- home
- Advanced Search
Filters
Year range
-chevron_right GOOrganization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Cécile Allanic; Bernard Bourgine; F. Renard; Jeremy Rohmer; C. Mehl; M. Siavelis; Siavash Ghabezloo; H. Beucher; Ahmad Pouya; Nicolas Tardieu; Jean Sulem; G. Suhett-Helmer;AbstractA possible risk of geomechanical nature related to deep injection of CO2 is the shear reactivation of faults, hence potentially leading to the creation of new leakage pathways and eventually inducing earthquakes felt at the surface. Current practices to evaluate fault stability in the domain of CO2 storage still remain limited regarding two issues: 1. Faults are complex and heterogeneous geological systems, which do not correspond to discrete surfaces as already postulated by many authors. Reservoir-scale faults in a priori low-deformed reservoirs targeted for CO2 storage can present high complex architecture, which might influence the hydro-mechanical behaviour of the fault system; 2. Chemical interactions (dissolution and precipitation processes, chemically-induced weakening, etc.) between CO2-enriched brine and the minerals constituting the fault zone can affect the mechanical stability and the transport properties of the faulted/fractured system. The research project FISIC (www.anr-fisic.fr, funded by the French National research Agency) intends to overcome those limitations by accurately modelling the hydro-chemo-mechanical complexity of a fault zone. The main goal is to improve the stability analysis of a fault both undertaking pressure increase and alteration due to the presence of an acidic fluid. The progress of this research project is presented here.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.366&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.366&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Cécile Allanic; Bernard Bourgine; F. Renard; Jeremy Rohmer; C. Mehl; M. Siavelis; Siavash Ghabezloo; H. Beucher; Ahmad Pouya; Nicolas Tardieu; Jean Sulem; G. Suhett-Helmer;AbstractA possible risk of geomechanical nature related to deep injection of CO2 is the shear reactivation of faults, hence potentially leading to the creation of new leakage pathways and eventually inducing earthquakes felt at the surface. Current practices to evaluate fault stability in the domain of CO2 storage still remain limited regarding two issues: 1. Faults are complex and heterogeneous geological systems, which do not correspond to discrete surfaces as already postulated by many authors. Reservoir-scale faults in a priori low-deformed reservoirs targeted for CO2 storage can present high complex architecture, which might influence the hydro-mechanical behaviour of the fault system; 2. Chemical interactions (dissolution and precipitation processes, chemically-induced weakening, etc.) between CO2-enriched brine and the minerals constituting the fault zone can affect the mechanical stability and the transport properties of the faulted/fractured system. The research project FISIC (www.anr-fisic.fr, funded by the French National research Agency) intends to overcome those limitations by accurately modelling the hydro-chemo-mechanical complexity of a fault zone. The main goal is to improve the stability analysis of a fault both undertaking pressure increase and alteration due to the presence of an acidic fluid. The progress of this research project is presented here.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.366&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.366&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu