- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2007 United KingdomPublisher:The Royal Society Pope, V.; Brown, S.; Clark, R.; Collins, M.; Collins, W.; Dearden, C.; Gunson, J.; Harris, G.; Jones, C.; Keen, A.; Lowe, J.; Ringer, M.; Senior, C; Sitch, S.; Webb, M.; Woodward, S.;pmid: 17666385
Predictions of future climate change require complex computer models of the climate system to represent the full range of processes and interactions that influence climate. The Met Office Hadley Centre uses ‘families’ of models as part of the Met Office Unified Model Framework to address different classes of problems. The HadGEM family is a suite of state-of-the-art global environment models that are used to reduce uncertainty and represent and predict complex feedbacks. The HadCM3 family is a suite of well established but cheaper models that are used for multiple simulations, for example, to quantify uncertainty or to test the impact of multiple emissions scenarios.
The University of Ma... arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2007Data sources: The University of Manchester - Institutional RepositoryPhilosophical Transactions of the Royal Society A Mathematical Physical and Engineering SciencesArticle . 2007 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsta.2007.2087&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert The University of Ma... arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2007Data sources: The University of Manchester - Institutional RepositoryPhilosophical Transactions of the Royal Society A Mathematical Physical and Engineering SciencesArticle . 2007 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsta.2007.2087&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 Australia, United KingdomPublisher:IOP Publishing Chris D. Jones; Chris Huntingford; Ben B. B. Booth; Stephen Sitch; Richard Betts; Peter M. Cox; I. Totterdell; Mat Collins; Mat Collins; Jon Lloyd; Glen R. Harris;Unknowns in future global warming are usually assumed to arise from uncertainties either in the amount of anthropogenic greenhouse gas emissions or in the sensitivity of the climate to changes in greenhouse gas concentrations. Characterizing the additional uncertainty in relating CO2 emissions to atmospheric concentrations has relied on either a small number of complex models with diversity in process representations, or simple models. To date, these models indicate that the relevant carbon cycle uncertainties are smaller than the uncertainties in physical climate feedbacks and emissions. Here, for a single emissions scenario, we use a full coupled climate–carbon cycle model and a systematic method to explore uncertainties in the land carbon cycle feedback. We find a plausible range of climate–carbon cycle feedbacks significantly larger than previously estimated. Indeed the range of CO2 concentrations arising from our single emissions scenario is greater than that previously estimated across the full range of IPCC SRES emissions scenarios with carbon cycle uncertainties ignored. The sensitivity of photosynthetic metabolism to temperature emerges as the most important uncertainty. This highlights an aspect of current land carbon modelling where there are open questions about the potential role of plant acclimation to increasing temperatures. There is an urgent need for better understanding of plant photosynthetic responses to high temperature, as these responses are shown here to be key contributors to the magnitude of future change.
NERC Open Research A... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/7/2/024002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 254 citations 254 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/7/2/024002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 United KingdomPublisher:SAGE Publications Good, P.; Caesar, J.; Bernie, D.; Lowe, J.A.; van der Linden, P.; Gosling, S.N.; Warren, R.; Arnell, N.W.; Smith, S.; Bamber, J.; Payne, T.; Laxon, S.; Srokosz, M.; Sitch, S.; Gedney, N.; Harris, G.; Hewitt, H.; Jackson, L.; Jones, C.D.; O'Connor, F.; Ridley, J.; Vellinga, M.; Halloran, P.; McNeall, D.;This article reviews some of the major lines of recent scientific progress relevant to the choice of global climate policy targets, focusing on changes in understanding since publication of the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4). Developments are highlighted in the following major climate system components: ice sheets; sea ice; the Atlantic Meridional Overturning Circulation; tropical forests; and accelerated carbon release from permafrost and ocean hydrates. The most significant developments in each component are identified by synthesizing input from multiple experts from each field. Overall, while large uncertainties remain in all fields, some substantial progress in understanding is revealed.
Progress in Physical... arrow_drop_down Progress in Physical Geography Earth and EnvironmentArticle . 2011 . Peer-reviewedData sources: CrossrefUniversity of Bristol: Bristol ResearchArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/0309133311407651&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu14 citations 14 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Progress in Physical... arrow_drop_down Progress in Physical Geography Earth and EnvironmentArticle . 2011 . Peer-reviewedData sources: CrossrefUniversity of Bristol: Bristol ResearchArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/0309133311407651&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007 United KingdomPublisher:American Geophysical Union (AGU) Authors: Ridley, J; Lowe, J; Brierley, C; Harris, G;doi: 10.1029/2007gl031209
The retreat of Arctic sea ice is a very likely consequence of climate change and part of a key feedback process, which can accelerate global warming. The uncertainty in predictions in the rate of sea ice retreat requires quantification and ultimately reduction via observational constraints. Here we analyse a climate model ensemble with perturbations to parameters in the atmosphere model. We find a large range of the sensitivity of Arctic sea‐ice retreat to global temperature change, from 11 to 18% per °C. This is placed in the context of the uncertainty obtained by alternative model ensembles. Reasons for the different sensitivities are explored and we find that differences in the amount of ocean and atmospheric heat transported from low to high latitudes dominates over local radiative contributions to the heat budget. Furthermore, we find no significant relationship between the uncertainty in sea ice response to climate change and climate sensitivity.
Geophysical Research... arrow_drop_down Geophysical Research LettersArticle . 2007 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2007gl031209&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Geophysical Research... arrow_drop_down Geophysical Research LettersArticle . 2007 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2007gl031209&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2008 United States, United Kingdom, United Kingdom, United KingdomPublisher:The Royal Society Huntingford, Chris; Fisher, Rosie A.; Mercado, Lina; Booth, Ben B. B.; Sitch, Stephen; Harris, Phil P.; Cox, Peter M.; Jones, Chris D.; Betts, Richard A.; Malhi, Yadvinder; Harris, Glen R.; Collins, Mat; Moorcroft, Paul;Simulations with the Hadley Centre general circulation model (HadCM3), including carbon cycle model and forced by a ‘business-as-usual’ emissions scenario, predict a rapid loss of Amazonian rainforest from the middle of this century onwards. The robustness of this projection to both uncertainty in physical climate drivers and the formulation of the land surface scheme is investigated. We analyse how the modelled vegetation cover in Amazonia responds to (i) uncertainty in the parameters specified in the atmosphere component of HadCM3 and their associated influence on predicted surface climate. We then enhance the land surface description and (ii) implement a multilayer canopy light interception model and compare with the simple ‘big-leaf’ approach used in the original simulations. Finally, (iii) we investigate the effect of changing the method of simulating vegetation dynamics from an area-based model (TRIFFID) to a more complex size- and age-structured approximation of an individual-based model (ecosystem demography). We find that the loss of Amazonian rainforest is robust across the climate uncertainty explored by perturbed physics simulations covering a wide range of global climate sensitivity. The introduction of the refined light interception model leads to an increase in simulated gross plant carbon uptake for the present day, but, with altered respiration, the net effect is a decrease in net primary productivity. However, this does not significantly affect the carbon loss from vegetation and soil as a consequence of future simulated depletion in soil moisture; the Amazon forest is still lost. The introduction of the more sophisticated dynamic vegetation model reduces but does not halt the rate of forest dieback. The potential for human-induced climate change to trigger the loss of Amazon rainforest appears robust within the context of the uncertainties explored in this paper. Some further uncertainties should be explored, particularly with respect to the representation of rooting depth.
NERC Open Research A... arrow_drop_down Philosophical Transactions of the Royal Society B Biological SciencesArticleLicense: CC BYData sources: UnpayWallOxford University Research ArchiveArticle . 2016License: CC BY NCData sources: Oxford University Research ArchiveDigital Access to Scholarship at HarvardArticle . 2008Data sources: Digital Access to Scholarship at HarvardPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2008 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2008Data sources: Europe PubMed CentralPhilosophical Transactions of the Royal Society B Biological SciencesArticle . Peer-reviewedLicense: CC BY NCData sources: Oxford University Research ArchiveHarvard University: DASH - Digital Access to Scholarship at HarvardArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rstb.2007.0028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 137 citations 137 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Philosophical Transactions of the Royal Society B Biological SciencesArticleLicense: CC BYData sources: UnpayWallOxford University Research ArchiveArticle . 2016License: CC BY NCData sources: Oxford University Research ArchiveDigital Access to Scholarship at HarvardArticle . 2008Data sources: Digital Access to Scholarship at HarvardPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2008 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2008Data sources: Europe PubMed CentralPhilosophical Transactions of the Royal Society B Biological SciencesArticle . Peer-reviewedLicense: CC BY NCData sources: Oxford University Research ArchiveHarvard University: DASH - Digital Access to Scholarship at HarvardArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rstb.2007.0028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Embargo end date: 01 Jan 2021 France, Spain, United Kingdom, Spain, SwitzerlandPublisher:Frontiers Media SA Funded by:EC | 4C, EC | Blue-Action, EC | EUCPEC| 4C ,EC| Blue-Action ,EC| EUCPHegerl, Gabriele; Ballinger, Andrew; Booth, Ben; Borchert, Leonard F.; Brunner, Lukas; Donat, Markus; Doblas-Reyes, Francisco; Harris, Glen; Lowe, Jason; Mahmood, Rashed; Mignot, Juliette; Murphy, James; Swingedouw, Didier; Weisheimer, Antje;Observations facilitate model evaluation and provide constraints that are relevant to future predictions and projections. Constraints for uninitialized projections are generally based on model performance in simulating climatology and climate change. For initialized predictions, skill scores over the hindcast period provide insight into the relative performance of models, and the value of initialization as compared to projections. Predictions and projections combined can, in principle, provide seamless decadal to multi-decadal climate information. For that, though, the role of observations in skill estimates and constraints needs to be understood in order to use both consistently across the prediction and projection time horizons. This paper discusses the challenges in doing so, illustrated by examples of state-of-the-art methods for predicting and projecting changes in European climate. It discusses constraints across prediction and projection methods, their interpretation, and the metrics that drive them such as process accuracy, accurate trends or high signal-to-noise ratio. We also discuss the potential to combine constraints to arrive at more reliable climate prediction systems from years to decades. To illustrate constraints on projections, we discuss their use in the UK's climate prediction system UKCP18, the case of model performance weights obtained from the Climate model Weighting by Independence and Performance (ClimWIP) method, and the estimated magnitude of the forced signal in observations from detection and attribution. For initialized predictions, skill scores are used to evaluate which models perform well, what might contribute to this performance, and how skill may vary over time. Skill estimates also vary with different phases of climate variability and climatic conditions, and are influenced by the presence of external forcing. This complicates the systematic use of observational constraints. Furthermore, we illustrate that sub-selecting simulations from large ensembles based on reproduction of the observed evolution of climate variations is a good testbed for combining projections and predictions. Finally, the methods described in this paper potentially add value to projections and predictions for users, but must be used with caution.
Frontiers in Climate arrow_drop_down École Polytechnique, Université Paris-Saclay: HALArticle . 2021Full-Text: https://hal.science/hal-03971701Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03971701Data sources: Bielefeld Academic Search Engine (BASE)Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03971701Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2021 . Peer-reviewedLicense: CC BYData sources: UPCommons. Portal del coneixement obert de la UPCadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fclim.2021.678109&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 40visibility views 40 download downloads 19 Powered bymore_vert Frontiers in Climate arrow_drop_down École Polytechnique, Université Paris-Saclay: HALArticle . 2021Full-Text: https://hal.science/hal-03971701Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03971701Data sources: Bielefeld Academic Search Engine (BASE)Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03971701Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2021 . Peer-reviewedLicense: CC BYData sources: UPCommons. Portal del coneixement obert de la UPCadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fclim.2021.678109&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2007 United KingdomPublisher:The Royal Society Pope, V.; Brown, S.; Clark, R.; Collins, M.; Collins, W.; Dearden, C.; Gunson, J.; Harris, G.; Jones, C.; Keen, A.; Lowe, J.; Ringer, M.; Senior, C; Sitch, S.; Webb, M.; Woodward, S.;pmid: 17666385
Predictions of future climate change require complex computer models of the climate system to represent the full range of processes and interactions that influence climate. The Met Office Hadley Centre uses ‘families’ of models as part of the Met Office Unified Model Framework to address different classes of problems. The HadGEM family is a suite of state-of-the-art global environment models that are used to reduce uncertainty and represent and predict complex feedbacks. The HadCM3 family is a suite of well established but cheaper models that are used for multiple simulations, for example, to quantify uncertainty or to test the impact of multiple emissions scenarios.
The University of Ma... arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2007Data sources: The University of Manchester - Institutional RepositoryPhilosophical Transactions of the Royal Society A Mathematical Physical and Engineering SciencesArticle . 2007 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsta.2007.2087&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert The University of Ma... arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2007Data sources: The University of Manchester - Institutional RepositoryPhilosophical Transactions of the Royal Society A Mathematical Physical and Engineering SciencesArticle . 2007 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsta.2007.2087&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 Australia, United KingdomPublisher:IOP Publishing Chris D. Jones; Chris Huntingford; Ben B. B. Booth; Stephen Sitch; Richard Betts; Peter M. Cox; I. Totterdell; Mat Collins; Mat Collins; Jon Lloyd; Glen R. Harris;Unknowns in future global warming are usually assumed to arise from uncertainties either in the amount of anthropogenic greenhouse gas emissions or in the sensitivity of the climate to changes in greenhouse gas concentrations. Characterizing the additional uncertainty in relating CO2 emissions to atmospheric concentrations has relied on either a small number of complex models with diversity in process representations, or simple models. To date, these models indicate that the relevant carbon cycle uncertainties are smaller than the uncertainties in physical climate feedbacks and emissions. Here, for a single emissions scenario, we use a full coupled climate–carbon cycle model and a systematic method to explore uncertainties in the land carbon cycle feedback. We find a plausible range of climate–carbon cycle feedbacks significantly larger than previously estimated. Indeed the range of CO2 concentrations arising from our single emissions scenario is greater than that previously estimated across the full range of IPCC SRES emissions scenarios with carbon cycle uncertainties ignored. The sensitivity of photosynthetic metabolism to temperature emerges as the most important uncertainty. This highlights an aspect of current land carbon modelling where there are open questions about the potential role of plant acclimation to increasing temperatures. There is an urgent need for better understanding of plant photosynthetic responses to high temperature, as these responses are shown here to be key contributors to the magnitude of future change.
NERC Open Research A... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/7/2/024002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 254 citations 254 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/7/2/024002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 United KingdomPublisher:SAGE Publications Good, P.; Caesar, J.; Bernie, D.; Lowe, J.A.; van der Linden, P.; Gosling, S.N.; Warren, R.; Arnell, N.W.; Smith, S.; Bamber, J.; Payne, T.; Laxon, S.; Srokosz, M.; Sitch, S.; Gedney, N.; Harris, G.; Hewitt, H.; Jackson, L.; Jones, C.D.; O'Connor, F.; Ridley, J.; Vellinga, M.; Halloran, P.; McNeall, D.;This article reviews some of the major lines of recent scientific progress relevant to the choice of global climate policy targets, focusing on changes in understanding since publication of the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4). Developments are highlighted in the following major climate system components: ice sheets; sea ice; the Atlantic Meridional Overturning Circulation; tropical forests; and accelerated carbon release from permafrost and ocean hydrates. The most significant developments in each component are identified by synthesizing input from multiple experts from each field. Overall, while large uncertainties remain in all fields, some substantial progress in understanding is revealed.
Progress in Physical... arrow_drop_down Progress in Physical Geography Earth and EnvironmentArticle . 2011 . Peer-reviewedData sources: CrossrefUniversity of Bristol: Bristol ResearchArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/0309133311407651&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu14 citations 14 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Progress in Physical... arrow_drop_down Progress in Physical Geography Earth and EnvironmentArticle . 2011 . Peer-reviewedData sources: CrossrefUniversity of Bristol: Bristol ResearchArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/0309133311407651&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007 United KingdomPublisher:American Geophysical Union (AGU) Authors: Ridley, J; Lowe, J; Brierley, C; Harris, G;doi: 10.1029/2007gl031209
The retreat of Arctic sea ice is a very likely consequence of climate change and part of a key feedback process, which can accelerate global warming. The uncertainty in predictions in the rate of sea ice retreat requires quantification and ultimately reduction via observational constraints. Here we analyse a climate model ensemble with perturbations to parameters in the atmosphere model. We find a large range of the sensitivity of Arctic sea‐ice retreat to global temperature change, from 11 to 18% per °C. This is placed in the context of the uncertainty obtained by alternative model ensembles. Reasons for the different sensitivities are explored and we find that differences in the amount of ocean and atmospheric heat transported from low to high latitudes dominates over local radiative contributions to the heat budget. Furthermore, we find no significant relationship between the uncertainty in sea ice response to climate change and climate sensitivity.
Geophysical Research... arrow_drop_down Geophysical Research LettersArticle . 2007 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2007gl031209&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Geophysical Research... arrow_drop_down Geophysical Research LettersArticle . 2007 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2007gl031209&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2008 United States, United Kingdom, United Kingdom, United KingdomPublisher:The Royal Society Huntingford, Chris; Fisher, Rosie A.; Mercado, Lina; Booth, Ben B. B.; Sitch, Stephen; Harris, Phil P.; Cox, Peter M.; Jones, Chris D.; Betts, Richard A.; Malhi, Yadvinder; Harris, Glen R.; Collins, Mat; Moorcroft, Paul;Simulations with the Hadley Centre general circulation model (HadCM3), including carbon cycle model and forced by a ‘business-as-usual’ emissions scenario, predict a rapid loss of Amazonian rainforest from the middle of this century onwards. The robustness of this projection to both uncertainty in physical climate drivers and the formulation of the land surface scheme is investigated. We analyse how the modelled vegetation cover in Amazonia responds to (i) uncertainty in the parameters specified in the atmosphere component of HadCM3 and their associated influence on predicted surface climate. We then enhance the land surface description and (ii) implement a multilayer canopy light interception model and compare with the simple ‘big-leaf’ approach used in the original simulations. Finally, (iii) we investigate the effect of changing the method of simulating vegetation dynamics from an area-based model (TRIFFID) to a more complex size- and age-structured approximation of an individual-based model (ecosystem demography). We find that the loss of Amazonian rainforest is robust across the climate uncertainty explored by perturbed physics simulations covering a wide range of global climate sensitivity. The introduction of the refined light interception model leads to an increase in simulated gross plant carbon uptake for the present day, but, with altered respiration, the net effect is a decrease in net primary productivity. However, this does not significantly affect the carbon loss from vegetation and soil as a consequence of future simulated depletion in soil moisture; the Amazon forest is still lost. The introduction of the more sophisticated dynamic vegetation model reduces but does not halt the rate of forest dieback. The potential for human-induced climate change to trigger the loss of Amazon rainforest appears robust within the context of the uncertainties explored in this paper. Some further uncertainties should be explored, particularly with respect to the representation of rooting depth.
NERC Open Research A... arrow_drop_down Philosophical Transactions of the Royal Society B Biological SciencesArticleLicense: CC BYData sources: UnpayWallOxford University Research ArchiveArticle . 2016License: CC BY NCData sources: Oxford University Research ArchiveDigital Access to Scholarship at HarvardArticle . 2008Data sources: Digital Access to Scholarship at HarvardPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2008 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2008Data sources: Europe PubMed CentralPhilosophical Transactions of the Royal Society B Biological SciencesArticle . Peer-reviewedLicense: CC BY NCData sources: Oxford University Research ArchiveHarvard University: DASH - Digital Access to Scholarship at HarvardArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rstb.2007.0028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 137 citations 137 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Philosophical Transactions of the Royal Society B Biological SciencesArticleLicense: CC BYData sources: UnpayWallOxford University Research ArchiveArticle . 2016License: CC BY NCData sources: Oxford University Research ArchiveDigital Access to Scholarship at HarvardArticle . 2008Data sources: Digital Access to Scholarship at HarvardPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2008 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2008Data sources: Europe PubMed CentralPhilosophical Transactions of the Royal Society B Biological SciencesArticle . Peer-reviewedLicense: CC BY NCData sources: Oxford University Research ArchiveHarvard University: DASH - Digital Access to Scholarship at HarvardArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rstb.2007.0028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Embargo end date: 01 Jan 2021 France, Spain, United Kingdom, Spain, SwitzerlandPublisher:Frontiers Media SA Funded by:EC | 4C, EC | Blue-Action, EC | EUCPEC| 4C ,EC| Blue-Action ,EC| EUCPHegerl, Gabriele; Ballinger, Andrew; Booth, Ben; Borchert, Leonard F.; Brunner, Lukas; Donat, Markus; Doblas-Reyes, Francisco; Harris, Glen; Lowe, Jason; Mahmood, Rashed; Mignot, Juliette; Murphy, James; Swingedouw, Didier; Weisheimer, Antje;Observations facilitate model evaluation and provide constraints that are relevant to future predictions and projections. Constraints for uninitialized projections are generally based on model performance in simulating climatology and climate change. For initialized predictions, skill scores over the hindcast period provide insight into the relative performance of models, and the value of initialization as compared to projections. Predictions and projections combined can, in principle, provide seamless decadal to multi-decadal climate information. For that, though, the role of observations in skill estimates and constraints needs to be understood in order to use both consistently across the prediction and projection time horizons. This paper discusses the challenges in doing so, illustrated by examples of state-of-the-art methods for predicting and projecting changes in European climate. It discusses constraints across prediction and projection methods, their interpretation, and the metrics that drive them such as process accuracy, accurate trends or high signal-to-noise ratio. We also discuss the potential to combine constraints to arrive at more reliable climate prediction systems from years to decades. To illustrate constraints on projections, we discuss their use in the UK's climate prediction system UKCP18, the case of model performance weights obtained from the Climate model Weighting by Independence and Performance (ClimWIP) method, and the estimated magnitude of the forced signal in observations from detection and attribution. For initialized predictions, skill scores are used to evaluate which models perform well, what might contribute to this performance, and how skill may vary over time. Skill estimates also vary with different phases of climate variability and climatic conditions, and are influenced by the presence of external forcing. This complicates the systematic use of observational constraints. Furthermore, we illustrate that sub-selecting simulations from large ensembles based on reproduction of the observed evolution of climate variations is a good testbed for combining projections and predictions. Finally, the methods described in this paper potentially add value to projections and predictions for users, but must be used with caution.
Frontiers in Climate arrow_drop_down École Polytechnique, Université Paris-Saclay: HALArticle . 2021Full-Text: https://hal.science/hal-03971701Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03971701Data sources: Bielefeld Academic Search Engine (BASE)Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03971701Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2021 . Peer-reviewedLicense: CC BYData sources: UPCommons. Portal del coneixement obert de la UPCadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fclim.2021.678109&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 40visibility views 40 download downloads 19 Powered bymore_vert Frontiers in Climate arrow_drop_down École Polytechnique, Université Paris-Saclay: HALArticle . 2021Full-Text: https://hal.science/hal-03971701Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03971701Data sources: Bielefeld Academic Search Engine (BASE)Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03971701Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2021 . Peer-reviewedLicense: CC BYData sources: UPCommons. Portal del coneixement obert de la UPCadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fclim.2021.678109&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu