 38 citations 38 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/1/20/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Documental de la Universidad de ValladolidArticle . 2019License: CC BY NC NDData sources: Repositorio Documental de la Universidad de Valladolidadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12010020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu