- home
- Advanced Search
- Energy Research
- 2. Zero hunger
- Energy Research
- 2. Zero hunger
description Publicationkeyboard_double_arrow_right Article 2023 United KingdomPublisher:Wiley Funded by:AKA | Global taxonomic, functio...AKA| Global taxonomic, functional and phylogenetic diversity of stream macroinvertebrate communities: unravelling spatial trends, ecological determinants and anthropogenic threats (GloBioTrends)Dieison A. Moi; Margenny Barrios; Giancarlo Tesitore; Maite Burwood; Gustavo Q. Romero; Roger P. Mormul; Pavel Kratina; Leandro Juen; Thaísa S. Michelan; Luciano F. A. Montag; Gabriel M. Cruz; Jorge García‐Girón; Jani Heino; Robert M. Hughes; Bruno R. S. Figueiredo; Franco Teixeira de Mello;pmid: 36994670
Abstract Human land‐use change is a major threat to natural ecosystems worldwide. Nonetheless, the effects of human land‐uses on the structure of plant and animal assemblages and their functional characteristics need to be better understood. Furthermore, the pathways by which human land uses affect ecosystem functions, such as biomass production, still need to be clarified. We compiled a unique dataset of fish, arthropod and macrophyte assemblages from 61 stream ecosystems in two Neotropical biomes: Amazonian rainforest and Uruguayan grasslands. We then tested how the cover of agriculture, pasture, urbanization and afforestation affected the taxonomic richness and functional diversity of those three species assemblages, and the consequences of these effects for animal biomass production. Single trait categories and functional diversity were evaluated, combining recruitment and life‐history, resource and habitat‐use, and body size. The effects of intensive human land‐uses on taxonomic and functional diversities were as strong as other drivers known to affect biodiversity, such as local climate and environmental factors. In both biomes, the taxonomic richness and functional diversity of animal and macrophyte assemblages decreased with increasing cover of agriculture, pasture, and urbanization. Human land‐uses were associated with functional homogenization of both animal and macrophyte assemblages. Human land‐uses reduced animal biomass through direct and indirect pathways mediated by declines in taxonomic and functional diversities. Our findings indicate that converting natural ecosystems to supply human demands results in species loss and trait homogenization across multiple biotic assemblages, ultimately reducing animal biomass production in streams.
Journal of Animal Ec... arrow_drop_down Journal of Animal EcologyArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefQueen Mary University of London: Queen Mary Research Online (QMRO)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2656.13924&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Animal Ec... arrow_drop_down Journal of Animal EcologyArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefQueen Mary University of London: Queen Mary Research Online (QMRO)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2656.13924&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2023 United KingdomPublisher:Wiley Funded by:AKA | Global taxonomic, functio...AKA| Global taxonomic, functional and phylogenetic diversity of stream macroinvertebrate communities: unravelling spatial trends, ecological determinants and anthropogenic threats (GloBioTrends)Dieison A. Moi; Margenny Barrios; Giancarlo Tesitore; Maite Burwood; Gustavo Q. Romero; Roger P. Mormul; Pavel Kratina; Leandro Juen; Thaísa S. Michelan; Luciano F. A. Montag; Gabriel M. Cruz; Jorge García‐Girón; Jani Heino; Robert M. Hughes; Bruno R. S. Figueiredo; Franco Teixeira de Mello;pmid: 36994670
Abstract Human land‐use change is a major threat to natural ecosystems worldwide. Nonetheless, the effects of human land‐uses on the structure of plant and animal assemblages and their functional characteristics need to be better understood. Furthermore, the pathways by which human land uses affect ecosystem functions, such as biomass production, still need to be clarified. We compiled a unique dataset of fish, arthropod and macrophyte assemblages from 61 stream ecosystems in two Neotropical biomes: Amazonian rainforest and Uruguayan grasslands. We then tested how the cover of agriculture, pasture, urbanization and afforestation affected the taxonomic richness and functional diversity of those three species assemblages, and the consequences of these effects for animal biomass production. Single trait categories and functional diversity were evaluated, combining recruitment and life‐history, resource and habitat‐use, and body size. The effects of intensive human land‐uses on taxonomic and functional diversities were as strong as other drivers known to affect biodiversity, such as local climate and environmental factors. In both biomes, the taxonomic richness and functional diversity of animal and macrophyte assemblages decreased with increasing cover of agriculture, pasture, and urbanization. Human land‐uses were associated with functional homogenization of both animal and macrophyte assemblages. Human land‐uses reduced animal biomass through direct and indirect pathways mediated by declines in taxonomic and functional diversities. Our findings indicate that converting natural ecosystems to supply human demands results in species loss and trait homogenization across multiple biotic assemblages, ultimately reducing animal biomass production in streams.
Journal of Animal Ec... arrow_drop_down Journal of Animal EcologyArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefQueen Mary University of London: Queen Mary Research Online (QMRO)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2656.13924&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Animal Ec... arrow_drop_down Journal of Animal EcologyArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefQueen Mary University of London: Queen Mary Research Online (QMRO)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2656.13924&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu