- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Ella Middelhoff; Ben Madden; Mengyu Li; Fabiano Ximenes; Manfred Lenzen; Nick Florin;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2022.106496&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2022.106496&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Fabiano Ximenes; Ella Middelhoff; Catherine Carney; Nick Florin; Ben Madden;Abstract This study aims to assess the deployment potential of hybrid concentrated solar biomass (HCSB) plants for dispatchable renewable electricity generation in New South Wales (NSW), Australia. We present an approach for identifying the most suitable locations for siting new plants. HCSB plants generate steam using a biomass boiler and a concentrated solar power (CSP) system and utilise a shared steam turbine for power generation. The total power generation opportunity was estimated based on available resources. This was achieved by mapping solid biomass (bagasse, stubble and forestry residues) and solar resources (direct normal irradiation) in proximity to zone substations with new grid connection capacity. The total installed capacity of HCSB plants at suitable grid connection locations was calculated to be 874 MWe at a cost of about AU$ 6.3 billion. We also estimated the CO2-e emission abatement potential to be about 6 billion kg of CO2-e per year. The Riverina region was identified to be the most prospective region for HCSB plants in NSW owing to excellent biomass and solar resources and 25 suitable grid connection points. These findings underline NSW’s excellent deployment potential for HCSB plants, a technology that can utilize the vast and currently under-exploited biomass residues and solar resources for dispatchable renewable electricity generation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.117942&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.117942&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Ella Middelhoff; Leandro Andrade Furtado; Juergen H. Peterseim; Ben Madden; Fabiano Ximenes; Nick Florin;Abstract Cost-efficient dispatchable renewable technologies are critical for enabling the energy transition towards 100% renewable generation. One promising example involves the integration of biomass boilers with concentrated solar power (CSP) referred to as hybrid concentrated solar biomass (HCSB) plants. This study evaluates the technical feasibility of a potential plant design for a rice-straw-fed HCSB plant. A case study for the Riverina-Murray region of Australia, a prime area for deployment owing to abundant solar and biomass resources is presented. Based on an assessment of different hybrid concepts, we investigate a solar-biomass hybridization with a concentrated solar tower system. With this hybrid concept, both the CSP and biomass boiler can raise steam to feed the high-pressure turbine enabling greater thermal efficiency. We evaluate HCSB plant performance at four scales: 5, 15, 30 and 50 MWe. Depending on size, HCSB plants reach thermal efficiencies from 21 to 34%. Considering the economic feasibility, assuming an internal rate of return (IRR) of 11%, viable deployment requires an electricity price of AU$ 120–350/MWh. The techno-economic assessment demonstrates advantages compared to standalone CSP plants and highlights the competitiveness of HCSB plants compared to other renewable technologies in Australia. The social and environmental impact assessment highlights additional benefits including local job creation and potential carbon emission mitigation.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.114244&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu36 citations 36 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.114244&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 AustraliaPublisher:Elsevier BV Mengyu Li; Ella Middelhoff; Fabiano A. Ximenes; Catherine Carney; Ben Madden; Nick Florin; Arunima Malik; Manfred Lenzen;handle: 2123/29092
Responding to the global crises - Covid19 and climate change - governments around the world are formulating green recovery plans to stimulate economic growth, boost clean energy technologies and cut emissions. Potential transition pathways for low carbon energy systems, however, remain as open questions. Generally, the simulation of biomass in the grid models is limited in their tempo-spatial resolution, transition pathways description, and/or biomass feedstock supply representation. This study aims to provide spatio-temporal highly resolved grid configurations featuring disaggregated biomass feedstocks, to assess Australia's potential energy transition pathways and 100% renewable electricity supply scenarios under various biomass bidding strategies and cost assumptions. We find that, as carbon prices increase, bioelectricity will prove to be a cost-effective flexible option compared to other low-carbon (such as CSP) and fossil-based flexible options (e.g. coal and gas), with its generation share reaching _9%-12% at higher carbon price scenarios. Biomass power plants can be well suited for operating in gap-filling mode to provide flexible power generation and to facilitate grid stability and load balancing. In light of the high biomass resource potential in Australia, keeping bioelectricity in the generation mix is beneficial for reducing system capacity and cost by 32% and 21%, respectively, under a future renewable-dominated Australian grid system.
Sydney eScholarship arrow_drop_down Resources Conservation and RecyclingArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefThe University of Sydney: Sydney eScholarship RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.resconrec.2022.106198&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sydney eScholarship arrow_drop_down Resources Conservation and RecyclingArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefThe University of Sydney: Sydney eScholarship RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.resconrec.2022.106198&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Ella Middelhoff; Ben Madden; Mengyu Li; Fabiano Ximenes; Manfred Lenzen; Nick Florin;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2022.106496&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2022.106496&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Fabiano Ximenes; Ella Middelhoff; Catherine Carney; Nick Florin; Ben Madden;Abstract This study aims to assess the deployment potential of hybrid concentrated solar biomass (HCSB) plants for dispatchable renewable electricity generation in New South Wales (NSW), Australia. We present an approach for identifying the most suitable locations for siting new plants. HCSB plants generate steam using a biomass boiler and a concentrated solar power (CSP) system and utilise a shared steam turbine for power generation. The total power generation opportunity was estimated based on available resources. This was achieved by mapping solid biomass (bagasse, stubble and forestry residues) and solar resources (direct normal irradiation) in proximity to zone substations with new grid connection capacity. The total installed capacity of HCSB plants at suitable grid connection locations was calculated to be 874 MWe at a cost of about AU$ 6.3 billion. We also estimated the CO2-e emission abatement potential to be about 6 billion kg of CO2-e per year. The Riverina region was identified to be the most prospective region for HCSB plants in NSW owing to excellent biomass and solar resources and 25 suitable grid connection points. These findings underline NSW’s excellent deployment potential for HCSB plants, a technology that can utilize the vast and currently under-exploited biomass residues and solar resources for dispatchable renewable electricity generation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.117942&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.117942&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Ella Middelhoff; Leandro Andrade Furtado; Juergen H. Peterseim; Ben Madden; Fabiano Ximenes; Nick Florin;Abstract Cost-efficient dispatchable renewable technologies are critical for enabling the energy transition towards 100% renewable generation. One promising example involves the integration of biomass boilers with concentrated solar power (CSP) referred to as hybrid concentrated solar biomass (HCSB) plants. This study evaluates the technical feasibility of a potential plant design for a rice-straw-fed HCSB plant. A case study for the Riverina-Murray region of Australia, a prime area for deployment owing to abundant solar and biomass resources is presented. Based on an assessment of different hybrid concepts, we investigate a solar-biomass hybridization with a concentrated solar tower system. With this hybrid concept, both the CSP and biomass boiler can raise steam to feed the high-pressure turbine enabling greater thermal efficiency. We evaluate HCSB plant performance at four scales: 5, 15, 30 and 50 MWe. Depending on size, HCSB plants reach thermal efficiencies from 21 to 34%. Considering the economic feasibility, assuming an internal rate of return (IRR) of 11%, viable deployment requires an electricity price of AU$ 120–350/MWh. The techno-economic assessment demonstrates advantages compared to standalone CSP plants and highlights the competitiveness of HCSB plants compared to other renewable technologies in Australia. The social and environmental impact assessment highlights additional benefits including local job creation and potential carbon emission mitigation.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.114244&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu36 citations 36 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.114244&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 AustraliaPublisher:Elsevier BV Mengyu Li; Ella Middelhoff; Fabiano A. Ximenes; Catherine Carney; Ben Madden; Nick Florin; Arunima Malik; Manfred Lenzen;handle: 2123/29092
Responding to the global crises - Covid19 and climate change - governments around the world are formulating green recovery plans to stimulate economic growth, boost clean energy technologies and cut emissions. Potential transition pathways for low carbon energy systems, however, remain as open questions. Generally, the simulation of biomass in the grid models is limited in their tempo-spatial resolution, transition pathways description, and/or biomass feedstock supply representation. This study aims to provide spatio-temporal highly resolved grid configurations featuring disaggregated biomass feedstocks, to assess Australia's potential energy transition pathways and 100% renewable electricity supply scenarios under various biomass bidding strategies and cost assumptions. We find that, as carbon prices increase, bioelectricity will prove to be a cost-effective flexible option compared to other low-carbon (such as CSP) and fossil-based flexible options (e.g. coal and gas), with its generation share reaching _9%-12% at higher carbon price scenarios. Biomass power plants can be well suited for operating in gap-filling mode to provide flexible power generation and to facilitate grid stability and load balancing. In light of the high biomass resource potential in Australia, keeping bioelectricity in the generation mix is beneficial for reducing system capacity and cost by 32% and 21%, respectively, under a future renewable-dominated Australian grid system.
Sydney eScholarship arrow_drop_down Resources Conservation and RecyclingArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefThe University of Sydney: Sydney eScholarship RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.resconrec.2022.106198&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sydney eScholarship arrow_drop_down Resources Conservation and RecyclingArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefThe University of Sydney: Sydney eScholarship RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.resconrec.2022.106198&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu