- home
- Advanced Search
- Energy Research
- 11. Sustainability
- Energy Research
- 11. Sustainability
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 Brazil, United Kingdom, Germany, United Kingdom, Netherlands, BrazilPublisher:American Association for the Advancement of Science (AAAS) Funded by:EC | ROBIN, NSF | CAREER: Ecosystem process..., NSF | COLLABORATIVE RESEARCH: M... +7 projectsEC| ROBIN ,NSF| CAREER: Ecosystem processes in regenerating tropical dry forests: linking plant functional traits, stands, and landscapes ,NSF| COLLABORATIVE RESEARCH: MODELING SUCCESSIONAL VEGETATION DYNAMICS IN WET TROPICAL FORESTS AT MULTIPLE SCALES: INTEGRATING NEIGHBORHOOD EFFECTS, FUNCTIONAL TRAITS, AND PHYLOGENY ,NSF| Collaborative Research/LTREB Successional pathways and rates of change in tropical forests of Brazil, Costa Rica, and Mexico ,NSF| Collaborative Research/LTREB Renewal: Successional Pathways and Rates of Change in Tropical Forests of Brazil, Costa Rica and Mexico ,NSF| Controls on the Storage and Loss of Soil Organic Carbon with Reforestation of Abandoned Pastures ,NSF| Collaborative Research/LTREB Successional pathways and rates of change in tropical forests of Brazil, Costa Rica, and Mexico ,NSF| CNH-RCN: Tropical Reforestation Network: Building a Socioecological Understanding of Tropical Reforestation ,NSF| Collaborative Research/LTREB Renewal: Successional Pathways and Rates of Change in Tropical Forests of Brazil, Costa Rica and Mexico ,NSF| CAREER: Land Use and Environmental Controls on Soil Carbon in Human-Dominated Tropical LandscapesAuthors: Robin L. Chazdon; Robin L. Chazdon; Yule Roberta Ferreira Nunes; Danaë M. A. Rozendaal; +70 AuthorsRobin L. Chazdon; Robin L. Chazdon; Yule Roberta Ferreira Nunes; Danaë M. A. Rozendaal; Danaë M. A. Rozendaal; Danaë M. A. Rozendaal; Hans van der Wal; Hans van der Wal; Paulo Eduardo dos Santos Massoca; Madelon Lohbeck; Madelon Lohbeck; Hans F. M. Vester; Eben N. Broadbent; Jorge A. Meave; Jarcilene S. Almeida-Cortez; Ima Célia Guimarães Vieira; Jorge Rodríguez-Velázquez; José Luis Hernández-Stefanoni; Arturo Sanchez-Azofeifa; Ben de Jong; María Uriarte; Jefferson S. Hall; Frans Bongers; Isabel Eunice Romero-Pérez; María C. Fandiño; Angelica M. Almeyda Zambrano; Robert Muscarella; Robert Muscarella; Ricardo Gomes César; Marc K. Steininger; T. Mitchell Aide; Pedro H. S. Brancalion; Justin M. Becknell; Lourens Poorter; Susana Ochoa-Gaona; G. Bruce Williamson; G. Bruce Williamson; Eduardo A. Pérez-García; Rodrigo Muñoz; André Braga Junqueira; André Braga Junqueira; Susan G. Letcher; Vanessa K. Boukili; George A. L. Cabral; Edith Orihuela-Belmonte; Patricia Balvanera; Marielos Peña-Claros; Francisco Mora; Miguel Martínez-Ramos; Sandra M. Durán; Juan Saldarriaga; Mário M. Espírito-Santo; Michiel van Breugel; Michiel van Breugel; Michiel van Breugel; Nathan G. Swenson; Saara J. DeWalt; Jorge Ruiz; Jorge Ruiz; Maria das Dores Magalhães Veloso; Dylan Craven; Dylan Craven; Deborah K. Kennard; Rita C. G. Mesquita; Julie S. Denslow; Jennifer S. Powers; Naomi B. Schwartz; Catarina C. Jakovac; Catarina C. Jakovac; Daisy H. Dent; Daisy H. Dent; Daniel Piotto; Tony Vizcarra Bentos; Juan Manuel Dupuy;Models reveal the high carbon mitigation potential of tropical forest regeneration.
Repositório do INPA arrow_drop_down Repositório do INPAArticle . 2016License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2016License: CC BY NCFull-Text: http://hdl.handle.net/1893/24020Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2020Wageningen Staff PublicationsArticle . 2016License: CC BY NCData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.1501639&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 500 citations 500 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Repositório do INPA arrow_drop_down Repositório do INPAArticle . 2016License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2016License: CC BY NCFull-Text: http://hdl.handle.net/1893/24020Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2020Wageningen Staff PublicationsArticle . 2016License: CC BY NCData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.1501639&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 NetherlandsPublisher:MDPI AG Authors: Ardjan J. Vermue; Felix J.J.A. Bianchi; Leonardo van den Berg; Leonardo van den Berg; +5 AuthorsArdjan J. Vermue; Felix J.J.A. Bianchi; Leonardo van den Berg; Leonardo van den Berg; Heitor Mancini Teixeira; Heitor Mancini Teixeira; Pablo Tittonell; Marielos Peña-Claros; Irene Maria Cardoso;Agroecology is increasingly promoted by scientists, non-governmental organisations (NGO’s), international organisations and peasant movements as an approach to foster the transition to sustainable and equitable food systems. The challenges to agroecological transitions are not the same for all farmers, as they can face different social and bio-physical conditions. We developed a farm typology combining participatory and quantitative methodologies to assess and categorise farm diversity and its implications for developing strategies to promote agroecological transitions. The participatory typology was developed during workshops to acquire insights on local farmers’ perceptions and knowledge, and to generate hypotheses on family farm diversity. The participatory-based hypotheses were tested in the quantitative farm characterisation, which provided information on household characteristics, production strategies, land use, participation in public policies and extension services. Farms were located in Zona da Mata, Minas Gerais, Brazil, which harbour a wide diversity of farmers and where different actors have been engaged in agroecological transitions for the past 30 years. Our main findings were: (i) In the face of agroecological transitions, farmers differ in their management strategies, practices and principles; (ii) farmers identified as agroecological typically had stronger engagements in a network composed of farmers’ organisations, universities and NGO’s; (iii) agroecological farms showed great potential to provide a wide range of ecosystem services as they featured a higher crop diversity and a higher number of crops for self-consumption; (iv) to promote agroecology, it is crucial to recognise peasant knowledge, to change the dominant discourse on agriculture through social movement dynamics, and to generate support from public policies and funds; and (v) participatory and quantitative methodologies can be combined for more precise and relevant assessments of agroecological transitions.
Sustainability arrow_drop_down SustainabilityOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2071-1050/10/12/4337/pdfData sources: Multidisciplinary Digital Publishing InstituteWageningen Staff PublicationsArticle . 2018License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10124337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 72 citations 72 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2071-1050/10/12/4337/pdfData sources: Multidisciplinary Digital Publishing InstituteWageningen Staff PublicationsArticle . 2018License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10124337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2017 AustraliaPublisher:Springer Science and Business Media LLC Funded by:EC | GEOCARBON, EC | T-FORCES, UKRI | Assessing the Impacts of ... +4 projectsEC| GEOCARBON ,EC| T-FORCES ,UKRI| Assessing the Impacts of the Recent Amazonian Drought ,UKRI| Tropical Biomes in Transition ,UKRI| Niche evolution of South American trees and its consequences ,UKRI| Assessing the impacts of the 2010 drought on Amazon zone of transition ,UKRI| Amazon Integrated Carbon Analysis / AMAZONICAPhillips, Oliver L.; Brienen, Roel J.W.; Gloor, E.; Baker, T. R.; Lloyd, Jon; Lopez-Gonzalez, G.; Monteagudo-Mendoza, A.; Malhi, Y.; Lewis, S. L.; Vásquez Martinez, R.; Alexiades, M.; Álvarez Dávila, E.; Alvarez-Loayza, P.; Andrade, A.; Aragão, L. E.O.C.; Araujo-Murakami, A.; Arets, E. J.M.M.; Arroyo, L.; Aymard, G. A.; Bánki, O. S.; Baraloto, C.; Barroso, J.; Bonal, D.; Boot, R. G.A.; Camargo, J. L.C.; Castilho, C. V.; Chama, V.; Chao, K. J.; Chave, J.; Comiskey, J. A.; Valverde, F. Cornejo; da Costa, L.; de Oliveira, E. A.; Di Fiore, A.; Erwin, T. L.; Fauset, S.; Forsthofer, M.; Galbraith, D. R.; Grahame, E. S.; Groot, N.; Hérault, B.; Higuchi, N.; Honorio Coronado, E. N.; Keeling, H.; Killeen, T. J.; Laurance, William F.; Laurance, Susan; Licona, J.; Magnusson, W. E.; Marimon, B. S.; Marimon-Junior, B. H.; Mendoza, C.; Neill, D. A.; Nogueira, E. M.; Núñez, P.; Pallqui Camacho, N. C.; Parada, A.; Pardo-Molina, G.; Peacock, J.; Peña-Claros, M.; Pickavance, G. C.; Pitman, N. C.A.; Poorter, L.; Prieto, A.; Quesada, C. A.; Ramírez, F.; Ramírez-Angulo, H.; Restrepo, Z.; Roopsind, A.; Rudas, A.; Salomão, R. P.; Schwarz, M.; Silva, N.; Silva-Espejo, J. E.; Silveira, M.; Stropp, J.; Talbot, J.; ter Steege, H.; Teran-Aguilar, J.; Terborgh, J.; Thomas-Caesar, R.; Toledo, M.; Torello-Raventos, M.; Umetsu, K.; van der Heijden, G. M.F.; van der Hout, P.; Guimarães Vieira, I. C.; Vieira, S. A.; Vilanova, E.; Vos, V. A.; Zagt, R. J.; Alarcon, A.; Amaral, I.; Camargo, P. P.Barbosa; Brown, I. F.; Blanc, L.; Burban, B.; Cardozo, N.; Engel, J.; de Freitas, M. A.; RAINFOR Collaboration;Several independent lines of evidence suggest that Amazon forests have provided a significant carbon sink service, and also that the Amazon carbon sink in intact, mature forests may now be threatened as a result of different processes. There has however been no work done to quantify non-land-use-change forest carbon fluxes on a national basis within Amazonia, or to place these national fluxes and their possible changes in the context of the major anthropogenic carbon fluxes in the region. Here we present a first attempt to interpret results from ground-based monitoring of mature forest carbon fluxes in a biogeographically, politically, and temporally differentiated way. Specifically, using results from a large long-term network of forest plots, we estimate the Amazon biomass carbon balance over the last three decades for the different regions and nine nations of Amazonia, and evaluate the magnitude and trajectory of these differentiated balances in relation to major national anthropogenic carbon emissions.The sink of carbon into mature forests has been remarkably geographically ubiquitous across Amazonia, being substantial and persistent in each of the five biogeographic regions within Amazonia. Between 1980 and 2010, it has more than mitigated the fossil fuel emissions of every single national economy, except that of Venezuela. For most nations (Bolivia, Colombia, Ecuador, French Guiana, Guyana, Peru, Suriname) the sink has probably additionally mitigated all anthropogenic carbon emissions due to Amazon deforestation and other land use change. While the sink has weakened in some regions since 2000, our analysis suggests that Amazon nations which are able to conserve large areas of natural and semi-natural landscape still contribute globally-significant carbon sequestration.Mature forests across all of Amazonia have contributed significantly to mitigating climate change for decades. Yet Amazon nations have not directly benefited from providing this global scale ecosystem service. We suggest that better monitoring and reporting of the carbon fluxes within mature forests, and understanding the drivers of changes in their balance, must become national, as well as international, priorities.
James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2017Full-Text: https://doi.org/10.1186/s13021-016-0069-2Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13021-016-0069-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 123 citations 123 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 2visibility views 2 download downloads 6 Powered bymore_vert James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2017Full-Text: https://doi.org/10.1186/s13021-016-0069-2Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13021-016-0069-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 Brazil, United Kingdom, Germany, United Kingdom, Netherlands, BrazilPublisher:American Association for the Advancement of Science (AAAS) Funded by:EC | ROBIN, NSF | CAREER: Ecosystem process..., NSF | COLLABORATIVE RESEARCH: M... +7 projectsEC| ROBIN ,NSF| CAREER: Ecosystem processes in regenerating tropical dry forests: linking plant functional traits, stands, and landscapes ,NSF| COLLABORATIVE RESEARCH: MODELING SUCCESSIONAL VEGETATION DYNAMICS IN WET TROPICAL FORESTS AT MULTIPLE SCALES: INTEGRATING NEIGHBORHOOD EFFECTS, FUNCTIONAL TRAITS, AND PHYLOGENY ,NSF| Collaborative Research/LTREB Successional pathways and rates of change in tropical forests of Brazil, Costa Rica, and Mexico ,NSF| Collaborative Research/LTREB Renewal: Successional Pathways and Rates of Change in Tropical Forests of Brazil, Costa Rica and Mexico ,NSF| Controls on the Storage and Loss of Soil Organic Carbon with Reforestation of Abandoned Pastures ,NSF| Collaborative Research/LTREB Successional pathways and rates of change in tropical forests of Brazil, Costa Rica, and Mexico ,NSF| CNH-RCN: Tropical Reforestation Network: Building a Socioecological Understanding of Tropical Reforestation ,NSF| Collaborative Research/LTREB Renewal: Successional Pathways and Rates of Change in Tropical Forests of Brazil, Costa Rica and Mexico ,NSF| CAREER: Land Use and Environmental Controls on Soil Carbon in Human-Dominated Tropical LandscapesAuthors: Robin L. Chazdon; Robin L. Chazdon; Yule Roberta Ferreira Nunes; Danaë M. A. Rozendaal; +70 AuthorsRobin L. Chazdon; Robin L. Chazdon; Yule Roberta Ferreira Nunes; Danaë M. A. Rozendaal; Danaë M. A. Rozendaal; Danaë M. A. Rozendaal; Hans van der Wal; Hans van der Wal; Paulo Eduardo dos Santos Massoca; Madelon Lohbeck; Madelon Lohbeck; Hans F. M. Vester; Eben N. Broadbent; Jorge A. Meave; Jarcilene S. Almeida-Cortez; Ima Célia Guimarães Vieira; Jorge Rodríguez-Velázquez; José Luis Hernández-Stefanoni; Arturo Sanchez-Azofeifa; Ben de Jong; María Uriarte; Jefferson S. Hall; Frans Bongers; Isabel Eunice Romero-Pérez; María C. Fandiño; Angelica M. Almeyda Zambrano; Robert Muscarella; Robert Muscarella; Ricardo Gomes César; Marc K. Steininger; T. Mitchell Aide; Pedro H. S. Brancalion; Justin M. Becknell; Lourens Poorter; Susana Ochoa-Gaona; G. Bruce Williamson; G. Bruce Williamson; Eduardo A. Pérez-García; Rodrigo Muñoz; André Braga Junqueira; André Braga Junqueira; Susan G. Letcher; Vanessa K. Boukili; George A. L. Cabral; Edith Orihuela-Belmonte; Patricia Balvanera; Marielos Peña-Claros; Francisco Mora; Miguel Martínez-Ramos; Sandra M. Durán; Juan Saldarriaga; Mário M. Espírito-Santo; Michiel van Breugel; Michiel van Breugel; Michiel van Breugel; Nathan G. Swenson; Saara J. DeWalt; Jorge Ruiz; Jorge Ruiz; Maria das Dores Magalhães Veloso; Dylan Craven; Dylan Craven; Deborah K. Kennard; Rita C. G. Mesquita; Julie S. Denslow; Jennifer S. Powers; Naomi B. Schwartz; Catarina C. Jakovac; Catarina C. Jakovac; Daisy H. Dent; Daisy H. Dent; Daniel Piotto; Tony Vizcarra Bentos; Juan Manuel Dupuy;Models reveal the high carbon mitigation potential of tropical forest regeneration.
Repositório do INPA arrow_drop_down Repositório do INPAArticle . 2016License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2016License: CC BY NCFull-Text: http://hdl.handle.net/1893/24020Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2020Wageningen Staff PublicationsArticle . 2016License: CC BY NCData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.1501639&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 500 citations 500 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Repositório do INPA arrow_drop_down Repositório do INPAArticle . 2016License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2016License: CC BY NCFull-Text: http://hdl.handle.net/1893/24020Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2020Wageningen Staff PublicationsArticle . 2016License: CC BY NCData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.1501639&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 NetherlandsPublisher:MDPI AG Authors: Ardjan J. Vermue; Felix J.J.A. Bianchi; Leonardo van den Berg; Leonardo van den Berg; +5 AuthorsArdjan J. Vermue; Felix J.J.A. Bianchi; Leonardo van den Berg; Leonardo van den Berg; Heitor Mancini Teixeira; Heitor Mancini Teixeira; Pablo Tittonell; Marielos Peña-Claros; Irene Maria Cardoso;Agroecology is increasingly promoted by scientists, non-governmental organisations (NGO’s), international organisations and peasant movements as an approach to foster the transition to sustainable and equitable food systems. The challenges to agroecological transitions are not the same for all farmers, as they can face different social and bio-physical conditions. We developed a farm typology combining participatory and quantitative methodologies to assess and categorise farm diversity and its implications for developing strategies to promote agroecological transitions. The participatory typology was developed during workshops to acquire insights on local farmers’ perceptions and knowledge, and to generate hypotheses on family farm diversity. The participatory-based hypotheses were tested in the quantitative farm characterisation, which provided information on household characteristics, production strategies, land use, participation in public policies and extension services. Farms were located in Zona da Mata, Minas Gerais, Brazil, which harbour a wide diversity of farmers and where different actors have been engaged in agroecological transitions for the past 30 years. Our main findings were: (i) In the face of agroecological transitions, farmers differ in their management strategies, practices and principles; (ii) farmers identified as agroecological typically had stronger engagements in a network composed of farmers’ organisations, universities and NGO’s; (iii) agroecological farms showed great potential to provide a wide range of ecosystem services as they featured a higher crop diversity and a higher number of crops for self-consumption; (iv) to promote agroecology, it is crucial to recognise peasant knowledge, to change the dominant discourse on agriculture through social movement dynamics, and to generate support from public policies and funds; and (v) participatory and quantitative methodologies can be combined for more precise and relevant assessments of agroecological transitions.
Sustainability arrow_drop_down SustainabilityOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2071-1050/10/12/4337/pdfData sources: Multidisciplinary Digital Publishing InstituteWageningen Staff PublicationsArticle . 2018License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10124337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 72 citations 72 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2071-1050/10/12/4337/pdfData sources: Multidisciplinary Digital Publishing InstituteWageningen Staff PublicationsArticle . 2018License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10124337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2017 AustraliaPublisher:Springer Science and Business Media LLC Funded by:EC | GEOCARBON, EC | T-FORCES, UKRI | Assessing the Impacts of ... +4 projectsEC| GEOCARBON ,EC| T-FORCES ,UKRI| Assessing the Impacts of the Recent Amazonian Drought ,UKRI| Tropical Biomes in Transition ,UKRI| Niche evolution of South American trees and its consequences ,UKRI| Assessing the impacts of the 2010 drought on Amazon zone of transition ,UKRI| Amazon Integrated Carbon Analysis / AMAZONICAPhillips, Oliver L.; Brienen, Roel J.W.; Gloor, E.; Baker, T. R.; Lloyd, Jon; Lopez-Gonzalez, G.; Monteagudo-Mendoza, A.; Malhi, Y.; Lewis, S. L.; Vásquez Martinez, R.; Alexiades, M.; Álvarez Dávila, E.; Alvarez-Loayza, P.; Andrade, A.; Aragão, L. E.O.C.; Araujo-Murakami, A.; Arets, E. J.M.M.; Arroyo, L.; Aymard, G. A.; Bánki, O. S.; Baraloto, C.; Barroso, J.; Bonal, D.; Boot, R. G.A.; Camargo, J. L.C.; Castilho, C. V.; Chama, V.; Chao, K. J.; Chave, J.; Comiskey, J. A.; Valverde, F. Cornejo; da Costa, L.; de Oliveira, E. A.; Di Fiore, A.; Erwin, T. L.; Fauset, S.; Forsthofer, M.; Galbraith, D. R.; Grahame, E. S.; Groot, N.; Hérault, B.; Higuchi, N.; Honorio Coronado, E. N.; Keeling, H.; Killeen, T. J.; Laurance, William F.; Laurance, Susan; Licona, J.; Magnusson, W. E.; Marimon, B. S.; Marimon-Junior, B. H.; Mendoza, C.; Neill, D. A.; Nogueira, E. M.; Núñez, P.; Pallqui Camacho, N. C.; Parada, A.; Pardo-Molina, G.; Peacock, J.; Peña-Claros, M.; Pickavance, G. C.; Pitman, N. C.A.; Poorter, L.; Prieto, A.; Quesada, C. A.; Ramírez, F.; Ramírez-Angulo, H.; Restrepo, Z.; Roopsind, A.; Rudas, A.; Salomão, R. P.; Schwarz, M.; Silva, N.; Silva-Espejo, J. E.; Silveira, M.; Stropp, J.; Talbot, J.; ter Steege, H.; Teran-Aguilar, J.; Terborgh, J.; Thomas-Caesar, R.; Toledo, M.; Torello-Raventos, M.; Umetsu, K.; van der Heijden, G. M.F.; van der Hout, P.; Guimarães Vieira, I. C.; Vieira, S. A.; Vilanova, E.; Vos, V. A.; Zagt, R. J.; Alarcon, A.; Amaral, I.; Camargo, P. P.Barbosa; Brown, I. F.; Blanc, L.; Burban, B.; Cardozo, N.; Engel, J.; de Freitas, M. A.; RAINFOR Collaboration;Several independent lines of evidence suggest that Amazon forests have provided a significant carbon sink service, and also that the Amazon carbon sink in intact, mature forests may now be threatened as a result of different processes. There has however been no work done to quantify non-land-use-change forest carbon fluxes on a national basis within Amazonia, or to place these national fluxes and their possible changes in the context of the major anthropogenic carbon fluxes in the region. Here we present a first attempt to interpret results from ground-based monitoring of mature forest carbon fluxes in a biogeographically, politically, and temporally differentiated way. Specifically, using results from a large long-term network of forest plots, we estimate the Amazon biomass carbon balance over the last three decades for the different regions and nine nations of Amazonia, and evaluate the magnitude and trajectory of these differentiated balances in relation to major national anthropogenic carbon emissions.The sink of carbon into mature forests has been remarkably geographically ubiquitous across Amazonia, being substantial and persistent in each of the five biogeographic regions within Amazonia. Between 1980 and 2010, it has more than mitigated the fossil fuel emissions of every single national economy, except that of Venezuela. For most nations (Bolivia, Colombia, Ecuador, French Guiana, Guyana, Peru, Suriname) the sink has probably additionally mitigated all anthropogenic carbon emissions due to Amazon deforestation and other land use change. While the sink has weakened in some regions since 2000, our analysis suggests that Amazon nations which are able to conserve large areas of natural and semi-natural landscape still contribute globally-significant carbon sequestration.Mature forests across all of Amazonia have contributed significantly to mitigating climate change for decades. Yet Amazon nations have not directly benefited from providing this global scale ecosystem service. We suggest that better monitoring and reporting of the carbon fluxes within mature forests, and understanding the drivers of changes in their balance, must become national, as well as international, priorities.
James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2017Full-Text: https://doi.org/10.1186/s13021-016-0069-2Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13021-016-0069-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 123 citations 123 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 2visibility views 2 download downloads 6 Powered bymore_vert James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2017Full-Text: https://doi.org/10.1186/s13021-016-0069-2Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13021-016-0069-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu