- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2023 United States, Denmark, FrancePublisher:Springer Science and Business Media LLC Funded by:EC | TOFDRYEC| TOFDRYCompton J. Tucker; Martin Brandt; Pierre Hiernaux; Ankit Kariryaa; Kjeld Rasmussen; Jennifer Small; Christian Igel; Florian Reiner; K. A. Melocik; Jesse G. Meyer; Scott Sinno; Enrique Azpra Romero; Erin Glennie; Yasmin Fitts; August Morin; Jorge Enrique Díaz Pinzón; Devin McClain; Paul Morin; Claire Porter; Shane Loeffler; Laurent Kergoat; Bil-Assanou Issoufou; Patrice Savadogo; Jean‐Pierre Wigneron; Benjamin Poulter; Philippe Ciais; Robert K. Kaufmann; Ranga B. Myneni; Sassan Saatchi; Rasmus Fensholt;AbstractThe distribution of dryland trees and their density, cover, size, mass and carbon content are not well known at sub-continental to continental scales1–14. This information is important for ecological protection, carbon accounting, climate mitigation and restoration efforts of dryland ecosystems15–18. We assessed more than 9.9 billion trees derived from more than 300,000 satellite images, covering semi-arid sub-Saharan Africa north of the Equator. We attributed wood, foliage and root carbon to every tree in the 0–1,000 mm year−1 rainfall zone by coupling field data19, machine learning20–22, satellite data and high-performance computing. Average carbon stocks of individual trees ranged from 0.54 Mg C ha−1 and 63 kg C tree−1 in the arid zone to 3.7 Mg C ha−1 and 98 kg tree−1 in the sub-humid zone. Overall, we estimated the total carbon for our study area to be 0.84 (±19.8%) Pg C. Comparisons with 14 previous TRENDY numerical simulation studies23 for our area found that the density and carbon stocks of scattered trees have been underestimated by three models and overestimated by 11 models, respectively. This benchmarking can help understand the carbon cycle and address concerns about land degradation24–29. We make available a linked database of wood mass, foliage mass, root mass and carbon stock of each tree for scientists, policymakers, dryland-restoration practitioners and farmers, who can use it to estimate farmland tree carbon stocks from tablets or laptops.
Nature arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2023Full-Text: https://hal.science/hal-04029742Data sources: Bielefeld Academic Search Engine (BASE)Boston University: OpenBUArticle . 2023License: CC BYFull-Text: https://www.ncbi.nlm.nih.gov/pubmed/36859581Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2023Full-Text: https://hal.science/hal-04029742Data sources: Bielefeld Academic Search Engine (BASE)Copenhagen University Research Information SystemArticle . 2023Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-022-05653-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 70 citations 70 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Nature arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2023Full-Text: https://hal.science/hal-04029742Data sources: Bielefeld Academic Search Engine (BASE)Boston University: OpenBUArticle . 2023License: CC BYFull-Text: https://www.ncbi.nlm.nih.gov/pubmed/36859581Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2023Full-Text: https://hal.science/hal-04029742Data sources: Bielefeld Academic Search Engine (BASE)Copenhagen University Research Information SystemArticle . 2023Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-022-05653-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 DenmarkPublisher:Springer Science and Business Media LLC Funded by:EC | TOFDRY, EC | FORESTDIETEC| TOFDRY ,EC| FORESTDIETKe Huang; Martin Brandt; Pierre Hiernaux; Compton J. Tucker; Laura Vang Rasmussen; Florian Reiner; Sizhuo Li; Ankit Kariryaa; Maurice Mugabowindekwe; Bowy den Braber; Jennifer Small; Scott Sino; Rasmus Fensholt;pmid: 39054350
The baobab tree (Adansonia digitata L.) is an integral part of rural livelihoods throughout the African continent. However, the combined effects of climate change and increasing global demand for baobab products are currently exerting pressure on the sustainable utilization of these resources. Here we use sub-metre-resolution satellite imagery to identify the presence of nearly 2.8 million (underestimation bias 27.1%) baobab trees in the Sahel, a dryland region of 2.4 million km2. This achievement is considered an essential step towards an improved management and monitoring system of valuable woody species. Using Senegal as a case country, we find that 94% of rural buildings have at least one baobab tree in their immediate surroundings and that the abundance of baobabs is associated with a higher likelihood of people consuming a highly nutritious food group: dark green leafy vegetables. The generated database showcases the feasibility of mapping the location of single tree species at a sub-continental scale, providing vital information in times when deforestation and climate change cause the extinction of numerous tree species.
Nature Ecology & Evo... arrow_drop_down Nature Ecology & EvolutionArticle . 2024 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Nature Ecology & EvolutionArticle . 2024 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-024-02483-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Nature Ecology & Evo... arrow_drop_down Nature Ecology & EvolutionArticle . 2024 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Nature Ecology & EvolutionArticle . 2024 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-024-02483-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 France, DenmarkPublisher:Springer Science and Business Media LLC Funded by:NSF | Sustained-Petascale In Ac..., EC | FORESTDIET, NSF | Leadership Class Scientif... +1 projectsNSF| Sustained-Petascale In Action: Blue Waters Enabling Transformative Science And Engineering ,EC| FORESTDIET ,NSF| Leadership Class Scientific and Engineering Computing: Breaking Through the Limits ,ANR| TULIPMartin Brandt; Compton J. Tucker; Ankit Kariryaa; Kjeld Rasmussen; Christin Abel; Jennifer Small; Jerome Chave; Laura Vang Rasmussen; Pierre Hiernaux; Abdoul Aziz Diouf; Laurent Kergoat; Ole Mertz; Christian Igel; Fabian Gieseke; Johannes Schöning; Sizhuo Li; Katherine Melocik; Jesse Meyer; Scott Sinno; Eric Romero; Erin Glennie; Amandine Montagu; Morgane Dendoncker; Rasmus Fensholt;pmid: 33057199
A large proportion of dryland trees and shrubs (hereafter referred to collectively as trees) grow in isolation, without canopy closure. These non-forest trees have a crucial role in biodiversity, and provide ecosystem services such as carbon storage, food resources and shelter for humans and animals1,2. However, most public interest relating to trees is devoted to forests, and trees outside of forests are not well-documented3. Here we map the crown size of each tree more than 3 m2 in size over a land area that spans 1.3 million km2 in the West African Sahara, Sahel and sub-humid zone, using submetre-resolution satellite imagery and deep learning4. We detected over 1.8 billion individual trees (13.4 trees per hectare), with a median crown size of 12 m2, along a rainfall gradient from 0 to 1,000 mm per year. The canopy cover increases from 0.1% (0.7 trees per hectare) in hyper-arid areas, through 1.6% (9.9 trees per hectare) in arid and 5.6% (30.1 trees per hectare) in semi-arid zones, to 13.3% (47 trees per hectare) in sub-humid areas. Although the overall canopy cover is low, the relatively high density of isolated trees challenges prevailing narratives about dryland desertification5-7, and even the desert shows a surprisingly high tree density. Our assessment suggests a way to monitor trees outside of forests globally, and to explore their role in mitigating degradation, climate change and poverty.
Hyper Article en Lig... arrow_drop_down University of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-020-2824-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu286 citations 286 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down University of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-020-2824-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2023 United States, Denmark, FrancePublisher:Springer Science and Business Media LLC Funded by:EC | TOFDRYEC| TOFDRYCompton J. Tucker; Martin Brandt; Pierre Hiernaux; Ankit Kariryaa; Kjeld Rasmussen; Jennifer Small; Christian Igel; Florian Reiner; K. A. Melocik; Jesse G. Meyer; Scott Sinno; Enrique Azpra Romero; Erin Glennie; Yasmin Fitts; August Morin; Jorge Enrique Díaz Pinzón; Devin McClain; Paul Morin; Claire Porter; Shane Loeffler; Laurent Kergoat; Bil-Assanou Issoufou; Patrice Savadogo; Jean‐Pierre Wigneron; Benjamin Poulter; Philippe Ciais; Robert K. Kaufmann; Ranga B. Myneni; Sassan Saatchi; Rasmus Fensholt;AbstractThe distribution of dryland trees and their density, cover, size, mass and carbon content are not well known at sub-continental to continental scales1–14. This information is important for ecological protection, carbon accounting, climate mitigation and restoration efforts of dryland ecosystems15–18. We assessed more than 9.9 billion trees derived from more than 300,000 satellite images, covering semi-arid sub-Saharan Africa north of the Equator. We attributed wood, foliage and root carbon to every tree in the 0–1,000 mm year−1 rainfall zone by coupling field data19, machine learning20–22, satellite data and high-performance computing. Average carbon stocks of individual trees ranged from 0.54 Mg C ha−1 and 63 kg C tree−1 in the arid zone to 3.7 Mg C ha−1 and 98 kg tree−1 in the sub-humid zone. Overall, we estimated the total carbon for our study area to be 0.84 (±19.8%) Pg C. Comparisons with 14 previous TRENDY numerical simulation studies23 for our area found that the density and carbon stocks of scattered trees have been underestimated by three models and overestimated by 11 models, respectively. This benchmarking can help understand the carbon cycle and address concerns about land degradation24–29. We make available a linked database of wood mass, foliage mass, root mass and carbon stock of each tree for scientists, policymakers, dryland-restoration practitioners and farmers, who can use it to estimate farmland tree carbon stocks from tablets or laptops.
Nature arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2023Full-Text: https://hal.science/hal-04029742Data sources: Bielefeld Academic Search Engine (BASE)Boston University: OpenBUArticle . 2023License: CC BYFull-Text: https://www.ncbi.nlm.nih.gov/pubmed/36859581Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2023Full-Text: https://hal.science/hal-04029742Data sources: Bielefeld Academic Search Engine (BASE)Copenhagen University Research Information SystemArticle . 2023Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-022-05653-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 70 citations 70 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Nature arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2023Full-Text: https://hal.science/hal-04029742Data sources: Bielefeld Academic Search Engine (BASE)Boston University: OpenBUArticle . 2023License: CC BYFull-Text: https://www.ncbi.nlm.nih.gov/pubmed/36859581Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2023Full-Text: https://hal.science/hal-04029742Data sources: Bielefeld Academic Search Engine (BASE)Copenhagen University Research Information SystemArticle . 2023Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-022-05653-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 DenmarkPublisher:Springer Science and Business Media LLC Funded by:EC | TOFDRY, EC | FORESTDIETEC| TOFDRY ,EC| FORESTDIETKe Huang; Martin Brandt; Pierre Hiernaux; Compton J. Tucker; Laura Vang Rasmussen; Florian Reiner; Sizhuo Li; Ankit Kariryaa; Maurice Mugabowindekwe; Bowy den Braber; Jennifer Small; Scott Sino; Rasmus Fensholt;pmid: 39054350
The baobab tree (Adansonia digitata L.) is an integral part of rural livelihoods throughout the African continent. However, the combined effects of climate change and increasing global demand for baobab products are currently exerting pressure on the sustainable utilization of these resources. Here we use sub-metre-resolution satellite imagery to identify the presence of nearly 2.8 million (underestimation bias 27.1%) baobab trees in the Sahel, a dryland region of 2.4 million km2. This achievement is considered an essential step towards an improved management and monitoring system of valuable woody species. Using Senegal as a case country, we find that 94% of rural buildings have at least one baobab tree in their immediate surroundings and that the abundance of baobabs is associated with a higher likelihood of people consuming a highly nutritious food group: dark green leafy vegetables. The generated database showcases the feasibility of mapping the location of single tree species at a sub-continental scale, providing vital information in times when deforestation and climate change cause the extinction of numerous tree species.
Nature Ecology & Evo... arrow_drop_down Nature Ecology & EvolutionArticle . 2024 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Nature Ecology & EvolutionArticle . 2024 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-024-02483-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Nature Ecology & Evo... arrow_drop_down Nature Ecology & EvolutionArticle . 2024 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Nature Ecology & EvolutionArticle . 2024 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-024-02483-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 France, DenmarkPublisher:Springer Science and Business Media LLC Funded by:NSF | Sustained-Petascale In Ac..., EC | FORESTDIET, NSF | Leadership Class Scientif... +1 projectsNSF| Sustained-Petascale In Action: Blue Waters Enabling Transformative Science And Engineering ,EC| FORESTDIET ,NSF| Leadership Class Scientific and Engineering Computing: Breaking Through the Limits ,ANR| TULIPMartin Brandt; Compton J. Tucker; Ankit Kariryaa; Kjeld Rasmussen; Christin Abel; Jennifer Small; Jerome Chave; Laura Vang Rasmussen; Pierre Hiernaux; Abdoul Aziz Diouf; Laurent Kergoat; Ole Mertz; Christian Igel; Fabian Gieseke; Johannes Schöning; Sizhuo Li; Katherine Melocik; Jesse Meyer; Scott Sinno; Eric Romero; Erin Glennie; Amandine Montagu; Morgane Dendoncker; Rasmus Fensholt;pmid: 33057199
A large proportion of dryland trees and shrubs (hereafter referred to collectively as trees) grow in isolation, without canopy closure. These non-forest trees have a crucial role in biodiversity, and provide ecosystem services such as carbon storage, food resources and shelter for humans and animals1,2. However, most public interest relating to trees is devoted to forests, and trees outside of forests are not well-documented3. Here we map the crown size of each tree more than 3 m2 in size over a land area that spans 1.3 million km2 in the West African Sahara, Sahel and sub-humid zone, using submetre-resolution satellite imagery and deep learning4. We detected over 1.8 billion individual trees (13.4 trees per hectare), with a median crown size of 12 m2, along a rainfall gradient from 0 to 1,000 mm per year. The canopy cover increases from 0.1% (0.7 trees per hectare) in hyper-arid areas, through 1.6% (9.9 trees per hectare) in arid and 5.6% (30.1 trees per hectare) in semi-arid zones, to 13.3% (47 trees per hectare) in sub-humid areas. Although the overall canopy cover is low, the relatively high density of isolated trees challenges prevailing narratives about dryland desertification5-7, and even the desert shows a surprisingly high tree density. Our assessment suggests a way to monitor trees outside of forests globally, and to explore their role in mitigating degradation, climate change and poverty.
Hyper Article en Lig... arrow_drop_down University of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-020-2824-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu286 citations 286 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down University of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-020-2824-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu