- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2022 Singapore, United KingdomPublisher:Springer Science and Business Media LLC Funded by:UKRI | The Amazon Fertilisation ...UKRI| The Amazon Fertilisation Experiment (AFEX)Authors: Hellen Fernanda Viana Cunha; Kelly M. Andersen; Laynara Figueiredo Lugli; Flavia Delgado Santana; +27 AuthorsHellen Fernanda Viana Cunha; Kelly M. Andersen; Laynara Figueiredo Lugli; Flavia Delgado Santana; Izabela Fonseca Aleixo; Anna Martins Moraes; Sabrina Garcia; Raffaello Di Ponzio; Erick Oblitas Mendoza; Bárbara Brum; Jéssica Schmeisk Rosa; Amanda L. Cordeiro; Bruno Takeshi Tanaka Portela; Gyovanni Ribeiro; Sara Deambrozi Coelho; Sheila Trierveiler de Souza; Lara Siebert Silva; Felipe Antonieto; Maria Pires; Ana Cláudia Salomão; Ana Caroline Miron; Rafael L. de Assis; Tomas F. Domingues; Luiz E. O. C. Aragão; Patrick Meir; José Luis Camargo; Antonio Ocimar Manzi; Laszlo Nagy; Lina M. Mercado; Iain P. Hartley; Carlos Alberto Quesada;The productivity of rainforests growing on highly weathered tropical soils is expected to be limited by phosphorus availability1. Yet, controlled fertilization experiments have been unable to demonstrate a dominant role for phosphorus in controlling tropical forest net primary productivity. Recent syntheses have demonstrated that responses to nitrogen addition are as large as to phosphorus2, and adaptations to low phosphorus availability appear to enable net primary productivity to be maintained across major soil phosphorus gradients3. Thus, the extent to which phosphorus availability limits tropical forest productivity is highly uncertain. The majority of the Amazonia, however, is characterized by soils that are more depleted in phosphorus than those in which most tropical fertilization experiments have taken place2. Thus, we established a phosphorus, nitrogen and base cation addition experiment in an old growth Amazon rainforest, with a low soil phosphorus content that is representative of approximately 60% of the Amazon basin. Here we show that net primary productivity increased exclusively with phosphorus addition. After 2 years, strong responses were observed in fine root (+29%) and canopy productivity (+19%), but not stem growth. The direct evidence of phosphorus limitation of net primary productivity suggests that phosphorus availability may restrict Amazon forest responses to CO2 fertilization4, with major implications for future carbon sequestration and forest resilience to climate change.
NERC Open Research A... arrow_drop_down DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-022-05085-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 104 citations 104 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-022-05085-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 Netherlands, Brazil, BrazilPublisher:Springer Science and Business Media LLC Authors: Lourens Poorter; Flávia R. C. Costa; Lia Hemerik; Eduardo Magalhães Borges Prata; +5 AuthorsLourens Poorter; Flávia R. C. Costa; Lia Hemerik; Eduardo Magalhães Borges Prata; Darren Norris; Darren Norris; Antenor Pereira Barbosa; Izabela Aleixo; Izabela Aleixo;Tree mortality appears to be increasing in moist tropical forests 1 , with potentially important implications for global carbon and water cycles 2 . Little is known about the drivers of tree mortality in these diverse forests, partly because long-term data are lacking 3 . The relative importance of climatic factors and species functional traits as drivers of tropical tree mortality are evaluated using a unique dataset in which the survival of over 1,000 rainforest canopy trees from over 200 species has been monitored monthly over five decades in the Central Amazon. We found that drought, as well as heat, storms and extreme rainy years, increase tree mortality for at least two years after the climatic event. Specific functional groups (pioneers, softwoods and evergreens) had especially high mortality during extreme years. These results suggest that predicted climate change will lead to higher tree mortality rates, especially for short-lived species, which may result in faster carbon sequestration but lower carbon storage of tropical forests.
Repositório do INPA arrow_drop_down Repositório do INPAArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-019-0458-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 184 citations 184 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Repositório do INPA arrow_drop_down Repositório do INPAArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-019-0458-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2022 Singapore, United KingdomPublisher:Springer Science and Business Media LLC Funded by:UKRI | The Amazon Fertilisation ...UKRI| The Amazon Fertilisation Experiment (AFEX)Authors: Hellen Fernanda Viana Cunha; Kelly M. Andersen; Laynara Figueiredo Lugli; Flavia Delgado Santana; +27 AuthorsHellen Fernanda Viana Cunha; Kelly M. Andersen; Laynara Figueiredo Lugli; Flavia Delgado Santana; Izabela Fonseca Aleixo; Anna Martins Moraes; Sabrina Garcia; Raffaello Di Ponzio; Erick Oblitas Mendoza; Bárbara Brum; Jéssica Schmeisk Rosa; Amanda L. Cordeiro; Bruno Takeshi Tanaka Portela; Gyovanni Ribeiro; Sara Deambrozi Coelho; Sheila Trierveiler de Souza; Lara Siebert Silva; Felipe Antonieto; Maria Pires; Ana Cláudia Salomão; Ana Caroline Miron; Rafael L. de Assis; Tomas F. Domingues; Luiz E. O. C. Aragão; Patrick Meir; José Luis Camargo; Antonio Ocimar Manzi; Laszlo Nagy; Lina M. Mercado; Iain P. Hartley; Carlos Alberto Quesada;The productivity of rainforests growing on highly weathered tropical soils is expected to be limited by phosphorus availability1. Yet, controlled fertilization experiments have been unable to demonstrate a dominant role for phosphorus in controlling tropical forest net primary productivity. Recent syntheses have demonstrated that responses to nitrogen addition are as large as to phosphorus2, and adaptations to low phosphorus availability appear to enable net primary productivity to be maintained across major soil phosphorus gradients3. Thus, the extent to which phosphorus availability limits tropical forest productivity is highly uncertain. The majority of the Amazonia, however, is characterized by soils that are more depleted in phosphorus than those in which most tropical fertilization experiments have taken place2. Thus, we established a phosphorus, nitrogen and base cation addition experiment in an old growth Amazon rainforest, with a low soil phosphorus content that is representative of approximately 60% of the Amazon basin. Here we show that net primary productivity increased exclusively with phosphorus addition. After 2 years, strong responses were observed in fine root (+29%) and canopy productivity (+19%), but not stem growth. The direct evidence of phosphorus limitation of net primary productivity suggests that phosphorus availability may restrict Amazon forest responses to CO2 fertilization4, with major implications for future carbon sequestration and forest resilience to climate change.
NERC Open Research A... arrow_drop_down DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-022-05085-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 104 citations 104 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-022-05085-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 Netherlands, Brazil, BrazilPublisher:Springer Science and Business Media LLC Authors: Lourens Poorter; Flávia R. C. Costa; Lia Hemerik; Eduardo Magalhães Borges Prata; +5 AuthorsLourens Poorter; Flávia R. C. Costa; Lia Hemerik; Eduardo Magalhães Borges Prata; Darren Norris; Darren Norris; Antenor Pereira Barbosa; Izabela Aleixo; Izabela Aleixo;Tree mortality appears to be increasing in moist tropical forests 1 , with potentially important implications for global carbon and water cycles 2 . Little is known about the drivers of tree mortality in these diverse forests, partly because long-term data are lacking 3 . The relative importance of climatic factors and species functional traits as drivers of tropical tree mortality are evaluated using a unique dataset in which the survival of over 1,000 rainforest canopy trees from over 200 species has been monitored monthly over five decades in the Central Amazon. We found that drought, as well as heat, storms and extreme rainy years, increase tree mortality for at least two years after the climatic event. Specific functional groups (pioneers, softwoods and evergreens) had especially high mortality during extreme years. These results suggest that predicted climate change will lead to higher tree mortality rates, especially for short-lived species, which may result in faster carbon sequestration but lower carbon storage of tropical forests.
Repositório do INPA arrow_drop_down Repositório do INPAArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-019-0458-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 184 citations 184 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Repositório do INPA arrow_drop_down Repositório do INPAArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-019-0458-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu