- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Springer Science and Business Media LLC Yuxin Miao; Guoxin Cao; Zhengxia Dou; Chong Wang;Fusuo Zhang;
Xiaolin Li; Quanqing Liu;Fusuo Zhang
Fusuo Zhang in OpenAIREJianbo Shen;
Rongfeng Jiang; Zhenling Cui; Weifeng Zhang; Xinping Chen; Guohua Mi; Hongyan Zhang;Jianbo Shen
Jianbo Shen in OpenAIREdoi: 10.1038/nature19368
pmid: 27602513
Sustainably feeding the world's growing population is a challenge, and closing yield gaps (that is, differences between farmers' yields and what are attainable for a given region) is a vital strategy to address this challenge. The magnitude of yield gaps is particularly large in developing countries where smallholder farming dominates the agricultural landscape. Many factors and constraints interact to limit yields, and progress in problem-solving to bring about changes at the ground level is rare. Here we present an innovative approach for enabling smallholders to achieve yield and economic gains sustainably via the Science and Technology Backyard (STB) platform. STB involves agricultural scientists living in villages among farmers, advancing participatory innovation and technology transfer, and garnering public and private support. We identified multifaceted yield-limiting factors involving agronomic, infrastructural, and socioeconomic conditions. When these limitations and farmers' concerns were addressed, the farmers adopted recommended management practices, thereby improving production outcomes. In one region in China, the five-year average yield increased from 67.9% of the attainable level to 97.0% among 71 leading farmers, and from 62.8% to 79.6% countywide (93,074 households); this was accompanied by resource and economic benefits.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature19368&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu480 citations 480 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature19368&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Springer Science and Business Media LLC Yuxin Miao; Guoxin Cao; Zhengxia Dou; Chong Wang;Fusuo Zhang;
Xiaolin Li; Quanqing Liu;Fusuo Zhang
Fusuo Zhang in OpenAIREJianbo Shen;
Rongfeng Jiang; Zhenling Cui; Weifeng Zhang; Xinping Chen; Guohua Mi; Hongyan Zhang;Jianbo Shen
Jianbo Shen in OpenAIREdoi: 10.1038/nature19368
pmid: 27602513
Sustainably feeding the world's growing population is a challenge, and closing yield gaps (that is, differences between farmers' yields and what are attainable for a given region) is a vital strategy to address this challenge. The magnitude of yield gaps is particularly large in developing countries where smallholder farming dominates the agricultural landscape. Many factors and constraints interact to limit yields, and progress in problem-solving to bring about changes at the ground level is rare. Here we present an innovative approach for enabling smallholders to achieve yield and economic gains sustainably via the Science and Technology Backyard (STB) platform. STB involves agricultural scientists living in villages among farmers, advancing participatory innovation and technology transfer, and garnering public and private support. We identified multifaceted yield-limiting factors involving agronomic, infrastructural, and socioeconomic conditions. When these limitations and farmers' concerns were addressed, the farmers adopted recommended management practices, thereby improving production outcomes. In one region in China, the five-year average yield increased from 67.9% of the attainable level to 97.0% among 71 leading farmers, and from 62.8% to 79.6% countywide (93,074 households); this was accompanied by resource and economic benefits.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature19368&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu480 citations 480 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature19368&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007Publisher:Wiley Authors:Fusuo Zhang;
Fusuo Zhang
Fusuo Zhang in OpenAIREBaolan Wang;
Wen-Gen Zhang; Günter Neumann; +1 AuthorsBaolan Wang
Baolan Wang in OpenAIREFusuo Zhang;
Fusuo Zhang
Fusuo Zhang in OpenAIREBaolan Wang;
Wen-Gen Zhang; Günter Neumann;Baolan Wang
Baolan Wang in OpenAIREJianbo Shen;
Jianbo Shen
Jianbo Shen in OpenAIREpmid: 17725555
Both phosphorus (P) deficiency and aluminum (Al) toxicity induce root exudation of carboxylates, but the relationship between these two effects is not fully understood. Here, carboxylate exudation induced by Al in Lupinus albus (white lupin) was characterized and compared with that induced by P deficiency. Aluminum treatments were applied to whole root systems or selected root zones of plants with limited (1 microM) or sufficient (50 microM) P supply. Aluminum stimulated citrate efflux after 1-2 h; this response was not mimicked by a similar trivalent cation, La(3+). P deficiency triggered citrate release from mature cluster roots, whereas Al stimulated citrate exudation from the 5- to 10-mm subapical root zones of lateral roots and from mature and senescent cluster roots. Al-induced citrate exudation was inhibited by P limitation at the seedling stage, but was stimulated at later growth stages. Citrate exudation was sensitive to anion-channel blockers. Al treatments did not affect primary root elongation, but inhibited the elongation of lateral roots. The data demonstrate differential patterns of citrate exudation in L. albus, depending on root zone, developmental stage, P nutritional status and Al stress. These findings are discussed in terms of possible functions and underlying mechanisms.
New Phytologist arrow_drop_down New PhytologistArticle . 2007 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1469-8137.2007.02206.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 72 citations 72 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert New Phytologist arrow_drop_down New PhytologistArticle . 2007 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1469-8137.2007.02206.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007Publisher:Wiley Authors:Fusuo Zhang;
Fusuo Zhang
Fusuo Zhang in OpenAIREBaolan Wang;
Wen-Gen Zhang; Günter Neumann; +1 AuthorsBaolan Wang
Baolan Wang in OpenAIREFusuo Zhang;
Fusuo Zhang
Fusuo Zhang in OpenAIREBaolan Wang;
Wen-Gen Zhang; Günter Neumann;Baolan Wang
Baolan Wang in OpenAIREJianbo Shen;
Jianbo Shen
Jianbo Shen in OpenAIREpmid: 17725555
Both phosphorus (P) deficiency and aluminum (Al) toxicity induce root exudation of carboxylates, but the relationship between these two effects is not fully understood. Here, carboxylate exudation induced by Al in Lupinus albus (white lupin) was characterized and compared with that induced by P deficiency. Aluminum treatments were applied to whole root systems or selected root zones of plants with limited (1 microM) or sufficient (50 microM) P supply. Aluminum stimulated citrate efflux after 1-2 h; this response was not mimicked by a similar trivalent cation, La(3+). P deficiency triggered citrate release from mature cluster roots, whereas Al stimulated citrate exudation from the 5- to 10-mm subapical root zones of lateral roots and from mature and senescent cluster roots. Al-induced citrate exudation was inhibited by P limitation at the seedling stage, but was stimulated at later growth stages. Citrate exudation was sensitive to anion-channel blockers. Al treatments did not affect primary root elongation, but inhibited the elongation of lateral roots. The data demonstrate differential patterns of citrate exudation in L. albus, depending on root zone, developmental stage, P nutritional status and Al stress. These findings are discussed in terms of possible functions and underlying mechanisms.
New Phytologist arrow_drop_down New PhytologistArticle . 2007 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1469-8137.2007.02206.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 72 citations 72 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert New Phytologist arrow_drop_down New PhytologistArticle . 2007 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1469-8137.2007.02206.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016Publisher:Springer Science and Business Media LLC Authors:Jianbo Shen;
Jianbo Shen
Jianbo Shen in OpenAIREChunjie Li;
Yan Dong; Fusuo Zhang; +1 AuthorsChunjie Li
Chunjie Li in OpenAIREJianbo Shen;
Jianbo Shen
Jianbo Shen in OpenAIREChunjie Li;
Yan Dong; Fusuo Zhang; Haigang Li;Chunjie Li
Chunjie Li in OpenAIREAbstractRhizosphere processes stimulate overyielding and facilitative phosphorus (P) uptake in cereal/legume intercropping systems. However, little is known about when and how rhizosphere alteration of legumes plays a role in improving P uptake by cereals. Wheat was grown isolated, monocropped or intercropped with faba bean in pots with low-P soil. The biomass, P content, carboxylates and phosphatases activity were measured in 15 destructive samplings. Intraspecific competition of the biomass and P uptake of monocropped wheat was not significant before 40 and 36 days after sowing (DAS), whereas there was interspecific competition of biomass of intercropped wheat before 66 DAS. However, afterwards, the increments of the biomass and P uptake of the intercropped wheat were 1.3–1.9 and 1.9–2.3 times of increment of monocropped wheat. Meanwhile, the concentrations of malate and citrate and the acid phosphatase activity in the rhizospheres of intercropped wheat were significantly increased, which suggested that wheat/faba bean intercropping is efficient in P utilization due to complementary P uptake in the early growth stage and the positive interactions of the rhizosphere processes when the soil P was depleted.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep18663&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 64 citations 64 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep18663&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016Publisher:Springer Science and Business Media LLC Authors:Jianbo Shen;
Jianbo Shen
Jianbo Shen in OpenAIREChunjie Li;
Yan Dong; Fusuo Zhang; +1 AuthorsChunjie Li
Chunjie Li in OpenAIREJianbo Shen;
Jianbo Shen
Jianbo Shen in OpenAIREChunjie Li;
Yan Dong; Fusuo Zhang; Haigang Li;Chunjie Li
Chunjie Li in OpenAIREAbstractRhizosphere processes stimulate overyielding and facilitative phosphorus (P) uptake in cereal/legume intercropping systems. However, little is known about when and how rhizosphere alteration of legumes plays a role in improving P uptake by cereals. Wheat was grown isolated, monocropped or intercropped with faba bean in pots with low-P soil. The biomass, P content, carboxylates and phosphatases activity were measured in 15 destructive samplings. Intraspecific competition of the biomass and P uptake of monocropped wheat was not significant before 40 and 36 days after sowing (DAS), whereas there was interspecific competition of biomass of intercropped wheat before 66 DAS. However, afterwards, the increments of the biomass and P uptake of the intercropped wheat were 1.3–1.9 and 1.9–2.3 times of increment of monocropped wheat. Meanwhile, the concentrations of malate and citrate and the acid phosphatase activity in the rhizospheres of intercropped wheat were significantly increased, which suggested that wheat/faba bean intercropping is efficient in P utilization due to complementary P uptake in the early growth stage and the positive interactions of the rhizosphere processes when the soil P was depleted.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep18663&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 64 citations 64 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep18663&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United KingdomPublisher:Springer Science and Business Media LLC Funded by:NSF | RCN-SEES: Coordinating Ph..., FCT | LA 1NSF| RCN-SEES: Coordinating Phosphorus Research to Create a Sustainable Food System ,FCT| LA 1Authors:Powers, Stephen M.;
Bruulsema, Thomas W.; Burt, Tim P.; Chan, Neng Iong; +10 AuthorsPowers, Stephen M.
Powers, Stephen M. in OpenAIREPowers, Stephen M.;
Bruulsema, Thomas W.; Burt, Tim P.; Chan, Neng Iong; Elser, James J.;Powers, Stephen M.
Powers, Stephen M. in OpenAIREHaygarth, Philip M.;
Howden, Nicholas J.K.;Haygarth, Philip M.
Haygarth, Philip M. in OpenAIREJarvie, Helen P.;
Lyu, Yang;Jarvie, Helen P.
Jarvie, Helen P. in OpenAIREPeterson, Heidi M.;
Sharpley, Andrew N.;Peterson, Heidi M.
Peterson, Heidi M. in OpenAIREShen, Jianbo;
Worrall, Fred;Shen, Jianbo
Shen, Jianbo in OpenAIREZhang, Fusuo;
Zhang, Fusuo
Zhang, Fusuo in OpenAIREGlobal food production depends on phosphorus. Phosphorus is broadly applied as fertilizer, but excess phosphorus contributes to eutrophication of surface water bodies and coastal ecosystems1. Here we present an analysis of phosphorus fluxes in three large river basins, including published data on fertilizer, harvested crops, sewage, food waste and river fluxes2, 3, 4. Our analyses reveal that the magnitude of phosphorus accumulation has varied greatly over the past 30–70 years in mixed agricultural–urban landscapes of the Thames Basin, UK, the Yangtze Basin, China, and the rural Maumee Basin, USA. Fluxes of phosphorus in fertilizer, harvested crops, food waste and sewage dominate over the river fluxes. Since the late 1990s, net exports from the Thames and Maumee Basins have exceeded inputs, suggesting net mobilization of the phosphorus pool accumulated in earlier decades. In contrast, the Yangtze Basin has consistently accumulated phosphorus since 1980. Infrastructure modifications such as sewage treatment and dams may explain more recent declines in total phosphorus fluxes from the Thames and Yangtze Rivers3, 4. We conclude that human-dominated river basins may undergo a prolonged but finite accumulation phase when phosphorus inputs exceed agricultural demand, and this accumulated phosphorus may continue to mobilize long after inputs decline.
NERC Open Research A... arrow_drop_down Durham Research OnlineArticle . 2016 . Peer-reviewedFull-Text: http://dro.dur.ac.uk/18613/1/18613.pdfData sources: Durham Research OnlineUniversity of Bristol: Bristol ResearchArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)Durham University: Durham Research OnlineArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ngeo2693&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 331 citations 331 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Durham Research OnlineArticle . 2016 . Peer-reviewedFull-Text: http://dro.dur.ac.uk/18613/1/18613.pdfData sources: Durham Research OnlineUniversity of Bristol: Bristol ResearchArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)Durham University: Durham Research OnlineArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ngeo2693&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United KingdomPublisher:Springer Science and Business Media LLC Funded by:NSF | RCN-SEES: Coordinating Ph..., FCT | LA 1NSF| RCN-SEES: Coordinating Phosphorus Research to Create a Sustainable Food System ,FCT| LA 1Authors:Powers, Stephen M.;
Bruulsema, Thomas W.; Burt, Tim P.; Chan, Neng Iong; +10 AuthorsPowers, Stephen M.
Powers, Stephen M. in OpenAIREPowers, Stephen M.;
Bruulsema, Thomas W.; Burt, Tim P.; Chan, Neng Iong; Elser, James J.;Powers, Stephen M.
Powers, Stephen M. in OpenAIREHaygarth, Philip M.;
Howden, Nicholas J.K.;Haygarth, Philip M.
Haygarth, Philip M. in OpenAIREJarvie, Helen P.;
Lyu, Yang;Jarvie, Helen P.
Jarvie, Helen P. in OpenAIREPeterson, Heidi M.;
Sharpley, Andrew N.;Peterson, Heidi M.
Peterson, Heidi M. in OpenAIREShen, Jianbo;
Worrall, Fred;Shen, Jianbo
Shen, Jianbo in OpenAIREZhang, Fusuo;
Zhang, Fusuo
Zhang, Fusuo in OpenAIREGlobal food production depends on phosphorus. Phosphorus is broadly applied as fertilizer, but excess phosphorus contributes to eutrophication of surface water bodies and coastal ecosystems1. Here we present an analysis of phosphorus fluxes in three large river basins, including published data on fertilizer, harvested crops, sewage, food waste and river fluxes2, 3, 4. Our analyses reveal that the magnitude of phosphorus accumulation has varied greatly over the past 30–70 years in mixed agricultural–urban landscapes of the Thames Basin, UK, the Yangtze Basin, China, and the rural Maumee Basin, USA. Fluxes of phosphorus in fertilizer, harvested crops, food waste and sewage dominate over the river fluxes. Since the late 1990s, net exports from the Thames and Maumee Basins have exceeded inputs, suggesting net mobilization of the phosphorus pool accumulated in earlier decades. In contrast, the Yangtze Basin has consistently accumulated phosphorus since 1980. Infrastructure modifications such as sewage treatment and dams may explain more recent declines in total phosphorus fluxes from the Thames and Yangtze Rivers3, 4. We conclude that human-dominated river basins may undergo a prolonged but finite accumulation phase when phosphorus inputs exceed agricultural demand, and this accumulated phosphorus may continue to mobilize long after inputs decline.
NERC Open Research A... arrow_drop_down Durham Research OnlineArticle . 2016 . Peer-reviewedFull-Text: http://dro.dur.ac.uk/18613/1/18613.pdfData sources: Durham Research OnlineUniversity of Bristol: Bristol ResearchArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)Durham University: Durham Research OnlineArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ngeo2693&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 331 citations 331 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Durham Research OnlineArticle . 2016 . Peer-reviewedFull-Text: http://dro.dur.ac.uk/18613/1/18613.pdfData sources: Durham Research OnlineUniversity of Bristol: Bristol ResearchArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)Durham University: Durham Research OnlineArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ngeo2693&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:CSIRO Publishing Xin Zhao; Yang Lyu; Qianqian Dong; Xiyong He; Hai Yue; Liping Yang; Liang Tao; Lidan Gong; Hongxu Zheng; Sijie Wen;Hans Lambers;
Hans Lambers
Hans Lambers in OpenAIREJianbo Shen;
Jianbo Shen
Jianbo Shen in OpenAIREdoi: 10.1071/fp22197
pmid: 37211614
Knowledge of the ionome of plant organs helps us understand a plant’s nutritional status. However, the ionome of Macadamia (Proteaceae), which is an important nut-producing tree, remains unknown. We aimed to characterise the allocation of biomass and nutrient-partitioning patterns in three macadamia genotypes. We excavated 15 productive trees (three cultivars at 21 years of age; two cultivars at 16 years of age) in an orchard. Biomass, nutrient concentrations, and contents of roots, stems, branches, and leaves were analysed. Dry weight of roots, stems, branches and leaves accounted for 14–20%, 19–30%, 36–52%, and 12–18% of total plant weight, respectively. No significant difference was found in the total biomass among the cultivars at the same age. Compared with most crop plants, macadamia had low phosphorus (P) concentrations in all organs (<1 g kg−1), and low leaf zinc (Zn) concentration (8 mg kg−1). In contrast, macadamia accumulated large amounts of manganese (Mn), with a 20-fold higher leaf Mn concentration than what is considered sufficient for crop plants. Leaves exhibited the highest nutrient concentrations, except for iron and Zn, which exhibited the highest concentrations in roots. The organ-specific ionomics of Macadamia is characterised by low P and high Mn concentrations, associated with adaptation to P-impoverished habitats.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1071/fp22197&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1071/fp22197&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:CSIRO Publishing Xin Zhao; Yang Lyu; Qianqian Dong; Xiyong He; Hai Yue; Liping Yang; Liang Tao; Lidan Gong; Hongxu Zheng; Sijie Wen;Hans Lambers;
Hans Lambers
Hans Lambers in OpenAIREJianbo Shen;
Jianbo Shen
Jianbo Shen in OpenAIREdoi: 10.1071/fp22197
pmid: 37211614
Knowledge of the ionome of plant organs helps us understand a plant’s nutritional status. However, the ionome of Macadamia (Proteaceae), which is an important nut-producing tree, remains unknown. We aimed to characterise the allocation of biomass and nutrient-partitioning patterns in three macadamia genotypes. We excavated 15 productive trees (three cultivars at 21 years of age; two cultivars at 16 years of age) in an orchard. Biomass, nutrient concentrations, and contents of roots, stems, branches, and leaves were analysed. Dry weight of roots, stems, branches and leaves accounted for 14–20%, 19–30%, 36–52%, and 12–18% of total plant weight, respectively. No significant difference was found in the total biomass among the cultivars at the same age. Compared with most crop plants, macadamia had low phosphorus (P) concentrations in all organs (<1 g kg−1), and low leaf zinc (Zn) concentration (8 mg kg−1). In contrast, macadamia accumulated large amounts of manganese (Mn), with a 20-fold higher leaf Mn concentration than what is considered sufficient for crop plants. Leaves exhibited the highest nutrient concentrations, except for iron and Zn, which exhibited the highest concentrations in roots. The organ-specific ionomics of Macadamia is characterised by low P and high Mn concentrations, associated with adaptation to P-impoverished habitats.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1071/fp22197&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1071/fp22197&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2017Publisher:Springer Science and Business Media LLC Authors:Dan Zhang;
Dan Zhang
Dan Zhang in OpenAIREJianbo Shen;
Fusuo Zhang;Jianbo Shen
Jianbo Shen in OpenAIREYue Li;
+1 AuthorsYue Li
Yue Li in OpenAIREDan Zhang;
Dan Zhang
Dan Zhang in OpenAIREJianbo Shen;
Fusuo Zhang;Jianbo Shen
Jianbo Shen in OpenAIREYue Li;
Weifeng Zhang;Yue Li
Yue Li in OpenAIREpmid: 28663590
pmc: PMC5491493
AbstractDue to the increasing environmental impact of food production, carbon footprint as an indicator can guide farmland management. This study established a method and estimated the carbon footprint of grain production in China based on life cycle analysis (LCA). The results showed that grain production has a high carbon footprint in 2013, i.e., 4052 kg ce/ha or 0.48 kg ce/kg for maize, 5455 kg ce/ha or 0.75 kg ce/kg for wheat and 11881 kg ce/ha or 1.60 kg ce/kg for rice. These footprints are higher than that of other countries, such as the United States, Canada and India. The most important factors governing carbon emissions were the application of nitrogen fertiliser (8–49%), straw burning (0–70%), energy consumption by machinery (6–40%), energy consumption for irrigation (0–44%) and CH4 emissions from rice paddies (15–73%). The most important carbon sequestration factors included returning of crop straw (41–90%), chemical nitrogen fertiliser application (10–59%) and no-till farming practices (0–10%). Different factors dominated in different crop systems in different regions. To identity site-specific key factors and take countermeasures could significantly lower carbon footprint, e.g., ban straw burning in northeast and south China, stopping continuous flooding irrigation in wheat and rice production system.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-017-04182-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 156 citations 156 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-017-04182-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2017Publisher:Springer Science and Business Media LLC Authors:Dan Zhang;
Dan Zhang
Dan Zhang in OpenAIREJianbo Shen;
Fusuo Zhang;Jianbo Shen
Jianbo Shen in OpenAIREYue Li;
+1 AuthorsYue Li
Yue Li in OpenAIREDan Zhang;
Dan Zhang
Dan Zhang in OpenAIREJianbo Shen;
Fusuo Zhang;Jianbo Shen
Jianbo Shen in OpenAIREYue Li;
Weifeng Zhang;Yue Li
Yue Li in OpenAIREpmid: 28663590
pmc: PMC5491493
AbstractDue to the increasing environmental impact of food production, carbon footprint as an indicator can guide farmland management. This study established a method and estimated the carbon footprint of grain production in China based on life cycle analysis (LCA). The results showed that grain production has a high carbon footprint in 2013, i.e., 4052 kg ce/ha or 0.48 kg ce/kg for maize, 5455 kg ce/ha or 0.75 kg ce/kg for wheat and 11881 kg ce/ha or 1.60 kg ce/kg for rice. These footprints are higher than that of other countries, such as the United States, Canada and India. The most important factors governing carbon emissions were the application of nitrogen fertiliser (8–49%), straw burning (0–70%), energy consumption by machinery (6–40%), energy consumption for irrigation (0–44%) and CH4 emissions from rice paddies (15–73%). The most important carbon sequestration factors included returning of crop straw (41–90%), chemical nitrogen fertiliser application (10–59%) and no-till farming practices (0–10%). Different factors dominated in different crop systems in different regions. To identity site-specific key factors and take countermeasures could significantly lower carbon footprint, e.g., ban straw burning in northeast and south China, stopping continuous flooding irrigation in wheat and rice production system.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-017-04182-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 156 citations 156 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-017-04182-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020 France, France, United States, South AfricaPublisher:Springer Science and Business Media LLC Authors: Steven James; Karen A. Cooper;Alexander Mathys;
Alexander Mathys
Alexander Mathys in OpenAIRETim G. Benton;
+15 AuthorsTim G. Benton
Tim G. Benton in OpenAIRESteven James; Karen A. Cooper;Alexander Mathys;
Alexander Mathys
Alexander Mathys in OpenAIRETim G. Benton;
Tim G. Benton; Mark Kahn;Tim G. Benton
Tim G. Benton in OpenAIREChristopher B. Barrett;
Christopher B. Barrett
Christopher B. Barrett in OpenAIREJianbo Shen;
Rikin Gandhi;Jianbo Shen
Jianbo Shen in OpenAIREDaniel Mason-D'Croz;
Elizabeth R. Bageant; Andrew G. Mude;Daniel Mason-D'Croz
Daniel Mason-D'Croz in OpenAIREPhilip K. Thornton;
Rebecca Nelson;Philip K. Thornton
Philip K. Thornton in OpenAIREStephen A. Wood;
Stephen A. Wood
Stephen A. Wood in OpenAIREMario Herrero;
Lindiwe Majele Sibanda;Mario Herrero
Mario Herrero in OpenAIREJessica Fanzo;
Shenggen Fan;Jessica Fanzo
Jessica Fanzo in OpenAIREhandle: 2263/80940 , 10568/110862
Coupling technological advances with sociocultural and policy changes can transform agri-food systems to address pressing climate, economic, environmental, health and social challenges. An international expert panel reports on options to induce contextualized combinations of innovations that can balance multiple goals.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021Full-Text: https://hdl.handle.net/10568/110862Data sources: Bielefeld Academic Search Engine (BASE)Columbia University Academic CommonsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Nature SustainabilityArticle . 2020 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41893-020-00661-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 109 citations 109 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021Full-Text: https://hdl.handle.net/10568/110862Data sources: Bielefeld Academic Search Engine (BASE)Columbia University Academic CommonsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Nature SustainabilityArticle . 2020 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41893-020-00661-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020 France, France, United States, South AfricaPublisher:Springer Science and Business Media LLC Authors: Steven James; Karen A. Cooper;Alexander Mathys;
Alexander Mathys
Alexander Mathys in OpenAIRETim G. Benton;
+15 AuthorsTim G. Benton
Tim G. Benton in OpenAIRESteven James; Karen A. Cooper;Alexander Mathys;
Alexander Mathys
Alexander Mathys in OpenAIRETim G. Benton;
Tim G. Benton; Mark Kahn;Tim G. Benton
Tim G. Benton in OpenAIREChristopher B. Barrett;
Christopher B. Barrett
Christopher B. Barrett in OpenAIREJianbo Shen;
Rikin Gandhi;Jianbo Shen
Jianbo Shen in OpenAIREDaniel Mason-D'Croz;
Elizabeth R. Bageant; Andrew G. Mude;Daniel Mason-D'Croz
Daniel Mason-D'Croz in OpenAIREPhilip K. Thornton;
Rebecca Nelson;Philip K. Thornton
Philip K. Thornton in OpenAIREStephen A. Wood;
Stephen A. Wood
Stephen A. Wood in OpenAIREMario Herrero;
Lindiwe Majele Sibanda;Mario Herrero
Mario Herrero in OpenAIREJessica Fanzo;
Shenggen Fan;Jessica Fanzo
Jessica Fanzo in OpenAIREhandle: 2263/80940 , 10568/110862
Coupling technological advances with sociocultural and policy changes can transform agri-food systems to address pressing climate, economic, environmental, health and social challenges. An international expert panel reports on options to induce contextualized combinations of innovations that can balance multiple goals.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021Full-Text: https://hdl.handle.net/10568/110862Data sources: Bielefeld Academic Search Engine (BASE)Columbia University Academic CommonsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Nature SustainabilityArticle . 2020 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41893-020-00661-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 109 citations 109 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021Full-Text: https://hdl.handle.net/10568/110862Data sources: Bielefeld Academic Search Engine (BASE)Columbia University Academic CommonsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Nature SustainabilityArticle . 2020 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41893-020-00661-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Springer Science and Business Media LLC pmid: 23504274
White lupin (Lupinus albus) exhibits strong root morphological and physiological responses to phosphorus (P) deficiency and auxin treatments, but the interactive effects of P and auxin in regulating root morphological and physiological traits are not fully understood. This study aimed to assess white lupin root traits as influenced by P (0 or 250 μmol L(-1)) and auxin (10(-8) mol L(-1) NAA) in nutrient solution. Both P deficiency and auxin treatments significantly altered root morphological traits, as evidenced by reduced taproot length, increased number and density of first-order lateral roots, and enhanced cluster-root formation. Changes in root physiological traits were also observed, i.e., increased proton, citrate, and acid phosphatase exudation. Exogenous auxin enhanced root responses and sensitivity to P deficiency. A significant interplay exists between P and auxin in the regulation of root morphological and physiological traits. Principal component analysis showed that P availability explained 64.8% and auxin addition 21.3% of the total variation in root trait parameters, indicating that P availability is much more important than auxin in modifying root responses of white lupin. This suggests that white lupin can coordinate root morphological and physiological responses to enhance acquisition of P resources, with an optimal trade-off between root morphological and physiological traits regulated by external stimuli such as P availability and auxin.
Science China Life S... arrow_drop_down Science China Life SciencesArticle . 2013 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11427-013-4461-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 19 citations 19 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Science China Life S... arrow_drop_down Science China Life SciencesArticle . 2013 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11427-013-4461-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Springer Science and Business Media LLC pmid: 23504274
White lupin (Lupinus albus) exhibits strong root morphological and physiological responses to phosphorus (P) deficiency and auxin treatments, but the interactive effects of P and auxin in regulating root morphological and physiological traits are not fully understood. This study aimed to assess white lupin root traits as influenced by P (0 or 250 μmol L(-1)) and auxin (10(-8) mol L(-1) NAA) in nutrient solution. Both P deficiency and auxin treatments significantly altered root morphological traits, as evidenced by reduced taproot length, increased number and density of first-order lateral roots, and enhanced cluster-root formation. Changes in root physiological traits were also observed, i.e., increased proton, citrate, and acid phosphatase exudation. Exogenous auxin enhanced root responses and sensitivity to P deficiency. A significant interplay exists between P and auxin in the regulation of root morphological and physiological traits. Principal component analysis showed that P availability explained 64.8% and auxin addition 21.3% of the total variation in root trait parameters, indicating that P availability is much more important than auxin in modifying root responses of white lupin. This suggests that white lupin can coordinate root morphological and physiological responses to enhance acquisition of P resources, with an optimal trade-off between root morphological and physiological traits regulated by external stimuli such as P availability and auxin.
Science China Life S... arrow_drop_down Science China Life SciencesArticle . 2013 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11427-013-4461-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 19 citations 19 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Science China Life S... arrow_drop_down Science China Life SciencesArticle . 2013 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11427-013-4461-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2016 United KingdomPublisher:American Association for the Advancement of Science (AAAS) Authors: Laura T. Johnson; Tiequan Zhang;Michael N. Weintraub;
Michael N. Weintraub
Michael N. Weintraub in OpenAIREHelen P. Jarvie;
+12 AuthorsHelen P. Jarvie
Helen P. Jarvie in OpenAIRELaura T. Johnson; Tiequan Zhang;Michael N. Weintraub;
Michael N. Weintraub
Michael N. Weintraub in OpenAIREHelen P. Jarvie;
Michael K. Miyittah; Paul J. A. Withers; Andrew N. Sharpley;Helen P. Jarvie
Helen P. Jarvie in OpenAIREPhilip M. Haygarth;
Philip M. Haygarth
Philip M. Haygarth in OpenAIREBonnie L. Keeler;
Richard W. McDowell; Richard W. McDowell; Douglas R. Smith;Bonnie L. Keeler
Bonnie L. Keeler in OpenAIREJ. Shen;
Graham K. MacDonald;
Donnacha G. Doody;Graham K. MacDonald
Graham K. MacDonald in OpenAIREStephen M. Powers;
Stephen M. Powers
Stephen M. Powers in OpenAIREAbstract The essential role of phosphorus (P) for agriculture and its impact on water quality has received decades of research attention. However, the benefits of sustainable P use and management for society due to its downstream impacts on multiple ecosystem services are rarely acknowledged. We propose a conceptual framework—the “phosphorus‐ecosystem services cascade” ()—to integrate the key ecosystem processes and functions that moderate the relationship between P released to the environment from human actions and ecosystem services at distinct spatial and temporal scales. Indirect pathways in the cascade via soil and aquatic processes link anthropogenic P to biodiversity and multiple services, including recreation, drinking water provision, and fisheries. As anthropogenic P cascades through catchments, it often shifts from a subsidy to a stressor of ecosystem services. Phosphorus stewardship can have emergent ecosystem service co‐benefits due to synergies with other societal or management goals (e.g., recycling of livestock manures and organic wastes could impact soil carbon storage). Applying the framework, we identify key research priorities to align P stewardship with the management of multiple ecosystem services, such as incorporating additional services into agri‐environmental P indices, assessing how widespread recycling of organic P sources could differentially impact agricultural yields and water quality, and accounting for shifting baselines in P stewardship due to climate change. Ultimately, P impacts depend on site‐specific agricultural and biogeophysical contexts, so greater precision in targeting stewardship strategies to specific locations would help to optimize for ecosystem services and to more effectively internalize the downstream costs of farm nutrient management.
NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Ecosystem Health and SustainabilityArticle . 2016 . Peer-reviewedLicense: Wiley TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ehs2.1251&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 3visibility views 3 download downloads 5 Powered bymore_vert NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Ecosystem Health and SustainabilityArticle . 2016 . Peer-reviewedLicense: Wiley TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ehs2.1251&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2016 United KingdomPublisher:American Association for the Advancement of Science (AAAS) Authors: Laura T. Johnson; Tiequan Zhang;Michael N. Weintraub;
Michael N. Weintraub
Michael N. Weintraub in OpenAIREHelen P. Jarvie;
+12 AuthorsHelen P. Jarvie
Helen P. Jarvie in OpenAIRELaura T. Johnson; Tiequan Zhang;Michael N. Weintraub;
Michael N. Weintraub
Michael N. Weintraub in OpenAIREHelen P. Jarvie;
Michael K. Miyittah; Paul J. A. Withers; Andrew N. Sharpley;Helen P. Jarvie
Helen P. Jarvie in OpenAIREPhilip M. Haygarth;
Philip M. Haygarth
Philip M. Haygarth in OpenAIREBonnie L. Keeler;
Richard W. McDowell; Richard W. McDowell; Douglas R. Smith;Bonnie L. Keeler
Bonnie L. Keeler in OpenAIREJ. Shen;
Graham K. MacDonald;
Donnacha G. Doody;Graham K. MacDonald
Graham K. MacDonald in OpenAIREStephen M. Powers;
Stephen M. Powers
Stephen M. Powers in OpenAIREAbstract The essential role of phosphorus (P) for agriculture and its impact on water quality has received decades of research attention. However, the benefits of sustainable P use and management for society due to its downstream impacts on multiple ecosystem services are rarely acknowledged. We propose a conceptual framework—the “phosphorus‐ecosystem services cascade” ()—to integrate the key ecosystem processes and functions that moderate the relationship between P released to the environment from human actions and ecosystem services at distinct spatial and temporal scales. Indirect pathways in the cascade via soil and aquatic processes link anthropogenic P to biodiversity and multiple services, including recreation, drinking water provision, and fisheries. As anthropogenic P cascades through catchments, it often shifts from a subsidy to a stressor of ecosystem services. Phosphorus stewardship can have emergent ecosystem service co‐benefits due to synergies with other societal or management goals (e.g., recycling of livestock manures and organic wastes could impact soil carbon storage). Applying the framework, we identify key research priorities to align P stewardship with the management of multiple ecosystem services, such as incorporating additional services into agri‐environmental P indices, assessing how widespread recycling of organic P sources could differentially impact agricultural yields and water quality, and accounting for shifting baselines in P stewardship due to climate change. Ultimately, P impacts depend on site‐specific agricultural and biogeophysical contexts, so greater precision in targeting stewardship strategies to specific locations would help to optimize for ecosystem services and to more effectively internalize the downstream costs of farm nutrient management.
NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Ecosystem Health and SustainabilityArticle . 2016 . Peer-reviewedLicense: Wiley TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ehs2.1251&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 3visibility views 3 download downloads 5 Powered bymore_vert NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Ecosystem Health and SustainabilityArticle . 2016 . Peer-reviewedLicense: Wiley TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ehs2.1251&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Hamish E. Brown; Weina Zhang; Junling Zhang; Enli Wang;Jianbo Shen;
Haigang Li;Jianbo Shen
Jianbo Shen in OpenAIREMaize growth, organ development, and yield formation are highly controlled by the manner in which the plant captures, partition, and remobilizes biomass and phosphorus (P). Better understanding of biomass and P accumulation, partition, and remobilization processes will improve modeling of crop resource use. However, there is still a lack of detailed data to parameterize the modeling of these processes, particularly for modern maize cultivars. A two-year (2016 and 2017) field experiment with three P fertilization treatments (0 (P0), 75 (P75), and 300 (P300) kg P2O5 ha−1) was conducted on a Fluvo-aquic soil (Quzhou, Hebei province, China) to collect data and quantify key processes for a representative modern maize cultivar (Zhengdan 958) widely grown in China. The proportions of biomass and P partitioned into various maize organs were unaffected by P application rate. Zhengdan 958 showed a much lower leaf-senescence rate than older cultivars, resulting in post-silking leaf photosynthesis being sufficient to meet grain biomass demand. In contrast, 50%–85% of leaf P and 15%–50% of stem P accumulated pre-silking were remobilized into grain, in spite of the large proportion of post-silking P uptake. Our results are consistent with the theory that plants use resources according to the priority order of re-allocation from senescence followed by assimilation and uptake, with the re-translocation of reserves last. The results also enabled us to estimate the threshold P concentrations of Zhengdan 958 for modeling crop P demand. The critical leaf P concentration for individual leaves was 0.25%–0.30%, with a corresponding specific leaf P (SLP) of 75–100 mg P m−2. The structural P concentration for leaf was 0.01%, corresponding to an SLP of 3.8 mg P m−2. The maximum P concentrations of leaves and stems were 0.33% and 0.29%. The residual P concentration for stems was 0.006%.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cj.2021.02.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cj.2021.02.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Hamish E. Brown; Weina Zhang; Junling Zhang; Enli Wang;Jianbo Shen;
Haigang Li;Jianbo Shen
Jianbo Shen in OpenAIREMaize growth, organ development, and yield formation are highly controlled by the manner in which the plant captures, partition, and remobilizes biomass and phosphorus (P). Better understanding of biomass and P accumulation, partition, and remobilization processes will improve modeling of crop resource use. However, there is still a lack of detailed data to parameterize the modeling of these processes, particularly for modern maize cultivars. A two-year (2016 and 2017) field experiment with three P fertilization treatments (0 (P0), 75 (P75), and 300 (P300) kg P2O5 ha−1) was conducted on a Fluvo-aquic soil (Quzhou, Hebei province, China) to collect data and quantify key processes for a representative modern maize cultivar (Zhengdan 958) widely grown in China. The proportions of biomass and P partitioned into various maize organs were unaffected by P application rate. Zhengdan 958 showed a much lower leaf-senescence rate than older cultivars, resulting in post-silking leaf photosynthesis being sufficient to meet grain biomass demand. In contrast, 50%–85% of leaf P and 15%–50% of stem P accumulated pre-silking were remobilized into grain, in spite of the large proportion of post-silking P uptake. Our results are consistent with the theory that plants use resources according to the priority order of re-allocation from senescence followed by assimilation and uptake, with the re-translocation of reserves last. The results also enabled us to estimate the threshold P concentrations of Zhengdan 958 for modeling crop P demand. The critical leaf P concentration for individual leaves was 0.25%–0.30%, with a corresponding specific leaf P (SLP) of 75–100 mg P m−2. The structural P concentration for leaf was 0.01%, corresponding to an SLP of 3.8 mg P m−2. The maximum P concentrations of leaves and stems were 0.33% and 0.29%. The residual P concentration for stems was 0.006%.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cj.2021.02.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cj.2021.02.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu