- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
SDG [Beta]
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Azza A. Ghazi; Sahar El-Nahrawy; Hassan El-Ramady; Wanting Ling;doi: 10.3390/su14031784
Selenium and its derivatives have been found capable of excellent biological responses. However, the element in its bulk form has low bioavailability and increased toxicity, meaning the production of effective forms with sustainable methods has become urgent. Several microorganisms, including fungi, bacteria and yeast, as well as higher plants, are capable of biosynthesizing nanoparticles such as nano-selenium (nano-Se), which has wide applications in medicine, agriculture and industry. Thus, the biosynthesis of nano-Se using some bacterial species was the main target of this study. The production of nano-Se and the monitoring of its impact on the wheat germination of seeds under salt stress (i.e., 50, 100, and 150 mM NaCl) was also evaluated in the current study. The ameliorative role of nano-Se doses (i.e., 50, 75, and 100 mg L−1) in the germination of wheat seeds under salt stress was also investigated. Based on sodium selenite tolerance and reducing selenite to elemental Se-NPs, the most effective isolate (TAH) was selected for identification using the 16S rRNA gene sequence, which belonged to Bacillus cereus TAH. The final germination percent, mean germination time, vigor index and germination rate index were improved by 25, 25, 39.4 and 11%, respectively, under 15 mM sodium chloride concentration when 100 mg L−1 nano-selenium was used. On the other hand, the results obtained from a gnotobiotic sand system reveal that with treatment with 100 mg L−1 nano-selenium under high Ec values of 14 ds m−1, the vegetative growth parameters of shoot length, root length, fresh weight and dry weight were improved by 22.8, 24.9, 19.2 and 20%, respectively, over untreated controls. The data obtained from this study reveal that the use of nano-selenium produced by Bacillus cereus offers improved wheat seed germination under a salt-affected environment.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/3/1784/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14031784&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/3/1784/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14031784&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Azza A. Ghazi; Sahar El-Nahrawy; Hassan El-Ramady; Wanting Ling;doi: 10.3390/su14031784
Selenium and its derivatives have been found capable of excellent biological responses. However, the element in its bulk form has low bioavailability and increased toxicity, meaning the production of effective forms with sustainable methods has become urgent. Several microorganisms, including fungi, bacteria and yeast, as well as higher plants, are capable of biosynthesizing nanoparticles such as nano-selenium (nano-Se), which has wide applications in medicine, agriculture and industry. Thus, the biosynthesis of nano-Se using some bacterial species was the main target of this study. The production of nano-Se and the monitoring of its impact on the wheat germination of seeds under salt stress (i.e., 50, 100, and 150 mM NaCl) was also evaluated in the current study. The ameliorative role of nano-Se doses (i.e., 50, 75, and 100 mg L−1) in the germination of wheat seeds under salt stress was also investigated. Based on sodium selenite tolerance and reducing selenite to elemental Se-NPs, the most effective isolate (TAH) was selected for identification using the 16S rRNA gene sequence, which belonged to Bacillus cereus TAH. The final germination percent, mean germination time, vigor index and germination rate index were improved by 25, 25, 39.4 and 11%, respectively, under 15 mM sodium chloride concentration when 100 mg L−1 nano-selenium was used. On the other hand, the results obtained from a gnotobiotic sand system reveal that with treatment with 100 mg L−1 nano-selenium under high Ec values of 14 ds m−1, the vegetative growth parameters of shoot length, root length, fresh weight and dry weight were improved by 22.8, 24.9, 19.2 and 20%, respectively, over untreated controls. The data obtained from this study reveal that the use of nano-selenium produced by Bacillus cereus offers improved wheat seed germination under a salt-affected environment.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/3/1784/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14031784&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/3/1784/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14031784&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Azza A. Ghazi; Sahar El-Nahrawy; Hassan El-Ramady; Wanting Ling;doi: 10.3390/su14031784
Selenium and its derivatives have been found capable of excellent biological responses. However, the element in its bulk form has low bioavailability and increased toxicity, meaning the production of effective forms with sustainable methods has become urgent. Several microorganisms, including fungi, bacteria and yeast, as well as higher plants, are capable of biosynthesizing nanoparticles such as nano-selenium (nano-Se), which has wide applications in medicine, agriculture and industry. Thus, the biosynthesis of nano-Se using some bacterial species was the main target of this study. The production of nano-Se and the monitoring of its impact on the wheat germination of seeds under salt stress (i.e., 50, 100, and 150 mM NaCl) was also evaluated in the current study. The ameliorative role of nano-Se doses (i.e., 50, 75, and 100 mg L−1) in the germination of wheat seeds under salt stress was also investigated. Based on sodium selenite tolerance and reducing selenite to elemental Se-NPs, the most effective isolate (TAH) was selected for identification using the 16S rRNA gene sequence, which belonged to Bacillus cereus TAH. The final germination percent, mean germination time, vigor index and germination rate index were improved by 25, 25, 39.4 and 11%, respectively, under 15 mM sodium chloride concentration when 100 mg L−1 nano-selenium was used. On the other hand, the results obtained from a gnotobiotic sand system reveal that with treatment with 100 mg L−1 nano-selenium under high Ec values of 14 ds m−1, the vegetative growth parameters of shoot length, root length, fresh weight and dry weight were improved by 22.8, 24.9, 19.2 and 20%, respectively, over untreated controls. The data obtained from this study reveal that the use of nano-selenium produced by Bacillus cereus offers improved wheat seed germination under a salt-affected environment.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/3/1784/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14031784&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/3/1784/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14031784&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Azza A. Ghazi; Sahar El-Nahrawy; Hassan El-Ramady; Wanting Ling;doi: 10.3390/su14031784
Selenium and its derivatives have been found capable of excellent biological responses. However, the element in its bulk form has low bioavailability and increased toxicity, meaning the production of effective forms with sustainable methods has become urgent. Several microorganisms, including fungi, bacteria and yeast, as well as higher plants, are capable of biosynthesizing nanoparticles such as nano-selenium (nano-Se), which has wide applications in medicine, agriculture and industry. Thus, the biosynthesis of nano-Se using some bacterial species was the main target of this study. The production of nano-Se and the monitoring of its impact on the wheat germination of seeds under salt stress (i.e., 50, 100, and 150 mM NaCl) was also evaluated in the current study. The ameliorative role of nano-Se doses (i.e., 50, 75, and 100 mg L−1) in the germination of wheat seeds under salt stress was also investigated. Based on sodium selenite tolerance and reducing selenite to elemental Se-NPs, the most effective isolate (TAH) was selected for identification using the 16S rRNA gene sequence, which belonged to Bacillus cereus TAH. The final germination percent, mean germination time, vigor index and germination rate index were improved by 25, 25, 39.4 and 11%, respectively, under 15 mM sodium chloride concentration when 100 mg L−1 nano-selenium was used. On the other hand, the results obtained from a gnotobiotic sand system reveal that with treatment with 100 mg L−1 nano-selenium under high Ec values of 14 ds m−1, the vegetative growth parameters of shoot length, root length, fresh weight and dry weight were improved by 22.8, 24.9, 19.2 and 20%, respectively, over untreated controls. The data obtained from this study reveal that the use of nano-selenium produced by Bacillus cereus offers improved wheat seed germination under a salt-affected environment.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/3/1784/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14031784&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/3/1784/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14031784&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu