- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
SDG [Beta]
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Janusz Kotowicz;Mateusz Brzęczek;
Aleksandra Walewska;Mateusz Brzęczek
Mateusz Brzęczek in OpenAIREKamila Szykowska;
Kamila Szykowska
Kamila Szykowska in OpenAIREdoi: 10.3390/en15041480
This article presents the concept of renewable methanol production in the gas turbine cycle. As part of the work, an analysis was performed, including the impact of changing the parameters in the methanol reactor on the obtained values of power, yield and efficiency of the reactor, and chemical conversion. The aim of this research was to investigate the possibility of integrating the system for the production of renewable methanol and additional production of electricity in the system. The efficiency of the chemical conversion process and the efficiency of the methanol reactor increases with increasing pressure and decreasing temperature. The highest efficiency values, respectively η = 0.4388 and ηR = 0.3649, are obtained for parameters in the reactor equal to 160 °C and 14 MPa. The amount of heat exchanged in all exchangers reached the highest value for 14 MPa and 160 °C and amounted to Q˙ = 2.28 kW. Additionally, it has been calculated that if an additional exchanger is used before the expander (heating the medium to 560 °C), the expander’s power will cover the compressor’s electricity demand.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/4/1480/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15041480&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/4/1480/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15041480&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Janusz Kotowicz;Mateusz Brzęczek;
Aleksandra Walewska;Mateusz Brzęczek
Mateusz Brzęczek in OpenAIREKamila Szykowska;
Kamila Szykowska
Kamila Szykowska in OpenAIREdoi: 10.3390/en15041480
This article presents the concept of renewable methanol production in the gas turbine cycle. As part of the work, an analysis was performed, including the impact of changing the parameters in the methanol reactor on the obtained values of power, yield and efficiency of the reactor, and chemical conversion. The aim of this research was to investigate the possibility of integrating the system for the production of renewable methanol and additional production of electricity in the system. The efficiency of the chemical conversion process and the efficiency of the methanol reactor increases with increasing pressure and decreasing temperature. The highest efficiency values, respectively η = 0.4388 and ηR = 0.3649, are obtained for parameters in the reactor equal to 160 °C and 14 MPa. The amount of heat exchanged in all exchangers reached the highest value for 14 MPa and 160 °C and amounted to Q˙ = 2.28 kW. Additionally, it has been calculated that if an additional exchanger is used before the expander (heating the medium to 560 °C), the expander’s power will cover the compressor’s electricity demand.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/4/1480/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15041480&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/4/1480/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15041480&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu