- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2017 South Africa, Australia, South AfricaPublisher:Frontiers Media SA Funded by:ARC | Discovery Early Career Re...ARC| Discovery Early Career Researcher Award - Grant ID: DE140100952Eric C. J. Oliver; Eric C. J. Oliver; Eric C. J. Oliver; Albertus J. Smit; Sarah E. Perkins-Kirkpatrick; Andries Kruger; Andries Kruger; Robert W. Schlegel;handle: 2263/63320 , 10566/3260
As the mean temperatures of the worlds oceans increase, it is predicted that marine heatwaves (MHWs) will occur more frequently and with increased severity. However, it has been shown that variables other than increases in sea water temperature have been responsible for MHWs. To better understand these mechanisms driving MHWs we have utilized atmospheric (ERA-Interim) and oceanic (OISST, AVISO) data to examine the patterns around southern Africa during coastal (<400 m from the low water mark; measured in situ) MHWs. Nonmetric multidimensional scaling (NMDS) was first used to determine that the atmospheric and oceanic states during MHW are different from daily climatological states. Self-organizing maps (SOMs) were then used to cluster the MHW states into one of nine nodes to determine the predominant atmospheric and oceanic patterns present during these events. It was found that warm water forced onto the coast via anomalous ocean circulation was the predominant oceanic pattern during MHWs. Warm atmospheric temperatures over the subcontinent during onshore or alongshore winds were the most prominent atmospheric patterns. Roughly one third of the MHWs were clustered into a node with no clear patterns, which implied that they were not forced by a recurring atmospheric or oceanic state that could be described by the SOM analysis. Because warm atmospheric and/or oceanic temperature anomalies were not the only pattern associated with MHWs, the current trend of a warming earth does not necessarily mean that MHWs will increase apace; however, aseasonal variability in wind and current patterns was shown to be central to the formation of coastal MHWs, meaning that where climate systems shift from historic records, increases in MHWs will likely occur.
Frontiers in Marine ... arrow_drop_down UP Research Data RepositoryArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/2263/63320Data sources: Bielefeld Academic Search Engine (BASE)University of the Western Cap: UWC Research RepositoryArticle . 2017License: CC BYFull-Text: http://dx.doi.org/10.3389/fmars.2017.00323Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2017.00323&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 58 citations 58 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Frontiers in Marine ... arrow_drop_down UP Research Data RepositoryArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/2263/63320Data sources: Bielefeld Academic Search Engine (BASE)University of the Western Cap: UWC Research RepositoryArticle . 2017License: CC BYFull-Text: http://dx.doi.org/10.3389/fmars.2017.00323Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2017.00323&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 AustraliaPublisher:Springer Science and Business Media LLC Carly R. Tozer; Carly R. Tozer; Michael-Shawn Fletcher; Lindsay B. Hutley; Michael R. Kearney; Rebecca M. B. Harris; Rebecca M. B. Harris; Mike Letnic; Clifford Woodward; Clifford Woodward; Sarah E. Perkins-Kirkpatrick; Patrick J. Mitchell; Tomas A. Remenyi; Thomas Wernberg; Lynda E. Chambers; Norman C. Duke; Nigel R. Andrew; Grant J. Williamson; Adrienne B. Nicotra; Linda J. Beaumont; Marie R. Keatley; David M. J. S. Bowman; Tessa Vance; Shayne McGregor; Shayne McGregor;handle: 1885/251094
The interaction of gradual climate trends and extreme weather events since the turn of the century has triggered complex and, in some cases, catastrophic ecological responses around the world. We illustrate this using Australian examples within a press–pulse framework. Despite the Australian biota being adapted to high natural climate variability, recent combinations of climatic presses and pulses have led to population collapses, loss of relictual communities and shifts into novel ecosystems. These changes have been sudden and unpredictable, and may represent permanent transitions to new ecosystem states without adaptive management interventions. The press–pulse framework helps illuminate biological responses to climate change, grounds debate about suitable management interventions and highlights possible consequences of (non-) intervention.
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/251094Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-018-0187-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 383 citations 383 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/251094Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-018-0187-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2019 Australia, United KingdomPublisher:IOP Publishing Funded by:ARC | Future Fellowships - Gran..., ARC | Discovery Early Career Re..., ARC | Discovery Early Career Re... +1 projectsARC| Future Fellowships - Grant ID: FT170100106 ,ARC| Discovery Early Career Researcher Award - Grant ID: DE180100638 ,ARC| Discovery Early Career Researcher Award - Grant ID: DE160100092 ,UKRI| MaRIUS: Managing the Risks, Impacts and Uncertainties of droughts and water ScarcityLuke J Harrington; Sophie Lewis; Sarah E Perkins-Kirkpatrick; Andrew D King; Friederike E L Otto;handle: 11343/225795
Global-average temperatures are a powerful metric for both long-term climate change policy, and also to measure the aggregate fluctuations in weather experienced around the world. However, here we show how the consideration of anomalies in annual temperatures at the global land-average scale, particularly during extremely hot years, tends to overestimate the perceived severity of extreme heat actually felt by local communities during these events. Thus, when global-mean temperatures are used as a proxy to infer the role of climate change on the likelihood of witnessing hot years, the component of extreme event risk attributed to human influence can also be overstated. This study suggests multiple alternative approaches to characterise extreme weather events which have complex spatial signatures, each of which improve the representation of perceived experiences from the event when compared with the default approach of using area-averaged time-series. However, as the definition of an extreme event becomes more specific to the observed characteristics witnessed, changes are needed in the way researchers discuss the likelihood of witnessing ‘similar events’ with future climate change. Using the example of the 2016 hot year, we propose an alternative framework, termed the ‘Time of Maximum Similarity’, to show that events like the record-breaking annual temperatures of 2016 are most likely to be witnessed between 2010–2037, with hot years thereafter becoming significantly more severe than the heat of 2016.
Environmental Resear... arrow_drop_down Oxford University Research ArchiveArticle . 2018License: CC BYData sources: Oxford University Research ArchiveThe University of Melbourne: Digital RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aaf2dc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Environmental Resear... arrow_drop_down Oxford University Research ArchiveArticle . 2018License: CC BYData sources: Oxford University Research ArchiveThe University of Melbourne: Digital RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aaf2dc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Embargo end date: 01 Jan 2024 France, Switzerland, United States, BelgiumPublisher:Frontiers Media SA Funded by:EC | XAIDA, ARC | ARC Centres of Excellence..., NSF | Collaborative Research: U... +3 projectsEC| XAIDA ,ARC| ARC Centres of Excellences - Grant ID: CE170100023 ,NSF| Collaborative Research: Understanding the impact of Arctic sea ice loss on summertime climate change ,EC| iMIRACLI ,UKRI| Global Surface Air Temperature (GloSAT) ,ARC| ARC Centres of Excellence - Grant ID: CE230100012Authors: Sarah E. Perkins-Kirkpatrick; Sarah E. Perkins-Kirkpatrick; Lisa V. Alexander; Lisa V. Alexander; +36 AuthorsSarah E. Perkins-Kirkpatrick; Sarah E. Perkins-Kirkpatrick; Lisa V. Alexander; Lisa V. Alexander; Andrew D. King; Andrew D. King; Sarah F. Kew; Sjoukje Y. Philip; Clair Barnes; Douglas Maraun; Rupert F. Stuart-Smith; Rupert F. Stuart-Smith; Aglaé Jézéquel; Aglaé Jézéquel; Emanuele Bevacqua; Samantha Burgess; Erich Fischer; Gabriele C. Hegerl; Joyce Kimutai; Joyce Kimutai; Gerbrand Koren; Kamoru Abiodun Lawal; Kamoru Abiodun Lawal; Kamoru Abiodun Lawal; Seung-Ki Min; Seung-Ki Min; Mark New; Mark New; Mark New; Romaric C. Odoulami; Christina M. Patricola; Izidine Pinto; Aurélien Ribes; Tiffany A. Shaw; Wim Thiery; Blair Trewin; Robert Vautard; Michael Wehner; Jakob Zscheischler; Jakob Zscheischler;The field of extreme event attribution (EEA) has rapidly developed over the last two decades. Various methods have been developed and implemented, physical modelling capabilities have generally improved, the field of impact attribution has emerged, and assessments serve as a popular communication tool for conveying how climate change is influencing weather and climate events in the lived experience. However, a number of non-trivial challenges still remain that must be addressed by the community to secure further advancement of the field whilst ensuring scientific rigour and the appropriate use of attribution findings by stakeholders and associated applications. As part of a concept series commissioned by the World Climate Research Programme, this article discusses contemporary developments and challenges over six key domains relevant to EEA, and provides recommendations of where focus in the EEA field should be concentrated over the coming decade. These six domains are: (1) observations in the context of EEA; (2) extreme event definitions; (3) statistical methods; (4) physical modelling methods; (5) impact attribution; and (6) communication. Broadly, recommendations call for increased EEA assessments and capacity building, particularly for more vulnerable regions; contemporary guidelines for assessing the suitability of physical climate models; establishing best-practice methodologies for EEA on compound and record-shattering extremes; co-ordinated interdisciplinary engagement to develop scaffolding for impact attribution assessments and their suitability for use in broader applications; and increased and ongoing investment in EEA communication. To address these recommendations requires significant developments in multiple fields that either underpin (e.g., observations and monitoring; climate modelling) or are closely related to (e.g., compound and record-shattering events; climate impacts) EEA, as well as working consistently with experts outside of attribution and climate science more generally. However, if approached with investment, dedication, and coordination, tackling these challenges over the next decade will ensure robust EEA analysis, with tangible benefits to the broader global community.
Frontiers in Climate arrow_drop_down HAL-Ecole des Ponts ParisTechArticle . 2024License: CC BYData sources: HAL-Ecole des Ponts ParisTechVrije Universiteit Brussel Research PortalArticle . 2024Data sources: Vrije Universiteit Brussel Research PortalÉcole Polytechnique, Université Paris-Saclay: HALArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Knowledge@UChicago (University of Chicago)Article . 2025Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fclim.2024.1455023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Frontiers in Climate arrow_drop_down HAL-Ecole des Ponts ParisTechArticle . 2024License: CC BYData sources: HAL-Ecole des Ponts ParisTechVrije Universiteit Brussel Research PortalArticle . 2024Data sources: Vrije Universiteit Brussel Research PortalÉcole Polytechnique, Université Paris-Saclay: HALArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Knowledge@UChicago (University of Chicago)Article . 2025Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fclim.2024.1455023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United States, AustraliaPublisher:American Geophysical Union (AGU) Funded by:ARC | Future Fellowships - Gran..., ARC | Discovery Early Career Re...ARC| Future Fellowships - Grant ID: FT170100106 ,ARC| Discovery Early Career Researcher Award - Grant ID: DE180100638Authors: Andrew D. King; Sarah E. Perkins‐Kirkpatrick; Michael F. Wehner; Sophie C. Lewis;doi: 10.1029/2020ef001757
handle: 11343/273899
AbstractWe thank the Comment's authors for their considered critique of our paper. We respond to their main criticisms and hope that this discussion motivates further consideration of communication strategies for event attribution analyses.
The University of Me... arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/11343/273899Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2021Full-Text: https://escholarship.org/uc/item/67h2c3g6Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2020ef001757&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert The University of Me... arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/11343/273899Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2021Full-Text: https://escholarship.org/uc/item/67h2c3g6Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2020ef001757&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Australia, United States, United KingdomPublisher:IOP Publishing Funded by:UKRI | Half a degree Additional ..., UKRI | The stratospheric impact ..., ARC | ARC Centres of Excellence... +2 projectsUKRI| Half a degree Additional warming: Prognosis and Projected Impacts on Health (HAPPI-Health) ,UKRI| The stratospheric impact on extreme weather events ,ARC| ARC Centres of Excellences - Grant ID: CE170100023 ,ARC| Discovery Early Career Researcher Award - Grant ID: DE180100638 ,ARC| Future Fellowships - Grant ID: FT170100106S E Perkins-Kirkpatrick; D A Stone; D M Mitchell; S Rosier; A D King; Y T E Lo; J Pastor-Paz; D Frame; M Wehner;Abstract Investigations into the role of anthropogenic climate change in extreme weather events are now starting to extend into analysis of anthropogenic impacts on non-climate (e.g. socio-economic) systems. However, care needs to be taken when making this extension, because methodological choices regarding extreme weather attribution can become crucial when considering the events’ impacts. The fraction of attributable risk (FAR) method, useful in extreme weather attribution research, has a very specific interpretation concerning a class of events, and there is potential to misinterpret results from weather event analyses as being applicable to specific events and their impact outcomes. Using two case studies of meteorological extremes and their impacts, we argue that FAR is not generally appropriate when estimating the magnitude of the anthropogenic signal behind a specific impact. Attribution assessments on impacts should always be carried out in addition to assessment of the associated meteorological event, since it cannot be assumed that the anthropogenic signal behind the weather is equivalent to the signal behind the impact because of lags and nonlinearities in the processes through which the impact system reacts to weather. Whilst there are situations where employing FAR to understand the climate change signal behind a class of impacts is useful (e.g. ‘system breaking’ events), more useful results will generally be produced if attribution questions on specific impacts are reframed to focus on changes in the impact return value and magnitude across large samples of factual and counterfactual climate model and impact simulations. We advocate for constant interdisciplinary collaboration as essential for effective and robust impact attribution assessments.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2022Full-Text: https://escholarship.org/uc/item/775250c4Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/11343/310146Data sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ac44c8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 54 citations 54 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2022Full-Text: https://escholarship.org/uc/item/775250c4Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/11343/310146Data sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ac44c8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 AustraliaPublisher:Springer Science and Business Media LLC Man Lim Ho; Malgorzata Lagisz; Shinichi Nakagawa; Sarah Perkins-Kirkpatrick; Paige Sawyers; Charlotte Page; Bill Leggat; Troy Gaston; Alistair J. Hobday; Zoe Richards; Tracy Ainsworth;AbstractBackgroundSubtropical coral reefs are comparatively understudied compared to tropical coral reef ecosystems, yet also host a diverse and abundant array of marine life and provide substantial socio-economic benefits to communities. Research into the impacts of ocean warming on subtropical coral reefs has increased over the past two decades due to increase frequency and intensity of bleaching and degradation of these ecosystems. Understanding the extent of research effort and type of evidence assessing the response of subtropical corals and reefs to ocean warming provides valuable insight into global patterns in research efforts allowing critical knowledge gaps to be identified. A comprehensive understanding the impact of ocean warming on these systems will underpin our ability to predict and respond to future changes on subtropical coral reefs. Here, a systematic-map approach is used to identify recent research effort, from 2010 to 2023, and highlight patterns in the type, scale, and location of research conducted and as well as identify the availability of data and evidence reported.MethodsPrimary literature was identified by searching Scopus and Science Citation Index Expanded through Web of Science Core Collection databases. The methodologies provided in a previously published systematic map protocol were applied, and 90 primary research publications were subsequently identified. Data extraction from the identified literature included bibliometric data, discipline and type of research, type of data reported and how it was recorded, and data availability.FindingsThe identified literature consisted primarily of experimental (49%) and observational (39%) studies. The majority of the primary literature investigated corals in the ecoregions of Southern China (13%), Western Mediterranean (10%) and across a total of seven ecoregions grouped within Oceania (29%). Stressors reported in the literature as drivers of ocean warming reflect the standardisation of methods applied in reporting of events within the literature. Standardised metrics related to degree heating weeks (DHW) and marine heatwaves (MHW) have been reported when assessing the occurrence and severity of drivers, and are increasing in recent years, particularly in Australia. Finally, the need for increased research effort across much of the subtropics is evident, particularly for understudied regions such as the Western Indian Ocean where there are far fewer studies than other similar subtropical coral reef ecosystems.ConclusionsClimatic change, increasing ocean temperatures, and the impacts to subtropical and temperate coral reefs are of increasing concern to policy makers and researchers alike. This systematic map provides a broad overview of research topics and effort around the globe since 2010 and identifies areas where more research effort is urgently needed. Our study has identified major research clusters in Asia, Australia, the Mediterranean, and North America and gaps of research in regions such as the East Indian Oceans. Of the research conducted to date approximately one third reports on evidence related to marine protected areas and the vast majority of evidence is from close/territorial sea locations, providing important knowledge base for management of these areas. Of the 17 studies reporting on specific extreme events (rather than experimental studies which is the majority of evidence identified here) 13 have been published since 2019, with the majority reporting on events occurring in 2019/20 indicating a trend of increasing evidence in recent years (a total of 7 studies from 2010 to 2013, compared to over 10 studies published annually since 2019 up to mid-2023).
Environmental Eviden... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-024-00349-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Environmental Eviden... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-024-00349-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Part of book or chapter of book , Journal , Other literature type , Report 2017 France, Saudi Arabia, Italy, United Kingdom, United Kingdom, Netherlands, United Kingdom, Saudi Arabia, United Kingdom, ItalyPublisher:American Meteorological Society Funded by:EC | WAPITI, EC | EUSTACEEC| WAPITI ,EC| EUSTACELinda M. Keller; Martin Stengel; Sergio R. Signorini; Gabriel J. Wolken; Stephen C. Maberly; Don P. Chambers; Lincoln M. Alves; Claudia Schmid; D. van As; Andrew G. Fountain; Michael Riffler; Markus G. Donat; A. Rost Parsons; Michael P. Meredith; E. Hyung Park; Eric J. Alfaro; Jeannette Noetzli; Luis Alfonso López Álvarez; Martin Sharp; Curtis L. DeGasperi; Dmitry A. Streletskiy; Sean Quegan; Hannah K. Huelsing; Skie Tobin; Jan L. Lieser; Paul W. Stackhouse; Jeanette D. Wild; Craig S. Long; David Burgess; Vitali Fioletov; Jaqueline M. Spence; C. Jiménez; Robert A. Weller; L. Randriamarolaza; Andrea M. Ramos; Robert S. Fausto; Irina Petropavlovskikh; Martin Schmid; Sunny Sun-Mack; Mark Weber; Adrian R. Trotman; Viva Banzon; Michelle L. Santee; Jacqueline A. Richter-Menge; Juan José Nieto; David I. Berry; Kyle Hilburn; Cesar Azorin-Molina; Angela Benedetti; Christopher L. Sabine; Mesut Demircan; Kristin Gilbert; José Luis Stella; Shih-Yu Wang; Uma S. Bhatt; Vernie Marcellin; David A. Siegel; Sharon Stammerjohn; M. Crotwell; Susan E. Strahan; F. Di Giuseppe; Diego G. Miralles; Eric F. Wood; Dale F. Hurst; Viju O. John; Hugh W. Ducklow; Stephen A. Montzka; Robert F. Adler; Kit M. Kovacs; Eric S. Blake; Sarah E. Perkins-Kirkpatrick; Mark A. Lander; Hanne H. Christiansen; W. Paul Menzel; Kenneth Kerr; Michael J. Foster; Alexander Gruber; I-I Lin; Robert Whitewood; Kaisa Lakkala; Yan Xue; Adrian Simmons; Molly O. Baringer; Michael C. Pitts; M. U. Bardin; Masayoshi Ishii; Sergei Marchenko; Xiangze Jin; Thomas Mistelbauer; John A. Knaff; Martin T. Dokulil; Muyin Wang; Rick Lumpkin; Fatou Sima; Lucien Froidevaux; Alexander Kholodov; Zhe Feng; Doug Degenstein; Shinya Kobayashi; Mark Parrington; George J. Huffman; R. Sorbonne Gomez; Wayne R. Meier; Bryan J. Johnson; David Phillips; Elvira de Eyto; Abdolhassan Kazemi; M. Fossheim; Shohei Watanabe; Fatemeh Rahimzadeh; Jeremy T. Mathis; Richard A. Feely; Gustavo Goni; Christopher S. Meinen; Mark McCarthy; Jake Crouch; Matthew F. McCabe; Amal Sayouri; Larry Di Girolamo; Juan Quintana; K. Hansen; Patrick Minnis; Ricardo A. Locarnini; Shad O'Neel; Chunzai Wang; Natalya Kramarova; Nikolai I. Shiklomanov; Christopher W. Landsea; Guillaume Jumaux; Andrew Lorrey; Christian Lydersen; J. A. Ijampy; J. V. Revadekar; Deborah J. Misch; Sara W. Veasey; Piet Verburg; Derek S. Arndt; Reynaldo Pascual-Ramírez; José A. Marengo; Eric Leuliette; J. G. Cogley; Annie C. Joseph; G. V. Malkova; Sebastiaan Swart; Philip Jones; Andries Kruger; Petra R. Pearce; Nicolaus G. Adams; Kate M. Willett; James S. Famiglietti; Shenfu Dong; Lawrence Mudryk; Antje Inness; Colin Morice; Linda May; Andreas Becker; Jessica Blunden; R. Steven Nerem; Dmitry Drozdov; Junhong Wang; Sebastian Gerland; Seong-Joong Kim; R. S. W. van de Wal; Peiqun Zhang; Boyin Huang; Lucie A. Vincent; James A. Rusak; Raul Primicerio; M. Elkharrim; S. E. Tank; Paul A. Newman; C. J. P. P. Smeets; Christopher J. Merchant; G. Zhao; Benjamin D. Hamlington; Didier Monselesan; Owen R. Cooper; Catherine Ganter; Olivier Boucher; Caio A. S. Coelho; Michael G. Bosilovich; Pedro M. S. Monteiro; Sunke Schmidtko; Katja Trachte; Brian D. Bill; Andrew M. Paterson; Melisa Menendez; Anne C. Wilber; José L. Rodríguez Solís; Nicolas Metzl; Janne Hakkarainen; Mark Tschudi; Juan Arévalo; Isabella Velicogna; John Wahr; John J. Marra; Robert Dunn; Philip R. Thompson; Xavier Fettweis; Diego Loyola;Abstract Editor’s note: For easy download the posted pdf of the State of the Climate for 2017 is a low-resolution file. A high-resolution copy of the report is available by clicking here. Please be patient as it may take a few minutes for the high-resolution file to download.
CORE arrow_drop_down Utrecht University RepositoryPart of book or chapter of book . 2017Data sources: Utrecht University RepositoryUtrecht University RepositoryPart of book or chapter of book . 2016Data sources: Utrecht University RepositoryUtrecht University RepositoryPart of book or chapter of book . 2013Data sources: Utrecht University RepositoryArchiMer - Institutional Archive of IfremerOther literature type . 2017Data sources: ArchiMer - Institutional Archive of IfremerBulletin of the American Meteorological SocietyArticle . 2017Data sources: DANS (Data Archiving and Networked Services)Bulletin of the American Meteorological SocietyArticle . 2017 . Peer-reviewedData sources: CrossrefBulletin of the American Meteorological SocietyArticle . 2017Bulletin of the American Meteorological SocietyArticle . 2017 . Peer-reviewedData sources: European Union Open Data PortalBulletin of the American Meteorological SocietyArticle . 2017 . Peer-reviewedData sources: European Union Open Data PortalKing Abdullah University of Science and Technology: KAUST RepositoryReport . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Lincoln: Lincoln RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1175/2017bamsstateoftheclimate.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 162 citations 162 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert CORE arrow_drop_down Utrecht University RepositoryPart of book or chapter of book . 2017Data sources: Utrecht University RepositoryUtrecht University RepositoryPart of book or chapter of book . 2016Data sources: Utrecht University RepositoryUtrecht University RepositoryPart of book or chapter of book . 2013Data sources: Utrecht University RepositoryArchiMer - Institutional Archive of IfremerOther literature type . 2017Data sources: ArchiMer - Institutional Archive of IfremerBulletin of the American Meteorological SocietyArticle . 2017Data sources: DANS (Data Archiving and Networked Services)Bulletin of the American Meteorological SocietyArticle . 2017 . Peer-reviewedData sources: CrossrefBulletin of the American Meteorological SocietyArticle . 2017Bulletin of the American Meteorological SocietyArticle . 2017 . Peer-reviewedData sources: European Union Open Data PortalBulletin of the American Meteorological SocietyArticle . 2017 . Peer-reviewedData sources: European Union Open Data PortalKing Abdullah University of Science and Technology: KAUST RepositoryReport . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Lincoln: Lincoln RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1175/2017bamsstateoftheclimate.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 AustraliaPublisher:American Meteorological Society Purich, Ariaan; Cowan, Tim; Cai, Wenju; van Rensch, Peter; Uotila, Petteri; Pezza, Alexandre; Boschat, Ghyslaine; Perkins, Sarah;handle: 11343/52674
Abstract Atmospheric and oceanic conditions associated with southern Australian heat waves are examined using phase 5 of the Coupled Model Intercomparison Project (CMIP5) models. Accompanying work analyzing modeled heat wave statistics for Australia finds substantial increases in the frequency, duration, and temperature of heat waves by the end of the twenty-first century. This study assesses the ability of CMIP5 models to simulate the synoptic and oceanic conditions associated with southern Australian heat waves, and examines how the classical atmospheric setup associated with heat waves is projected to change in response to mean-state warming. To achieve this, near-surface temperature, mean sea level pressure, and sea surface temperature (SST) from the historical and high-emission simulations are analyzed. CMIP5 models are found to represent the synoptic setup associated with heat waves well, despite showing greater variation in simulating SST anomalies. The models project a weakening of the pressure couplet associated with future southern Australian heat waves, suggesting that even a non-classical synoptic setup is able to generate more frequent heat waves in a warmer world. A future poleward shift and strengthening of heat wave–inducing anticyclones is confirmed using a tracking scheme applied to model projections. Model consensus implies that while anticyclones associated with the hottest future southern Australian heat waves will be more intense and originate farther poleward, a greater proportion of heat waves occur in association with a weaker synoptic setup that, when combined with warmer mean-state temperatures, gives rise to more future heat waves.
Journal of Climate arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)University of Southern Queensland: USQ ePrintsArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1175/jcli-d-14-00098.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Climate arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)University of Southern Queensland: USQ ePrintsArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1175/jcli-d-14-00098.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:IOP Publishing Authors: Sarah E Perkins-Kirkpatrick; Linda Selvey; Philipp Aglas-Leitner; Nina Lansbury; +4 AuthorsSarah E Perkins-Kirkpatrick; Linda Selvey; Philipp Aglas-Leitner; Nina Lansbury; Samuel Hundessa; Dáithí Stone; Kristie L Ebi; Nicholas John Osborne;Abstract Determining the influence of climate change behind human mortality is of interest to many sectors. However, it is a fledgling field where studies have centered on northern hemisphere events. This study presents the first attribution assessment on the mortality burden of an Australian heatwave to climate change. We focus on excess heatwave- (defined by climatological definitions) related mortality in the state of Victoria that occurred during the 2009 southeast Australian heatwave. An epidemiological model derived from well-established methods defining the relationship between observed heatwave temperatures (95th, 97.5th and 99th percentiles) and mortality is applied to heatwaves in simulations that either include or omit anthropogenic climate forcing from eight climate models. Across all models, the frequency of a heatwave-related mortality event similar to the 2009 Victorian event has, on average, doubled under factual conditions relative to counterfactual conditions. Moreover, on average, around 6 ± 3–4 extra individuals out of 31 (an increase of 20%) died as a direct result of extreme temperatures due to anthropogenic influence on the climate. Despite the small total number of attributable deaths as per the epidemiological model, six out of eight climate models predicted a statistically significant anthropogenic influence, indicating that climate change increased the heatwave-related mortality impact of this event. We make clear that, in line with previous Australian-based studies, the focus on mortality relative to the top 5% of temperatures logically infers a smaller mortality signal relative to the top 50% of temperatures, as would be defined by a more general temperature-related epidemiological model. As research, planning and policy interest in the role of climate change behind the burden health—and other adverse impacts of weather and climate extremes—continues to grow, it is vital that interdisciplinary collaborations are nurtured, so that the resulting science is of high-quality rigour, and policy relevance.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/2752-5295/ada8cd&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/2752-5295/ada8cd&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2017 South Africa, Australia, South AfricaPublisher:Frontiers Media SA Funded by:ARC | Discovery Early Career Re...ARC| Discovery Early Career Researcher Award - Grant ID: DE140100952Eric C. J. Oliver; Eric C. J. Oliver; Eric C. J. Oliver; Albertus J. Smit; Sarah E. Perkins-Kirkpatrick; Andries Kruger; Andries Kruger; Robert W. Schlegel;handle: 2263/63320 , 10566/3260
As the mean temperatures of the worlds oceans increase, it is predicted that marine heatwaves (MHWs) will occur more frequently and with increased severity. However, it has been shown that variables other than increases in sea water temperature have been responsible for MHWs. To better understand these mechanisms driving MHWs we have utilized atmospheric (ERA-Interim) and oceanic (OISST, AVISO) data to examine the patterns around southern Africa during coastal (<400 m from the low water mark; measured in situ) MHWs. Nonmetric multidimensional scaling (NMDS) was first used to determine that the atmospheric and oceanic states during MHW are different from daily climatological states. Self-organizing maps (SOMs) were then used to cluster the MHW states into one of nine nodes to determine the predominant atmospheric and oceanic patterns present during these events. It was found that warm water forced onto the coast via anomalous ocean circulation was the predominant oceanic pattern during MHWs. Warm atmospheric temperatures over the subcontinent during onshore or alongshore winds were the most prominent atmospheric patterns. Roughly one third of the MHWs were clustered into a node with no clear patterns, which implied that they were not forced by a recurring atmospheric or oceanic state that could be described by the SOM analysis. Because warm atmospheric and/or oceanic temperature anomalies were not the only pattern associated with MHWs, the current trend of a warming earth does not necessarily mean that MHWs will increase apace; however, aseasonal variability in wind and current patterns was shown to be central to the formation of coastal MHWs, meaning that where climate systems shift from historic records, increases in MHWs will likely occur.
Frontiers in Marine ... arrow_drop_down UP Research Data RepositoryArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/2263/63320Data sources: Bielefeld Academic Search Engine (BASE)University of the Western Cap: UWC Research RepositoryArticle . 2017License: CC BYFull-Text: http://dx.doi.org/10.3389/fmars.2017.00323Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2017.00323&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 58 citations 58 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Frontiers in Marine ... arrow_drop_down UP Research Data RepositoryArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/2263/63320Data sources: Bielefeld Academic Search Engine (BASE)University of the Western Cap: UWC Research RepositoryArticle . 2017License: CC BYFull-Text: http://dx.doi.org/10.3389/fmars.2017.00323Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2017.00323&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 AustraliaPublisher:Springer Science and Business Media LLC Carly R. Tozer; Carly R. Tozer; Michael-Shawn Fletcher; Lindsay B. Hutley; Michael R. Kearney; Rebecca M. B. Harris; Rebecca M. B. Harris; Mike Letnic; Clifford Woodward; Clifford Woodward; Sarah E. Perkins-Kirkpatrick; Patrick J. Mitchell; Tomas A. Remenyi; Thomas Wernberg; Lynda E. Chambers; Norman C. Duke; Nigel R. Andrew; Grant J. Williamson; Adrienne B. Nicotra; Linda J. Beaumont; Marie R. Keatley; David M. J. S. Bowman; Tessa Vance; Shayne McGregor; Shayne McGregor;handle: 1885/251094
The interaction of gradual climate trends and extreme weather events since the turn of the century has triggered complex and, in some cases, catastrophic ecological responses around the world. We illustrate this using Australian examples within a press–pulse framework. Despite the Australian biota being adapted to high natural climate variability, recent combinations of climatic presses and pulses have led to population collapses, loss of relictual communities and shifts into novel ecosystems. These changes have been sudden and unpredictable, and may represent permanent transitions to new ecosystem states without adaptive management interventions. The press–pulse framework helps illuminate biological responses to climate change, grounds debate about suitable management interventions and highlights possible consequences of (non-) intervention.
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/251094Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-018-0187-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 383 citations 383 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/251094Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-018-0187-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2019 Australia, United KingdomPublisher:IOP Publishing Funded by:ARC | Future Fellowships - Gran..., ARC | Discovery Early Career Re..., ARC | Discovery Early Career Re... +1 projectsARC| Future Fellowships - Grant ID: FT170100106 ,ARC| Discovery Early Career Researcher Award - Grant ID: DE180100638 ,ARC| Discovery Early Career Researcher Award - Grant ID: DE160100092 ,UKRI| MaRIUS: Managing the Risks, Impacts and Uncertainties of droughts and water ScarcityLuke J Harrington; Sophie Lewis; Sarah E Perkins-Kirkpatrick; Andrew D King; Friederike E L Otto;handle: 11343/225795
Global-average temperatures are a powerful metric for both long-term climate change policy, and also to measure the aggregate fluctuations in weather experienced around the world. However, here we show how the consideration of anomalies in annual temperatures at the global land-average scale, particularly during extremely hot years, tends to overestimate the perceived severity of extreme heat actually felt by local communities during these events. Thus, when global-mean temperatures are used as a proxy to infer the role of climate change on the likelihood of witnessing hot years, the component of extreme event risk attributed to human influence can also be overstated. This study suggests multiple alternative approaches to characterise extreme weather events which have complex spatial signatures, each of which improve the representation of perceived experiences from the event when compared with the default approach of using area-averaged time-series. However, as the definition of an extreme event becomes more specific to the observed characteristics witnessed, changes are needed in the way researchers discuss the likelihood of witnessing ‘similar events’ with future climate change. Using the example of the 2016 hot year, we propose an alternative framework, termed the ‘Time of Maximum Similarity’, to show that events like the record-breaking annual temperatures of 2016 are most likely to be witnessed between 2010–2037, with hot years thereafter becoming significantly more severe than the heat of 2016.
Environmental Resear... arrow_drop_down Oxford University Research ArchiveArticle . 2018License: CC BYData sources: Oxford University Research ArchiveThe University of Melbourne: Digital RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aaf2dc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Environmental Resear... arrow_drop_down Oxford University Research ArchiveArticle . 2018License: CC BYData sources: Oxford University Research ArchiveThe University of Melbourne: Digital RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aaf2dc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Embargo end date: 01 Jan 2024 France, Switzerland, United States, BelgiumPublisher:Frontiers Media SA Funded by:EC | XAIDA, ARC | ARC Centres of Excellence..., NSF | Collaborative Research: U... +3 projectsEC| XAIDA ,ARC| ARC Centres of Excellences - Grant ID: CE170100023 ,NSF| Collaborative Research: Understanding the impact of Arctic sea ice loss on summertime climate change ,EC| iMIRACLI ,UKRI| Global Surface Air Temperature (GloSAT) ,ARC| ARC Centres of Excellence - Grant ID: CE230100012Authors: Sarah E. Perkins-Kirkpatrick; Sarah E. Perkins-Kirkpatrick; Lisa V. Alexander; Lisa V. Alexander; +36 AuthorsSarah E. Perkins-Kirkpatrick; Sarah E. Perkins-Kirkpatrick; Lisa V. Alexander; Lisa V. Alexander; Andrew D. King; Andrew D. King; Sarah F. Kew; Sjoukje Y. Philip; Clair Barnes; Douglas Maraun; Rupert F. Stuart-Smith; Rupert F. Stuart-Smith; Aglaé Jézéquel; Aglaé Jézéquel; Emanuele Bevacqua; Samantha Burgess; Erich Fischer; Gabriele C. Hegerl; Joyce Kimutai; Joyce Kimutai; Gerbrand Koren; Kamoru Abiodun Lawal; Kamoru Abiodun Lawal; Kamoru Abiodun Lawal; Seung-Ki Min; Seung-Ki Min; Mark New; Mark New; Mark New; Romaric C. Odoulami; Christina M. Patricola; Izidine Pinto; Aurélien Ribes; Tiffany A. Shaw; Wim Thiery; Blair Trewin; Robert Vautard; Michael Wehner; Jakob Zscheischler; Jakob Zscheischler;The field of extreme event attribution (EEA) has rapidly developed over the last two decades. Various methods have been developed and implemented, physical modelling capabilities have generally improved, the field of impact attribution has emerged, and assessments serve as a popular communication tool for conveying how climate change is influencing weather and climate events in the lived experience. However, a number of non-trivial challenges still remain that must be addressed by the community to secure further advancement of the field whilst ensuring scientific rigour and the appropriate use of attribution findings by stakeholders and associated applications. As part of a concept series commissioned by the World Climate Research Programme, this article discusses contemporary developments and challenges over six key domains relevant to EEA, and provides recommendations of where focus in the EEA field should be concentrated over the coming decade. These six domains are: (1) observations in the context of EEA; (2) extreme event definitions; (3) statistical methods; (4) physical modelling methods; (5) impact attribution; and (6) communication. Broadly, recommendations call for increased EEA assessments and capacity building, particularly for more vulnerable regions; contemporary guidelines for assessing the suitability of physical climate models; establishing best-practice methodologies for EEA on compound and record-shattering extremes; co-ordinated interdisciplinary engagement to develop scaffolding for impact attribution assessments and their suitability for use in broader applications; and increased and ongoing investment in EEA communication. To address these recommendations requires significant developments in multiple fields that either underpin (e.g., observations and monitoring; climate modelling) or are closely related to (e.g., compound and record-shattering events; climate impacts) EEA, as well as working consistently with experts outside of attribution and climate science more generally. However, if approached with investment, dedication, and coordination, tackling these challenges over the next decade will ensure robust EEA analysis, with tangible benefits to the broader global community.
Frontiers in Climate arrow_drop_down HAL-Ecole des Ponts ParisTechArticle . 2024License: CC BYData sources: HAL-Ecole des Ponts ParisTechVrije Universiteit Brussel Research PortalArticle . 2024Data sources: Vrije Universiteit Brussel Research PortalÉcole Polytechnique, Université Paris-Saclay: HALArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Knowledge@UChicago (University of Chicago)Article . 2025Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fclim.2024.1455023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Frontiers in Climate arrow_drop_down HAL-Ecole des Ponts ParisTechArticle . 2024License: CC BYData sources: HAL-Ecole des Ponts ParisTechVrije Universiteit Brussel Research PortalArticle . 2024Data sources: Vrije Universiteit Brussel Research PortalÉcole Polytechnique, Université Paris-Saclay: HALArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Knowledge@UChicago (University of Chicago)Article . 2025Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fclim.2024.1455023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United States, AustraliaPublisher:American Geophysical Union (AGU) Funded by:ARC | Future Fellowships - Gran..., ARC | Discovery Early Career Re...ARC| Future Fellowships - Grant ID: FT170100106 ,ARC| Discovery Early Career Researcher Award - Grant ID: DE180100638Authors: Andrew D. King; Sarah E. Perkins‐Kirkpatrick; Michael F. Wehner; Sophie C. Lewis;doi: 10.1029/2020ef001757
handle: 11343/273899
AbstractWe thank the Comment's authors for their considered critique of our paper. We respond to their main criticisms and hope that this discussion motivates further consideration of communication strategies for event attribution analyses.
The University of Me... arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/11343/273899Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2021Full-Text: https://escholarship.org/uc/item/67h2c3g6Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2020ef001757&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert The University of Me... arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/11343/273899Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2021Full-Text: https://escholarship.org/uc/item/67h2c3g6Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2020ef001757&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Australia, United States, United KingdomPublisher:IOP Publishing Funded by:UKRI | Half a degree Additional ..., UKRI | The stratospheric impact ..., ARC | ARC Centres of Excellence... +2 projectsUKRI| Half a degree Additional warming: Prognosis and Projected Impacts on Health (HAPPI-Health) ,UKRI| The stratospheric impact on extreme weather events ,ARC| ARC Centres of Excellences - Grant ID: CE170100023 ,ARC| Discovery Early Career Researcher Award - Grant ID: DE180100638 ,ARC| Future Fellowships - Grant ID: FT170100106S E Perkins-Kirkpatrick; D A Stone; D M Mitchell; S Rosier; A D King; Y T E Lo; J Pastor-Paz; D Frame; M Wehner;Abstract Investigations into the role of anthropogenic climate change in extreme weather events are now starting to extend into analysis of anthropogenic impacts on non-climate (e.g. socio-economic) systems. However, care needs to be taken when making this extension, because methodological choices regarding extreme weather attribution can become crucial when considering the events’ impacts. The fraction of attributable risk (FAR) method, useful in extreme weather attribution research, has a very specific interpretation concerning a class of events, and there is potential to misinterpret results from weather event analyses as being applicable to specific events and their impact outcomes. Using two case studies of meteorological extremes and their impacts, we argue that FAR is not generally appropriate when estimating the magnitude of the anthropogenic signal behind a specific impact. Attribution assessments on impacts should always be carried out in addition to assessment of the associated meteorological event, since it cannot be assumed that the anthropogenic signal behind the weather is equivalent to the signal behind the impact because of lags and nonlinearities in the processes through which the impact system reacts to weather. Whilst there are situations where employing FAR to understand the climate change signal behind a class of impacts is useful (e.g. ‘system breaking’ events), more useful results will generally be produced if attribution questions on specific impacts are reframed to focus on changes in the impact return value and magnitude across large samples of factual and counterfactual climate model and impact simulations. We advocate for constant interdisciplinary collaboration as essential for effective and robust impact attribution assessments.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2022Full-Text: https://escholarship.org/uc/item/775250c4Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/11343/310146Data sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ac44c8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 54 citations 54 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2022Full-Text: https://escholarship.org/uc/item/775250c4Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/11343/310146Data sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ac44c8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 AustraliaPublisher:Springer Science and Business Media LLC Man Lim Ho; Malgorzata Lagisz; Shinichi Nakagawa; Sarah Perkins-Kirkpatrick; Paige Sawyers; Charlotte Page; Bill Leggat; Troy Gaston; Alistair J. Hobday; Zoe Richards; Tracy Ainsworth;AbstractBackgroundSubtropical coral reefs are comparatively understudied compared to tropical coral reef ecosystems, yet also host a diverse and abundant array of marine life and provide substantial socio-economic benefits to communities. Research into the impacts of ocean warming on subtropical coral reefs has increased over the past two decades due to increase frequency and intensity of bleaching and degradation of these ecosystems. Understanding the extent of research effort and type of evidence assessing the response of subtropical corals and reefs to ocean warming provides valuable insight into global patterns in research efforts allowing critical knowledge gaps to be identified. A comprehensive understanding the impact of ocean warming on these systems will underpin our ability to predict and respond to future changes on subtropical coral reefs. Here, a systematic-map approach is used to identify recent research effort, from 2010 to 2023, and highlight patterns in the type, scale, and location of research conducted and as well as identify the availability of data and evidence reported.MethodsPrimary literature was identified by searching Scopus and Science Citation Index Expanded through Web of Science Core Collection databases. The methodologies provided in a previously published systematic map protocol were applied, and 90 primary research publications were subsequently identified. Data extraction from the identified literature included bibliometric data, discipline and type of research, type of data reported and how it was recorded, and data availability.FindingsThe identified literature consisted primarily of experimental (49%) and observational (39%) studies. The majority of the primary literature investigated corals in the ecoregions of Southern China (13%), Western Mediterranean (10%) and across a total of seven ecoregions grouped within Oceania (29%). Stressors reported in the literature as drivers of ocean warming reflect the standardisation of methods applied in reporting of events within the literature. Standardised metrics related to degree heating weeks (DHW) and marine heatwaves (MHW) have been reported when assessing the occurrence and severity of drivers, and are increasing in recent years, particularly in Australia. Finally, the need for increased research effort across much of the subtropics is evident, particularly for understudied regions such as the Western Indian Ocean where there are far fewer studies than other similar subtropical coral reef ecosystems.ConclusionsClimatic change, increasing ocean temperatures, and the impacts to subtropical and temperate coral reefs are of increasing concern to policy makers and researchers alike. This systematic map provides a broad overview of research topics and effort around the globe since 2010 and identifies areas where more research effort is urgently needed. Our study has identified major research clusters in Asia, Australia, the Mediterranean, and North America and gaps of research in regions such as the East Indian Oceans. Of the research conducted to date approximately one third reports on evidence related to marine protected areas and the vast majority of evidence is from close/territorial sea locations, providing important knowledge base for management of these areas. Of the 17 studies reporting on specific extreme events (rather than experimental studies which is the majority of evidence identified here) 13 have been published since 2019, with the majority reporting on events occurring in 2019/20 indicating a trend of increasing evidence in recent years (a total of 7 studies from 2010 to 2013, compared to over 10 studies published annually since 2019 up to mid-2023).
Environmental Eviden... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-024-00349-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Environmental Eviden... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-024-00349-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Part of book or chapter of book , Journal , Other literature type , Report 2017 France, Saudi Arabia, Italy, United Kingdom, United Kingdom, Netherlands, United Kingdom, Saudi Arabia, United Kingdom, ItalyPublisher:American Meteorological Society Funded by:EC | WAPITI, EC | EUSTACEEC| WAPITI ,EC| EUSTACELinda M. Keller; Martin Stengel; Sergio R. Signorini; Gabriel J. Wolken; Stephen C. Maberly; Don P. Chambers; Lincoln M. Alves; Claudia Schmid; D. van As; Andrew G. Fountain; Michael Riffler; Markus G. Donat; A. Rost Parsons; Michael P. Meredith; E. Hyung Park; Eric J. Alfaro; Jeannette Noetzli; Luis Alfonso López Álvarez; Martin Sharp; Curtis L. DeGasperi; Dmitry A. Streletskiy; Sean Quegan; Hannah K. Huelsing; Skie Tobin; Jan L. Lieser; Paul W. Stackhouse; Jeanette D. Wild; Craig S. Long; David Burgess; Vitali Fioletov; Jaqueline M. Spence; C. Jiménez; Robert A. Weller; L. Randriamarolaza; Andrea M. Ramos; Robert S. Fausto; Irina Petropavlovskikh; Martin Schmid; Sunny Sun-Mack; Mark Weber; Adrian R. Trotman; Viva Banzon; Michelle L. Santee; Jacqueline A. Richter-Menge; Juan José Nieto; David I. Berry; Kyle Hilburn; Cesar Azorin-Molina; Angela Benedetti; Christopher L. Sabine; Mesut Demircan; Kristin Gilbert; José Luis Stella; Shih-Yu Wang; Uma S. Bhatt; Vernie Marcellin; David A. Siegel; Sharon Stammerjohn; M. Crotwell; Susan E. Strahan; F. Di Giuseppe; Diego G. Miralles; Eric F. Wood; Dale F. Hurst; Viju O. John; Hugh W. Ducklow; Stephen A. Montzka; Robert F. Adler; Kit M. Kovacs; Eric S. Blake; Sarah E. Perkins-Kirkpatrick; Mark A. Lander; Hanne H. Christiansen; W. Paul Menzel; Kenneth Kerr; Michael J. Foster; Alexander Gruber; I-I Lin; Robert Whitewood; Kaisa Lakkala; Yan Xue; Adrian Simmons; Molly O. Baringer; Michael C. Pitts; M. U. Bardin; Masayoshi Ishii; Sergei Marchenko; Xiangze Jin; Thomas Mistelbauer; John A. Knaff; Martin T. Dokulil; Muyin Wang; Rick Lumpkin; Fatou Sima; Lucien Froidevaux; Alexander Kholodov; Zhe Feng; Doug Degenstein; Shinya Kobayashi; Mark Parrington; George J. Huffman; R. Sorbonne Gomez; Wayne R. Meier; Bryan J. Johnson; David Phillips; Elvira de Eyto; Abdolhassan Kazemi; M. Fossheim; Shohei Watanabe; Fatemeh Rahimzadeh; Jeremy T. Mathis; Richard A. Feely; Gustavo Goni; Christopher S. Meinen; Mark McCarthy; Jake Crouch; Matthew F. McCabe; Amal Sayouri; Larry Di Girolamo; Juan Quintana; K. Hansen; Patrick Minnis; Ricardo A. Locarnini; Shad O'Neel; Chunzai Wang; Natalya Kramarova; Nikolai I. Shiklomanov; Christopher W. Landsea; Guillaume Jumaux; Andrew Lorrey; Christian Lydersen; J. A. Ijampy; J. V. Revadekar; Deborah J. Misch; Sara W. Veasey; Piet Verburg; Derek S. Arndt; Reynaldo Pascual-Ramírez; José A. Marengo; Eric Leuliette; J. G. Cogley; Annie C. Joseph; G. V. Malkova; Sebastiaan Swart; Philip Jones; Andries Kruger; Petra R. Pearce; Nicolaus G. Adams; Kate M. Willett; James S. Famiglietti; Shenfu Dong; Lawrence Mudryk; Antje Inness; Colin Morice; Linda May; Andreas Becker; Jessica Blunden; R. Steven Nerem; Dmitry Drozdov; Junhong Wang; Sebastian Gerland; Seong-Joong Kim; R. S. W. van de Wal; Peiqun Zhang; Boyin Huang; Lucie A. Vincent; James A. Rusak; Raul Primicerio; M. Elkharrim; S. E. Tank; Paul A. Newman; C. J. P. P. Smeets; Christopher J. Merchant; G. Zhao; Benjamin D. Hamlington; Didier Monselesan; Owen R. Cooper; Catherine Ganter; Olivier Boucher; Caio A. S. Coelho; Michael G. Bosilovich; Pedro M. S. Monteiro; Sunke Schmidtko; Katja Trachte; Brian D. Bill; Andrew M. Paterson; Melisa Menendez; Anne C. Wilber; José L. Rodríguez Solís; Nicolas Metzl; Janne Hakkarainen; Mark Tschudi; Juan Arévalo; Isabella Velicogna; John Wahr; John J. Marra; Robert Dunn; Philip R. Thompson; Xavier Fettweis; Diego Loyola;Abstract Editor’s note: For easy download the posted pdf of the State of the Climate for 2017 is a low-resolution file. A high-resolution copy of the report is available by clicking here. Please be patient as it may take a few minutes for the high-resolution file to download.
CORE arrow_drop_down Utrecht University RepositoryPart of book or chapter of book . 2017Data sources: Utrecht University RepositoryUtrecht University RepositoryPart of book or chapter of book . 2016Data sources: Utrecht University RepositoryUtrecht University RepositoryPart of book or chapter of book . 2013Data sources: Utrecht University RepositoryArchiMer - Institutional Archive of IfremerOther literature type . 2017Data sources: ArchiMer - Institutional Archive of IfremerBulletin of the American Meteorological SocietyArticle . 2017Data sources: DANS (Data Archiving and Networked Services)Bulletin of the American Meteorological SocietyArticle . 2017 . Peer-reviewedData sources: CrossrefBulletin of the American Meteorological SocietyArticle . 2017Bulletin of the American Meteorological SocietyArticle . 2017 . Peer-reviewedData sources: European Union Open Data PortalBulletin of the American Meteorological SocietyArticle . 2017 . Peer-reviewedData sources: European Union Open Data PortalKing Abdullah University of Science and Technology: KAUST RepositoryReport . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Lincoln: Lincoln RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1175/2017bamsstateoftheclimate.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 162 citations 162 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert CORE arrow_drop_down Utrecht University RepositoryPart of book or chapter of book . 2017Data sources: Utrecht University RepositoryUtrecht University RepositoryPart of book or chapter of book . 2016Data sources: Utrecht University RepositoryUtrecht University RepositoryPart of book or chapter of book . 2013Data sources: Utrecht University RepositoryArchiMer - Institutional Archive of IfremerOther literature type . 2017Data sources: ArchiMer - Institutional Archive of IfremerBulletin of the American Meteorological SocietyArticle . 2017Data sources: DANS (Data Archiving and Networked Services)Bulletin of the American Meteorological SocietyArticle . 2017 . Peer-reviewedData sources: CrossrefBulletin of the American Meteorological SocietyArticle . 2017Bulletin of the American Meteorological SocietyArticle . 2017 . Peer-reviewedData sources: European Union Open Data PortalBulletin of the American Meteorological SocietyArticle . 2017 . Peer-reviewedData sources: European Union Open Data PortalKing Abdullah University of Science and Technology: KAUST RepositoryReport . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Lincoln: Lincoln RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1175/2017bamsstateoftheclimate.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 AustraliaPublisher:American Meteorological Society Purich, Ariaan; Cowan, Tim; Cai, Wenju; van Rensch, Peter; Uotila, Petteri; Pezza, Alexandre; Boschat, Ghyslaine; Perkins, Sarah;handle: 11343/52674
Abstract Atmospheric and oceanic conditions associated with southern Australian heat waves are examined using phase 5 of the Coupled Model Intercomparison Project (CMIP5) models. Accompanying work analyzing modeled heat wave statistics for Australia finds substantial increases in the frequency, duration, and temperature of heat waves by the end of the twenty-first century. This study assesses the ability of CMIP5 models to simulate the synoptic and oceanic conditions associated with southern Australian heat waves, and examines how the classical atmospheric setup associated with heat waves is projected to change in response to mean-state warming. To achieve this, near-surface temperature, mean sea level pressure, and sea surface temperature (SST) from the historical and high-emission simulations are analyzed. CMIP5 models are found to represent the synoptic setup associated with heat waves well, despite showing greater variation in simulating SST anomalies. The models project a weakening of the pressure couplet associated with future southern Australian heat waves, suggesting that even a non-classical synoptic setup is able to generate more frequent heat waves in a warmer world. A future poleward shift and strengthening of heat wave–inducing anticyclones is confirmed using a tracking scheme applied to model projections. Model consensus implies that while anticyclones associated with the hottest future southern Australian heat waves will be more intense and originate farther poleward, a greater proportion of heat waves occur in association with a weaker synoptic setup that, when combined with warmer mean-state temperatures, gives rise to more future heat waves.
Journal of Climate arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)University of Southern Queensland: USQ ePrintsArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1175/jcli-d-14-00098.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Climate arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)University of Southern Queensland: USQ ePrintsArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1175/jcli-d-14-00098.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:IOP Publishing Authors: Sarah E Perkins-Kirkpatrick; Linda Selvey; Philipp Aglas-Leitner; Nina Lansbury; +4 AuthorsSarah E Perkins-Kirkpatrick; Linda Selvey; Philipp Aglas-Leitner; Nina Lansbury; Samuel Hundessa; Dáithí Stone; Kristie L Ebi; Nicholas John Osborne;Abstract Determining the influence of climate change behind human mortality is of interest to many sectors. However, it is a fledgling field where studies have centered on northern hemisphere events. This study presents the first attribution assessment on the mortality burden of an Australian heatwave to climate change. We focus on excess heatwave- (defined by climatological definitions) related mortality in the state of Victoria that occurred during the 2009 southeast Australian heatwave. An epidemiological model derived from well-established methods defining the relationship between observed heatwave temperatures (95th, 97.5th and 99th percentiles) and mortality is applied to heatwaves in simulations that either include or omit anthropogenic climate forcing from eight climate models. Across all models, the frequency of a heatwave-related mortality event similar to the 2009 Victorian event has, on average, doubled under factual conditions relative to counterfactual conditions. Moreover, on average, around 6 ± 3–4 extra individuals out of 31 (an increase of 20%) died as a direct result of extreme temperatures due to anthropogenic influence on the climate. Despite the small total number of attributable deaths as per the epidemiological model, six out of eight climate models predicted a statistically significant anthropogenic influence, indicating that climate change increased the heatwave-related mortality impact of this event. We make clear that, in line with previous Australian-based studies, the focus on mortality relative to the top 5% of temperatures logically infers a smaller mortality signal relative to the top 50% of temperatures, as would be defined by a more general temperature-related epidemiological model. As research, planning and policy interest in the role of climate change behind the burden health—and other adverse impacts of weather and climate extremes—continues to grow, it is vital that interdisciplinary collaborations are nurtured, so that the resulting science is of high-quality rigour, and policy relevance.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/2752-5295/ada8cd&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/2752-5295/ada8cd&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu