- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2012 Netherlands, United Kingdom, NetherlandsPublisher:Springer Science and Business Media LLC Denis Kosmach; Igor Semiletov; Igor Semiletov; A. N. Charkin; B. E. van Dongen; B. E. van Dongen; Jorien E. Vonk; Jorien E. Vonk; Natalia Shakhova; Natalia Shakhova; Per Roos; Laura Sánchez-García; Laura Sánchez-García; Örjan Gustafsson; August Andersson; V. Alling; V. Alling; Oleg V. Dudarev; Timothy I. Eglinton;The future trajectory of greenhouse gas concentrations depends on interactions between climate and the biogeosphere. Thawing of Arctic permafrost could release significant amounts of carbon into the atmosphere in this century. Ancient Ice Complex deposits outcropping along the ~7,000-kilometre-long coastline of the East Siberian Arctic Shelf (ESAS), and associated shallow subsea permafrost, are two large pools of permafrost carbon, yet their vulnerabilities towards thawing and decomposition are largely unknown. Recent Arctic warming is stronger than has been predicted by several degrees, and is particularly pronounced over the coastal ESAS region. There is thus a pressing need to improve our understanding of the links between permafrost carbon and climate in this relatively inaccessible region. Here we show that extensive release of carbon from these Ice Complex deposits dominates (57 ± 2 per cent) the sedimentary carbon budget of the ESAS, the world’s largest continental shelf, overwhelming the marine and topsoil terrestrial components. Inverse modelling of the dual-carbon isotope composition of organic carbon accumulating in ESAS surface sediments, using Monte Carlo simulations to account for uncertainties, suggests that 44 ± 10 teragrams of old carbon is activated annually from Ice Complex permafrost, an order of magnitude more than has been suggested by previous studies. We estimate that about two-thirds (66 ± 16 per cent) of this old carbon escapes to the atmosphere as carbon dioxide, with the remainder being re-buried in shelf sediments. Thermal collapse and erosion of these carbon-rich Pleistocene coastline and seafloor deposits may accelerate with Arctic amplification of climate warming.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature11392&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu325 citations 325 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature11392&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 Netherlands, United Kingdom, NetherlandsPublisher:Springer Science and Business Media LLC Denis Kosmach; Igor Semiletov; Igor Semiletov; A. N. Charkin; B. E. van Dongen; B. E. van Dongen; Jorien E. Vonk; Jorien E. Vonk; Natalia Shakhova; Natalia Shakhova; Per Roos; Laura Sánchez-García; Laura Sánchez-García; Örjan Gustafsson; August Andersson; V. Alling; V. Alling; Oleg V. Dudarev; Timothy I. Eglinton;The future trajectory of greenhouse gas concentrations depends on interactions between climate and the biogeosphere. Thawing of Arctic permafrost could release significant amounts of carbon into the atmosphere in this century. Ancient Ice Complex deposits outcropping along the ~7,000-kilometre-long coastline of the East Siberian Arctic Shelf (ESAS), and associated shallow subsea permafrost, are two large pools of permafrost carbon, yet their vulnerabilities towards thawing and decomposition are largely unknown. Recent Arctic warming is stronger than has been predicted by several degrees, and is particularly pronounced over the coastal ESAS region. There is thus a pressing need to improve our understanding of the links between permafrost carbon and climate in this relatively inaccessible region. Here we show that extensive release of carbon from these Ice Complex deposits dominates (57 ± 2 per cent) the sedimentary carbon budget of the ESAS, the world’s largest continental shelf, overwhelming the marine and topsoil terrestrial components. Inverse modelling of the dual-carbon isotope composition of organic carbon accumulating in ESAS surface sediments, using Monte Carlo simulations to account for uncertainties, suggests that 44 ± 10 teragrams of old carbon is activated annually from Ice Complex permafrost, an order of magnitude more than has been suggested by previous studies. We estimate that about two-thirds (66 ± 16 per cent) of this old carbon escapes to the atmosphere as carbon dioxide, with the remainder being re-buried in shelf sediments. Thermal collapse and erosion of these carbon-rich Pleistocene coastline and seafloor deposits may accelerate with Arctic amplification of climate warming.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature11392&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu325 citations 325 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature11392&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Austria, Netherlands, Austria, Austria, NorwayPublisher:Proceedings of the National Academy of Sciences Funded by:EC | ECLIPSE, EC | CSI:ENVIRONMENT, EC | CC-TOPEC| ECLIPSE ,EC| CSI:ENVIRONMENT ,EC| CC-TOPNatalia Shakhova; Natalia Shakhova; A. N. Charkin; A. N. Charkin; Oleg V. Dudarev; Zbigniew Klimont; Örjan Gustafsson; Patrik Winiger; Andreas Stohl; Chris Heyes; August Andersson; Igor Semiletov; Sabine Eckhardt;pmid: 28137854
pmc: PMC5320976
Significance A successful mitigation strategy for climate warming agents such as black carbon (BC) requires reliable source information from bottom-up emission inventory data, which can only be verified by observation. We measured BC in one of the fastest-warming and, at the same time, substantially understudied regions on our planet, the northeastern Siberian Arctic. Our observations, compared with an atmospheric transport model, imply that quantification and spatial allocation of emissions at high latitudes, specifically in the Russian Arctic, need improvement by reallocating emissions and significantly shifting source contributions for the transport, domestic, power plant, and gas flaring sectors. This strong shift in reported emissions has potentially considerable implications for climate modeling and BC mitigation efforts.
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2017Data sources: DANS (Data Archiving and Networked Services)Proceedings of the National Academy of SciencesArticle . 2017 . Peer-reviewedData sources: CrossrefProceedings of the National Academy of SciencesArticle . 2017Proceedings of the National Academy of SciencesArticle . 2017 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1613401114&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 84 citations 84 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2017Data sources: DANS (Data Archiving and Networked Services)Proceedings of the National Academy of SciencesArticle . 2017 . Peer-reviewedData sources: CrossrefProceedings of the National Academy of SciencesArticle . 2017Proceedings of the National Academy of SciencesArticle . 2017 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1613401114&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Austria, Netherlands, Austria, Austria, NorwayPublisher:Proceedings of the National Academy of Sciences Funded by:EC | ECLIPSE, EC | CSI:ENVIRONMENT, EC | CC-TOPEC| ECLIPSE ,EC| CSI:ENVIRONMENT ,EC| CC-TOPNatalia Shakhova; Natalia Shakhova; A. N. Charkin; A. N. Charkin; Oleg V. Dudarev; Zbigniew Klimont; Örjan Gustafsson; Patrik Winiger; Andreas Stohl; Chris Heyes; August Andersson; Igor Semiletov; Sabine Eckhardt;pmid: 28137854
pmc: PMC5320976
Significance A successful mitigation strategy for climate warming agents such as black carbon (BC) requires reliable source information from bottom-up emission inventory data, which can only be verified by observation. We measured BC in one of the fastest-warming and, at the same time, substantially understudied regions on our planet, the northeastern Siberian Arctic. Our observations, compared with an atmospheric transport model, imply that quantification and spatial allocation of emissions at high latitudes, specifically in the Russian Arctic, need improvement by reallocating emissions and significantly shifting source contributions for the transport, domestic, power plant, and gas flaring sectors. This strong shift in reported emissions has potentially considerable implications for climate modeling and BC mitigation efforts.
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2017Data sources: DANS (Data Archiving and Networked Services)Proceedings of the National Academy of SciencesArticle . 2017 . Peer-reviewedData sources: CrossrefProceedings of the National Academy of SciencesArticle . 2017Proceedings of the National Academy of SciencesArticle . 2017 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1613401114&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 84 citations 84 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2017Data sources: DANS (Data Archiving and Networked Services)Proceedings of the National Academy of SciencesArticle . 2017 . Peer-reviewedData sources: CrossrefProceedings of the National Academy of SciencesArticle . 2017Proceedings of the National Academy of SciencesArticle . 2017 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1613401114&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2005Publisher:PANGAEA Gukov, Aleksander Yu; Dudarev, Oleg V; Semiletov, Igor P; Charkin, Alexander N; Gorshkova, Ya S;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.763173&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.763173&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2005Publisher:PANGAEA Gukov, Aleksander Yu; Dudarev, Oleg V; Semiletov, Igor P; Charkin, Alexander N; Gorshkova, Ya S;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.763173&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.763173&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2012 Netherlands, United Kingdom, NetherlandsPublisher:Springer Science and Business Media LLC Denis Kosmach; Igor Semiletov; Igor Semiletov; A. N. Charkin; B. E. van Dongen; B. E. van Dongen; Jorien E. Vonk; Jorien E. Vonk; Natalia Shakhova; Natalia Shakhova; Per Roos; Laura Sánchez-García; Laura Sánchez-García; Örjan Gustafsson; August Andersson; V. Alling; V. Alling; Oleg V. Dudarev; Timothy I. Eglinton;The future trajectory of greenhouse gas concentrations depends on interactions between climate and the biogeosphere. Thawing of Arctic permafrost could release significant amounts of carbon into the atmosphere in this century. Ancient Ice Complex deposits outcropping along the ~7,000-kilometre-long coastline of the East Siberian Arctic Shelf (ESAS), and associated shallow subsea permafrost, are two large pools of permafrost carbon, yet their vulnerabilities towards thawing and decomposition are largely unknown. Recent Arctic warming is stronger than has been predicted by several degrees, and is particularly pronounced over the coastal ESAS region. There is thus a pressing need to improve our understanding of the links between permafrost carbon and climate in this relatively inaccessible region. Here we show that extensive release of carbon from these Ice Complex deposits dominates (57 ± 2 per cent) the sedimentary carbon budget of the ESAS, the world’s largest continental shelf, overwhelming the marine and topsoil terrestrial components. Inverse modelling of the dual-carbon isotope composition of organic carbon accumulating in ESAS surface sediments, using Monte Carlo simulations to account for uncertainties, suggests that 44 ± 10 teragrams of old carbon is activated annually from Ice Complex permafrost, an order of magnitude more than has been suggested by previous studies. We estimate that about two-thirds (66 ± 16 per cent) of this old carbon escapes to the atmosphere as carbon dioxide, with the remainder being re-buried in shelf sediments. Thermal collapse and erosion of these carbon-rich Pleistocene coastline and seafloor deposits may accelerate with Arctic amplification of climate warming.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature11392&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu325 citations 325 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature11392&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 Netherlands, United Kingdom, NetherlandsPublisher:Springer Science and Business Media LLC Denis Kosmach; Igor Semiletov; Igor Semiletov; A. N. Charkin; B. E. van Dongen; B. E. van Dongen; Jorien E. Vonk; Jorien E. Vonk; Natalia Shakhova; Natalia Shakhova; Per Roos; Laura Sánchez-García; Laura Sánchez-García; Örjan Gustafsson; August Andersson; V. Alling; V. Alling; Oleg V. Dudarev; Timothy I. Eglinton;The future trajectory of greenhouse gas concentrations depends on interactions between climate and the biogeosphere. Thawing of Arctic permafrost could release significant amounts of carbon into the atmosphere in this century. Ancient Ice Complex deposits outcropping along the ~7,000-kilometre-long coastline of the East Siberian Arctic Shelf (ESAS), and associated shallow subsea permafrost, are two large pools of permafrost carbon, yet their vulnerabilities towards thawing and decomposition are largely unknown. Recent Arctic warming is stronger than has been predicted by several degrees, and is particularly pronounced over the coastal ESAS region. There is thus a pressing need to improve our understanding of the links between permafrost carbon and climate in this relatively inaccessible region. Here we show that extensive release of carbon from these Ice Complex deposits dominates (57 ± 2 per cent) the sedimentary carbon budget of the ESAS, the world’s largest continental shelf, overwhelming the marine and topsoil terrestrial components. Inverse modelling of the dual-carbon isotope composition of organic carbon accumulating in ESAS surface sediments, using Monte Carlo simulations to account for uncertainties, suggests that 44 ± 10 teragrams of old carbon is activated annually from Ice Complex permafrost, an order of magnitude more than has been suggested by previous studies. We estimate that about two-thirds (66 ± 16 per cent) of this old carbon escapes to the atmosphere as carbon dioxide, with the remainder being re-buried in shelf sediments. Thermal collapse and erosion of these carbon-rich Pleistocene coastline and seafloor deposits may accelerate with Arctic amplification of climate warming.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature11392&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu325 citations 325 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature11392&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Austria, Netherlands, Austria, Austria, NorwayPublisher:Proceedings of the National Academy of Sciences Funded by:EC | ECLIPSE, EC | CSI:ENVIRONMENT, EC | CC-TOPEC| ECLIPSE ,EC| CSI:ENVIRONMENT ,EC| CC-TOPNatalia Shakhova; Natalia Shakhova; A. N. Charkin; A. N. Charkin; Oleg V. Dudarev; Zbigniew Klimont; Örjan Gustafsson; Patrik Winiger; Andreas Stohl; Chris Heyes; August Andersson; Igor Semiletov; Sabine Eckhardt;pmid: 28137854
pmc: PMC5320976
Significance A successful mitigation strategy for climate warming agents such as black carbon (BC) requires reliable source information from bottom-up emission inventory data, which can only be verified by observation. We measured BC in one of the fastest-warming and, at the same time, substantially understudied regions on our planet, the northeastern Siberian Arctic. Our observations, compared with an atmospheric transport model, imply that quantification and spatial allocation of emissions at high latitudes, specifically in the Russian Arctic, need improvement by reallocating emissions and significantly shifting source contributions for the transport, domestic, power plant, and gas flaring sectors. This strong shift in reported emissions has potentially considerable implications for climate modeling and BC mitigation efforts.
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2017Data sources: DANS (Data Archiving and Networked Services)Proceedings of the National Academy of SciencesArticle . 2017 . Peer-reviewedData sources: CrossrefProceedings of the National Academy of SciencesArticle . 2017Proceedings of the National Academy of SciencesArticle . 2017 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1613401114&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 84 citations 84 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2017Data sources: DANS (Data Archiving and Networked Services)Proceedings of the National Academy of SciencesArticle . 2017 . Peer-reviewedData sources: CrossrefProceedings of the National Academy of SciencesArticle . 2017Proceedings of the National Academy of SciencesArticle . 2017 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1613401114&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Austria, Netherlands, Austria, Austria, NorwayPublisher:Proceedings of the National Academy of Sciences Funded by:EC | ECLIPSE, EC | CSI:ENVIRONMENT, EC | CC-TOPEC| ECLIPSE ,EC| CSI:ENVIRONMENT ,EC| CC-TOPNatalia Shakhova; Natalia Shakhova; A. N. Charkin; A. N. Charkin; Oleg V. Dudarev; Zbigniew Klimont; Örjan Gustafsson; Patrik Winiger; Andreas Stohl; Chris Heyes; August Andersson; Igor Semiletov; Sabine Eckhardt;pmid: 28137854
pmc: PMC5320976
Significance A successful mitigation strategy for climate warming agents such as black carbon (BC) requires reliable source information from bottom-up emission inventory data, which can only be verified by observation. We measured BC in one of the fastest-warming and, at the same time, substantially understudied regions on our planet, the northeastern Siberian Arctic. Our observations, compared with an atmospheric transport model, imply that quantification and spatial allocation of emissions at high latitudes, specifically in the Russian Arctic, need improvement by reallocating emissions and significantly shifting source contributions for the transport, domestic, power plant, and gas flaring sectors. This strong shift in reported emissions has potentially considerable implications for climate modeling and BC mitigation efforts.
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2017Data sources: DANS (Data Archiving and Networked Services)Proceedings of the National Academy of SciencesArticle . 2017 . Peer-reviewedData sources: CrossrefProceedings of the National Academy of SciencesArticle . 2017Proceedings of the National Academy of SciencesArticle . 2017 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1613401114&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 84 citations 84 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2017Data sources: DANS (Data Archiving and Networked Services)Proceedings of the National Academy of SciencesArticle . 2017 . Peer-reviewedData sources: CrossrefProceedings of the National Academy of SciencesArticle . 2017Proceedings of the National Academy of SciencesArticle . 2017 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1613401114&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2005Publisher:PANGAEA Gukov, Aleksander Yu; Dudarev, Oleg V; Semiletov, Igor P; Charkin, Alexander N; Gorshkova, Ya S;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.763173&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.763173&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2005Publisher:PANGAEA Gukov, Aleksander Yu; Dudarev, Oleg V; Semiletov, Igor P; Charkin, Alexander N; Gorshkova, Ya S;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.763173&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.763173&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu