- home
- Advanced Search
Filters
Year range
-chevron_right GOSource
Organization
- Energy Research
- Energy Research
apps Other research productkeyboard_double_arrow_right Other ORP type 2013Publisher:PANGAEA - Data Publisher for Earth & Environmental Science Bolton, Clara T; Chang, Liao; Clemens, Steven C; Kodama, Kazuto; Ikehara, Minoru; Medina-Elizalde, Martín; Paterson, Greig A; Roberts, Andrew P; Rohling, Eelco J; Yamamoto, Yuhji; Zhao, Xiang;The Indian Summer Monsoon (ISM) is an inter-hemispheric and highly variable ocean-atmosphere-land interaction that directly affects the densely populated Indian subcontinent. Here, we present new records of palaeoceanographic variability that span the last 500,000 years from the eastern equatorial Indian Ocean, a relatively under-sampled area of ISM influence. We have generated carbon and oxygen stable isotope records from three foraminiferal species from Ocean Drilling Program Site 758 (5°N, 90°E) to investigate the oceanographic history of this region. We interpret our resultant Dd18O (surface-thermocline) record of upper water-column stratification in the context of past ISM variability, and compare orbital phase relationships in our Site 758 data to other climate and monsoon proxies in the region. Results suggest that upper water-column stratification at Site 758, which is dominated by variance at precession and half-precession frequencies (23, 19 and 11 ka), is forced by both local (5°N) insolation and ISM winds. In the precession (23 ka) band, stratification minima at Site 758 lag northern hemisphere summer insolation maxima (precession minima) by 9 ka, which is consistent with Arabian Sea ISM phase estimates and suggests a common wind forcing in both regions. This phase implicates a strong sensitivity to both ice volume and southern hemisphere insolation forcing via latent heat export from the southern subtropical Indian Ocean. Additionally, we find evidence of possible overprinting of millennial-scale events during glacial terminations in our stratification record, which suggests an influence of remote abrupt climate events on ISM dynamics.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::6fb3682e0ffadc1bef0dc994a9fa4c5b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::6fb3682e0ffadc1bef0dc994a9fa4c5b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Publisher:PANGAEA Heuer, Verena B; Inagaki, F; Morono, Yuki; Kubo, Y; Spivack, Arthur J; Viehweger, Bernhard; Treude, Tina; Beulig, F; Schubotz, Florence; Tonai, S; Bowden, Stephen A; Cramm, M; Henkel, Susann; Hirose, Takehiro; Homola, K L; Hoshino, Tatsuhiko; Ijiri, Akira; Imachi, H; Kamiya, N; Kaneko, Masanori; Lagostina, Lorenzo; Manners, Hayley R; McClelland, H L O; Metcalfe, K; Okutsu, N; Pan, Delu; Raudsepp, M J; Sauvage, Justine; Tsang, Man-Yin; Wang, D T; Whitaker, E; Yamamoto, Yuhji; Maeda, Lena; Adhikari, Rishi Ram; Glombitza, Clemens; Hamada, Y; Kallmeyer, Jens; Wendt, J; Wörmer, Lars; Yamada, Y; Kinoshita, Masataka; Hinrichs, Kai-Uwe;m CSF = depth of Core below Sea Floor in meters / m CSF-A: Distance from sea floor to sample within recovered core. This scale allows overlap at core and section boundaries. /m CSF-B: Distance from sea floor to sample within recovered core is compressed, if core recovery > 100%.
PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2020License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.923141&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2020License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.923141&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 France, Australia, United KingdomPublisher:Elsevier BV Bolton, Clara T.; Chang, Liao; Clemens, Steven C; Kodama, Kazuto; Ikehara, Minoru; Medina-Elizalde, M; Paterson, Greig A; Roberts, Andrew; Rohling, Eelco J.; Yamamoto, Yuhji; Zhao, Xiang;handle: 1885/73760
The Indian Summer Monsoon (ISM) is an inter-hemispheric and highly variable oceaneatmosphere eland interaction that directly affects the densely populated Indian subcontinent. Here, we present new records of palaeoceanographic variability that span the last 500,000 years from the eastern equatorial Indian Ocean, a relatively under-sampled area of ISM influence. We have generated carbon and oxygen stable isotope records from three foraminiferal species from Ocean Drilling Program Site 758 (5 � N, 90� E) to investigate the oceanographic history of this region. We interpret our resultant Dd 18 O (surface-thermocline) record of upper water-column stratification in the context of past ISM variability, and compare orbital phase relationships in our Site 758 data to other climate and monsoon proxies in the region. Results suggest that upper water-column stratification at Site 758, which is dominated by variance at precession and half-precession frequencies (23,19 and 11 ka), is forced by both local (5 � N) insolation and ISM winds. In the precession (23 ka) band, stratification minima at Site 758 lag northern hemisphere summer insolation maxima (precession minima) by 9 ka, which is consistent with Arabian Sea ISM phase estimates and suggests a common wind forcing in both regions. This phase implicates a strong sensitivity to both ice volume and southern hemisphere insolation forcing via latent heat export from the southern subtropical Indian Ocean. Additionally, we find evidence of possible overprinting of millennial-scale events during glacial terminations in our stratification record, which suggests an influence of remote abrupt climate events on ISM dynamics.
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/73760Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverQuaternary Science ReviewsArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.quascirev.2013.07.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 73 citations 73 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/73760Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverQuaternary Science ReviewsArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.quascirev.2013.07.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
apps Other research productkeyboard_double_arrow_right Other ORP type 2013Publisher:PANGAEA - Data Publisher for Earth & Environmental Science Bolton, Clara T; Chang, Liao; Clemens, Steven C; Kodama, Kazuto; Ikehara, Minoru; Medina-Elizalde, Martín; Paterson, Greig A; Roberts, Andrew P; Rohling, Eelco J; Yamamoto, Yuhji; Zhao, Xiang;The Indian Summer Monsoon (ISM) is an inter-hemispheric and highly variable ocean-atmosphere-land interaction that directly affects the densely populated Indian subcontinent. Here, we present new records of palaeoceanographic variability that span the last 500,000 years from the eastern equatorial Indian Ocean, a relatively under-sampled area of ISM influence. We have generated carbon and oxygen stable isotope records from three foraminiferal species from Ocean Drilling Program Site 758 (5°N, 90°E) to investigate the oceanographic history of this region. We interpret our resultant Dd18O (surface-thermocline) record of upper water-column stratification in the context of past ISM variability, and compare orbital phase relationships in our Site 758 data to other climate and monsoon proxies in the region. Results suggest that upper water-column stratification at Site 758, which is dominated by variance at precession and half-precession frequencies (23, 19 and 11 ka), is forced by both local (5°N) insolation and ISM winds. In the precession (23 ka) band, stratification minima at Site 758 lag northern hemisphere summer insolation maxima (precession minima) by 9 ka, which is consistent with Arabian Sea ISM phase estimates and suggests a common wind forcing in both regions. This phase implicates a strong sensitivity to both ice volume and southern hemisphere insolation forcing via latent heat export from the southern subtropical Indian Ocean. Additionally, we find evidence of possible overprinting of millennial-scale events during glacial terminations in our stratification record, which suggests an influence of remote abrupt climate events on ISM dynamics.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::6fb3682e0ffadc1bef0dc994a9fa4c5b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::6fb3682e0ffadc1bef0dc994a9fa4c5b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Publisher:PANGAEA Heuer, Verena B; Inagaki, F; Morono, Yuki; Kubo, Y; Spivack, Arthur J; Viehweger, Bernhard; Treude, Tina; Beulig, F; Schubotz, Florence; Tonai, S; Bowden, Stephen A; Cramm, M; Henkel, Susann; Hirose, Takehiro; Homola, K L; Hoshino, Tatsuhiko; Ijiri, Akira; Imachi, H; Kamiya, N; Kaneko, Masanori; Lagostina, Lorenzo; Manners, Hayley R; McClelland, H L O; Metcalfe, K; Okutsu, N; Pan, Delu; Raudsepp, M J; Sauvage, Justine; Tsang, Man-Yin; Wang, D T; Whitaker, E; Yamamoto, Yuhji; Maeda, Lena; Adhikari, Rishi Ram; Glombitza, Clemens; Hamada, Y; Kallmeyer, Jens; Wendt, J; Wörmer, Lars; Yamada, Y; Kinoshita, Masataka; Hinrichs, Kai-Uwe;m CSF = depth of Core below Sea Floor in meters / m CSF-A: Distance from sea floor to sample within recovered core. This scale allows overlap at core and section boundaries. /m CSF-B: Distance from sea floor to sample within recovered core is compressed, if core recovery > 100%.
PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2020License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.923141&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2020License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.923141&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 France, Australia, United KingdomPublisher:Elsevier BV Bolton, Clara T.; Chang, Liao; Clemens, Steven C; Kodama, Kazuto; Ikehara, Minoru; Medina-Elizalde, M; Paterson, Greig A; Roberts, Andrew; Rohling, Eelco J.; Yamamoto, Yuhji; Zhao, Xiang;handle: 1885/73760
The Indian Summer Monsoon (ISM) is an inter-hemispheric and highly variable oceaneatmosphere eland interaction that directly affects the densely populated Indian subcontinent. Here, we present new records of palaeoceanographic variability that span the last 500,000 years from the eastern equatorial Indian Ocean, a relatively under-sampled area of ISM influence. We have generated carbon and oxygen stable isotope records from three foraminiferal species from Ocean Drilling Program Site 758 (5 � N, 90� E) to investigate the oceanographic history of this region. We interpret our resultant Dd 18 O (surface-thermocline) record of upper water-column stratification in the context of past ISM variability, and compare orbital phase relationships in our Site 758 data to other climate and monsoon proxies in the region. Results suggest that upper water-column stratification at Site 758, which is dominated by variance at precession and half-precession frequencies (23,19 and 11 ka), is forced by both local (5 � N) insolation and ISM winds. In the precession (23 ka) band, stratification minima at Site 758 lag northern hemisphere summer insolation maxima (precession minima) by 9 ka, which is consistent with Arabian Sea ISM phase estimates and suggests a common wind forcing in both regions. This phase implicates a strong sensitivity to both ice volume and southern hemisphere insolation forcing via latent heat export from the southern subtropical Indian Ocean. Additionally, we find evidence of possible overprinting of millennial-scale events during glacial terminations in our stratification record, which suggests an influence of remote abrupt climate events on ISM dynamics.
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/73760Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverQuaternary Science ReviewsArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.quascirev.2013.07.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 73 citations 73 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/73760Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverQuaternary Science ReviewsArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.quascirev.2013.07.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu