- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Funder
SDG [Beta]
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2023 United KingdomPublisher:Wiley Funded by:UKRI | UK Status, Change and Pro...UKRI| UK Status, Change and Projections of the Environment (UK-SCaPE)West, Bede; Jones, Davey L.; Robinson, Emma L.; Marrs, Robert H.; Smart, Simon M.;Abstract Agri‐environment schemes (AES) incentivise land‐management practices aimed at mitigating environmental impacts. However, their effectiveness depends on the duration and type of management. We modelled the potential for grassland AES options in Wales (UK) to achieve positive changes in plant diversity via change in soil conditions. We modelled the response of plants and soils to the predicted effects of AES options over a 13‐year time interval. We applied scenarios of change in soil conditions in three managed grassland types, using high‐resolution baseline soil and vegetation data collected in grasslands across Wales, UK. We also applied scenarios of climate change to determine the extent to which this might modify the impact of AES intervention on plant species compositional turnover. Empirical models of soil response to extensification were constructed from published experimental data and used to drive change in soil inputs to a small ensemble of ecological niche models for British plants. These models were applied to the local pool of species in each baseline (2 × 2 m) quadrat plus a wider 10 × 10 km pool from which we draw species absent at baseline but predicted to find conditions suitable as a result of AES intervention and climate change, thus estimating dark diversity at each location. Outputs were summarised by grouping species by the ecosystem functions and services they support and by matching projected species composition to the UK National Vegetation Classification. Scenario modelling indicated that at least 10 years of management under grassland AES options were needed to achieve conditions suitable for desirable plant assemblages more typical of lower fertility habitats. Synthesis and applications: We predict that management effects will have a more marked effect on vegetation and soil than predicted climate variation up to 2029. Realising modelled changes in habitat suitability as species compositional turnover and community assembly is likely to require additional measures to assist plant dispersal and establishment.
NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Ecological Solutions and EvidenceArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2688-8319.12233&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Ecological Solutions and EvidenceArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2688-8319.12233&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2023 United KingdomPublisher:Wiley Funded by:UKRI | UK Status, Change and Pro...UKRI| UK Status, Change and Projections of the Environment (UK-SCaPE)West, Bede; Jones, Davey L.; Robinson, Emma L.; Marrs, Robert H.; Smart, Simon M.;Abstract Agri‐environment schemes (AES) incentivise land‐management practices aimed at mitigating environmental impacts. However, their effectiveness depends on the duration and type of management. We modelled the potential for grassland AES options in Wales (UK) to achieve positive changes in plant diversity via change in soil conditions. We modelled the response of plants and soils to the predicted effects of AES options over a 13‐year time interval. We applied scenarios of change in soil conditions in three managed grassland types, using high‐resolution baseline soil and vegetation data collected in grasslands across Wales, UK. We also applied scenarios of climate change to determine the extent to which this might modify the impact of AES intervention on plant species compositional turnover. Empirical models of soil response to extensification were constructed from published experimental data and used to drive change in soil inputs to a small ensemble of ecological niche models for British plants. These models were applied to the local pool of species in each baseline (2 × 2 m) quadrat plus a wider 10 × 10 km pool from which we draw species absent at baseline but predicted to find conditions suitable as a result of AES intervention and climate change, thus estimating dark diversity at each location. Outputs were summarised by grouping species by the ecosystem functions and services they support and by matching projected species composition to the UK National Vegetation Classification. Scenario modelling indicated that at least 10 years of management under grassland AES options were needed to achieve conditions suitable for desirable plant assemblages more typical of lower fertility habitats. Synthesis and applications: We predict that management effects will have a more marked effect on vegetation and soil than predicted climate variation up to 2029. Realising modelled changes in habitat suitability as species compositional turnover and community assembly is likely to require additional measures to assist plant dispersal and establishment.
NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Ecological Solutions and EvidenceArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2688-8319.12233&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Ecological Solutions and EvidenceArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2688-8319.12233&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu