- home
- Advanced Search
Filters
Year range
-chevron_right GOCountry
Source
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2014 Australia, France, United Kingdom, United Kingdom, United Kingdom, France, France, United StatesPublisher:Springer Science and Business Media LLC Funded by:UKRI | South American Biomass Bu...UKRI| South American Biomass Burning Analysis (SAMBBA)Gaveau, David LA; Salim, Mohammad A; Hergoualc'h, Kristell; Locatelli, Bruno; Sloan, Sean; Wooster, Martin; Marlier, Miriam E; Molidena, Elis; Yaen, Husna; DeFries, Ruth; Verchot, Louis; Murdiyarso, Daniel; Nasi, Robert; Holmgren, Peter; Sheil, Douglas;AbstractTrans-boundary haze events in Southeast Asia are associated with large forest and peatland fires in Indonesia. These episodes of extreme air pollution usually occur during drought years induced by climate anomalies from the Pacific (El Niño Southern Oscillation) and Indian Oceans (Indian Ocean Dipole). However, in June 2013 – a non-drought year – Singapore's 24-hr Pollutants Standards Index reached an all-time record 246 (rated “very unhealthy”). Here, we show using remote sensing, rainfall records and other data, that the Indonesian fires behind the 2013 haze followed a two-month dry spell in a wetter-than-average year. These fires were short-lived (one week) and limited to a localized area in Central Sumatra (1.6% of Indonesia): burning an estimated 163,336 ha, including 137,044 ha (84%) on peat. Most burning was confined to deforested lands (82%; 133,216 ha). The greenhouse gas (GHG) emissions during this brief, localized event were considerable: 172 ± 59 Tg CO2-eq (or 31 ± 12 Tg C), representing 5–10% of Indonesia's mean annual GHG emissions for 2000–2005. Our observations show that extreme air pollution episodes in Southeast Asia are no longer restricted to drought years. We expect major haze events to be increasingly frequent because of ongoing deforestation of Indonesian peatlands.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2015License: CC BYFull-Text: https://hdl.handle.net/10568/65685Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2014Full-Text: http://dx.doi.org/10.1038/srep06112Data sources: Bielefeld Academic Search Engine (BASE)King's College, London: Research PortalArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep06112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 271 citations 271 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
visibility 4visibility views 4 Powered bymore_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2015License: CC BYFull-Text: https://hdl.handle.net/10568/65685Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2014Full-Text: http://dx.doi.org/10.1038/srep06112Data sources: Bielefeld Academic Search Engine (BASE)King's College, London: Research PortalArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep06112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Proceedings of the National Academy of Sciences Michael Jerrett; Rachel Connolly; Diane A. Garcia-Gonzales; Claire Bekker; Jenny T. Nguyen; Jason Su; Yang Li; Miriam E. Marlier;pmid: 39074290
California faces several serious direct and indirect climate exposures that can adversely affect public health, some of which are already occurring. The public health burden now and in the future will depend on atmospheric greenhouse gas concentrations, underlying population vulnerabilities, and adaptation efforts. Here, we present a structured review of recent literature to examine the leading climate risks to public health in California, including extreme heat, extreme precipitation, wildfires, air pollution, and infectious diseases. Comparisons among different climate-health pathways are difficult due to inconsistencies in study design regarding spatial and temporal scales and health outcomes examined. We find, however, that the current public health burden likely affects thousands of Californians each year, depending on the exposure pathway and health outcome. Further, while more evidence exists for direct and indirect proximal health effects that are the focus of this review, distal pathways (e.g., impacts of drought on nutrition) are more uncertain but could add to this burden. We find that climate adaptation measures can provide significant health benefits, particularly in disadvantaged communities. We conclude with priority recommendations for future analyses and solution-driven policy actions.
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2310081121&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2310081121&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United StatesPublisher:IOP Publishing Mu Xiao; Miriam E. Marlier; Dennis P. Lettenmaier; Ben Livneh; Ben Livneh; John T. Abatzoglou; Ruth A. Engel;Washington State experienced widespread drought in 2015 and the largest burned area in the observational record, attributable in part to exceptionally low winter snow accumulation and high summer temperatures. We examine 2015 drought severity in the Cascade and Olympic mountains relative to the historical climatology (1950–present) and future climate projections (mid-21st century) for a mid-range global greenhouse gas emissions scenario. Although winter precipitation was near normal, the regional winter temperature anomaly was +2.1 °C (+2.0σ) in 2015, consistent with projections of a +2.3 °C (+2.2σ) temperature change and near normal precipitation in the future, relative to the climatology. April 1 snow water equivalent in 2015, −325 mm (−1.5σ), and the future, −252 mm (−1.1σ), were substantially lower than the climatology. Wildfire potential, as indicated by dead fuel moisture content, was higher in 2015 than mid-21st century mean projections. In contrast to most historical droughts, which have been driven by precipitation deficits, our results suggest that 2015 is a useful analog of typical conditions in the Pacific Northwest by the mid-21st century.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aa8fde&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 62 citations 62 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aa8fde&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:IOP Publishing Funded by:EPAEPAMiriam E Marlier; Katherine I Brenner; Jia Coco Liu; Loretta J Mickley; Sierra Raby; Eric James; Ravan Ahmadov; Heather Riden;Abstract Wildfire activity in the western U.S. has increased in frequency and severity in recent decades. Wildfire smoke emissions contribute to elevated fine particulate matter (PM2.5) concentrations that are dangerous to public health. Due to the outdoor and physically demanding nature of their work, agricultural workers are particularly vulnerable to wildfire smoke pollution. In this study, we quantify the potential exposure of agricultural workers in California to past (2004–2009) and future (2046–2051) smoke PM2.5. We find that while absolute increases in smoke PM2.5 exposure are largest in northern California, agricultural regions in the Central Valley and Central Coast may be highly vulnerable to future increases in smoke PM2.5 concentrations. We find an increase from 6 to 8 million worker smoke exposure days (+35%) of ‘smokewave’ exposure for agricultural workers across the state under future climate conditions, with the largest increases in Tulare, Monterey, and Fresno counties. Under future climate conditions, we find 1.9 million worker smoke exposure days of agricultural worker exposure to levels of total PM2.5 pollution deemed ‘Unhealthy for Sensitive Groups.’ This is a 190% increase over past climate conditions. Wildfire smoke PM2.5 contributes, on average, to more than 90% of these daily PM2.5 exceedances compared with non-fire sources of air pollution. Using the recent extreme wildfire season of 2020 as a case study, we show that existing monitoring networks do not provide adequate sampling of PM2.5 in many future at-risk wildfire regions with large numbers of agricultural workers. Policies will need to consider the changing patterns of smoke PM2.5 exposure under future climate conditions to better protect outdoor agricultural workers.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ac8c58&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ac8c58&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2014 Australia, France, United Kingdom, United Kingdom, United Kingdom, France, France, United StatesPublisher:Springer Science and Business Media LLC Funded by:UKRI | South American Biomass Bu...UKRI| South American Biomass Burning Analysis (SAMBBA)Gaveau, David LA; Salim, Mohammad A; Hergoualc'h, Kristell; Locatelli, Bruno; Sloan, Sean; Wooster, Martin; Marlier, Miriam E; Molidena, Elis; Yaen, Husna; DeFries, Ruth; Verchot, Louis; Murdiyarso, Daniel; Nasi, Robert; Holmgren, Peter; Sheil, Douglas;AbstractTrans-boundary haze events in Southeast Asia are associated with large forest and peatland fires in Indonesia. These episodes of extreme air pollution usually occur during drought years induced by climate anomalies from the Pacific (El Niño Southern Oscillation) and Indian Oceans (Indian Ocean Dipole). However, in June 2013 – a non-drought year – Singapore's 24-hr Pollutants Standards Index reached an all-time record 246 (rated “very unhealthy”). Here, we show using remote sensing, rainfall records and other data, that the Indonesian fires behind the 2013 haze followed a two-month dry spell in a wetter-than-average year. These fires were short-lived (one week) and limited to a localized area in Central Sumatra (1.6% of Indonesia): burning an estimated 163,336 ha, including 137,044 ha (84%) on peat. Most burning was confined to deforested lands (82%; 133,216 ha). The greenhouse gas (GHG) emissions during this brief, localized event were considerable: 172 ± 59 Tg CO2-eq (or 31 ± 12 Tg C), representing 5–10% of Indonesia's mean annual GHG emissions for 2000–2005. Our observations show that extreme air pollution episodes in Southeast Asia are no longer restricted to drought years. We expect major haze events to be increasingly frequent because of ongoing deforestation of Indonesian peatlands.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2015License: CC BYFull-Text: https://hdl.handle.net/10568/65685Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2014Full-Text: http://dx.doi.org/10.1038/srep06112Data sources: Bielefeld Academic Search Engine (BASE)King's College, London: Research PortalArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep06112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 271 citations 271 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
visibility 4visibility views 4 Powered bymore_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2015License: CC BYFull-Text: https://hdl.handle.net/10568/65685Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2014Full-Text: http://dx.doi.org/10.1038/srep06112Data sources: Bielefeld Academic Search Engine (BASE)King's College, London: Research PortalArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep06112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Proceedings of the National Academy of Sciences Michael Jerrett; Rachel Connolly; Diane A. Garcia-Gonzales; Claire Bekker; Jenny T. Nguyen; Jason Su; Yang Li; Miriam E. Marlier;pmid: 39074290
California faces several serious direct and indirect climate exposures that can adversely affect public health, some of which are already occurring. The public health burden now and in the future will depend on atmospheric greenhouse gas concentrations, underlying population vulnerabilities, and adaptation efforts. Here, we present a structured review of recent literature to examine the leading climate risks to public health in California, including extreme heat, extreme precipitation, wildfires, air pollution, and infectious diseases. Comparisons among different climate-health pathways are difficult due to inconsistencies in study design regarding spatial and temporal scales and health outcomes examined. We find, however, that the current public health burden likely affects thousands of Californians each year, depending on the exposure pathway and health outcome. Further, while more evidence exists for direct and indirect proximal health effects that are the focus of this review, distal pathways (e.g., impacts of drought on nutrition) are more uncertain but could add to this burden. We find that climate adaptation measures can provide significant health benefits, particularly in disadvantaged communities. We conclude with priority recommendations for future analyses and solution-driven policy actions.
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2310081121&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2310081121&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United StatesPublisher:IOP Publishing Mu Xiao; Miriam E. Marlier; Dennis P. Lettenmaier; Ben Livneh; Ben Livneh; John T. Abatzoglou; Ruth A. Engel;Washington State experienced widespread drought in 2015 and the largest burned area in the observational record, attributable in part to exceptionally low winter snow accumulation and high summer temperatures. We examine 2015 drought severity in the Cascade and Olympic mountains relative to the historical climatology (1950–present) and future climate projections (mid-21st century) for a mid-range global greenhouse gas emissions scenario. Although winter precipitation was near normal, the regional winter temperature anomaly was +2.1 °C (+2.0σ) in 2015, consistent with projections of a +2.3 °C (+2.2σ) temperature change and near normal precipitation in the future, relative to the climatology. April 1 snow water equivalent in 2015, −325 mm (−1.5σ), and the future, −252 mm (−1.1σ), were substantially lower than the climatology. Wildfire potential, as indicated by dead fuel moisture content, was higher in 2015 than mid-21st century mean projections. In contrast to most historical droughts, which have been driven by precipitation deficits, our results suggest that 2015 is a useful analog of typical conditions in the Pacific Northwest by the mid-21st century.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aa8fde&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 62 citations 62 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aa8fde&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:IOP Publishing Funded by:EPAEPAMiriam E Marlier; Katherine I Brenner; Jia Coco Liu; Loretta J Mickley; Sierra Raby; Eric James; Ravan Ahmadov; Heather Riden;Abstract Wildfire activity in the western U.S. has increased in frequency and severity in recent decades. Wildfire smoke emissions contribute to elevated fine particulate matter (PM2.5) concentrations that are dangerous to public health. Due to the outdoor and physically demanding nature of their work, agricultural workers are particularly vulnerable to wildfire smoke pollution. In this study, we quantify the potential exposure of agricultural workers in California to past (2004–2009) and future (2046–2051) smoke PM2.5. We find that while absolute increases in smoke PM2.5 exposure are largest in northern California, agricultural regions in the Central Valley and Central Coast may be highly vulnerable to future increases in smoke PM2.5 concentrations. We find an increase from 6 to 8 million worker smoke exposure days (+35%) of ‘smokewave’ exposure for agricultural workers across the state under future climate conditions, with the largest increases in Tulare, Monterey, and Fresno counties. Under future climate conditions, we find 1.9 million worker smoke exposure days of agricultural worker exposure to levels of total PM2.5 pollution deemed ‘Unhealthy for Sensitive Groups.’ This is a 190% increase over past climate conditions. Wildfire smoke PM2.5 contributes, on average, to more than 90% of these daily PM2.5 exceedances compared with non-fire sources of air pollution. Using the recent extreme wildfire season of 2020 as a case study, we show that existing monitoring networks do not provide adequate sampling of PM2.5 in many future at-risk wildfire regions with large numbers of agricultural workers. Policies will need to consider the changing patterns of smoke PM2.5 exposure under future climate conditions to better protect outdoor agricultural workers.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ac8c58&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ac8c58&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu