- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
Funder
SDG [Beta]
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Funded by:EC | TRUST-AIEC| TRUST-AISakkas, Nikos; Yfantidou, Sofia; Daskaloyannis, Costas; Barbu, Eduard; Domnich, Marharyta;doi: 10.3390/en14206568
Energy demand forecasting is practiced in several time frames; different explanatory variables are used in each case to serve different decision support mandates. For example, in the short, daily, term building level, forecasting may serve as a performance baseline. On the other end, we have long-term, policy-oriented forecasting exercises. TIMES (an acronym for The Integrated Markal Efom System) allows us to model supply and anticipated technology shifts over a long-term horizon, often extending as far away in time as 2100. Between these two time frames, we also have a mid-term forecasting time frame, that of a few years ahead. Investigations here are aimed at policy support, although in a more mid-term horizon, we address issues such as investment planning and pricing. In this paper, we develop and evaluate statistical and neural network approaches for this mid-term forecasting of final energy and electricity for the residential sector in six EU countries (Germany, the Netherlands, Sweden, Spain, Portugal and Greece). Various possible approaches to model the explanatory variables used are presented, discussed, and assessed as to their suitability. Our end goal extends beyond model accuracy; we also include interpretability and counterfactual concepts and analysis, aiming at the development of a modelling approach that can provide decision support for strategies aimed at influencing energy demand.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/20/6568/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14206568&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/20/6568/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14206568&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Funded by:EC | TRUST-AIEC| TRUST-AINikos Sakkas; Sofia Yfanti; Pooja Shah; Nikitas Sakkas; Christina Chaniotakis; Costas Daskalakis; Eduard Barbu; Marharyta Domnich;Building electric energy is characterized by a significant increase of its uses (e.g. vehicle charging), a rapidly declining cost of all related data collection and a proliferation of smart grid concepts, including diverse and flexible electricity pricing schemes. Not surprisingly, an increased number of approaches have been proposed for its modeling and forecasting. In this work, we place our emphasis on three forecasting related issues. First, on the forecasting explainability, i.e. the ability to understand and explain to the user what shapes the forecast. To this extent we rely on concepts and approaches that are inherently explainable, such as the evolutionary approach of genetic programming (GP) and its associated symbolic expressions, as well as the so-called SHAP (SHapley Additive eXplanations) values, which is a well established model agnostic approach for explainability, especially in terms of feature importance. Second, we investigate the impact of the training timeframe on the forecasting accuracy; this is driven by the realization that a fast training would allow for faster deployment of forecasting in real life solutions. And third, we explore the concept of counterfactual analysis on actionable features, i.e. features that the user can really act upon and which therefore present an inherent advantage when it comes to decision support. We have found that SHAP values can provide important insights into the model explainability. As for GP models, we have found comparable and in some cases superior accuracy when compared to its neural-network and time-series counterparts but a rather questionable potential to produce crisp and insightful symbolic expressions, allowing a better insight into the model performance. We have also found, and report here on an important potential especially for practical, decision support, solutions of counterfactuals built on actionable features and short training timeframes.
Energies arrow_drop_down https://doi.org/10.20944/prepr...Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints202308.1230.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down https://doi.org/10.20944/prepr...Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints202308.1230.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Funded by:EC | TRUST-AIEC| TRUST-AISakkas, Nikos; Yfantidou, Sofia; Daskaloyannis, Costas; Barbu, Eduard; Domnich, Marharyta;doi: 10.3390/en14206568
Energy demand forecasting is practiced in several time frames; different explanatory variables are used in each case to serve different decision support mandates. For example, in the short, daily, term building level, forecasting may serve as a performance baseline. On the other end, we have long-term, policy-oriented forecasting exercises. TIMES (an acronym for The Integrated Markal Efom System) allows us to model supply and anticipated technology shifts over a long-term horizon, often extending as far away in time as 2100. Between these two time frames, we also have a mid-term forecasting time frame, that of a few years ahead. Investigations here are aimed at policy support, although in a more mid-term horizon, we address issues such as investment planning and pricing. In this paper, we develop and evaluate statistical and neural network approaches for this mid-term forecasting of final energy and electricity for the residential sector in six EU countries (Germany, the Netherlands, Sweden, Spain, Portugal and Greece). Various possible approaches to model the explanatory variables used are presented, discussed, and assessed as to their suitability. Our end goal extends beyond model accuracy; we also include interpretability and counterfactual concepts and analysis, aiming at the development of a modelling approach that can provide decision support for strategies aimed at influencing energy demand.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/20/6568/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14206568&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/20/6568/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14206568&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Funded by:EC | TRUST-AIEC| TRUST-AINikos Sakkas; Sofia Yfanti; Pooja Shah; Nikitas Sakkas; Christina Chaniotakis; Costas Daskalakis; Eduard Barbu; Marharyta Domnich;Building electric energy is characterized by a significant increase of its uses (e.g. vehicle charging), a rapidly declining cost of all related data collection and a proliferation of smart grid concepts, including diverse and flexible electricity pricing schemes. Not surprisingly, an increased number of approaches have been proposed for its modeling and forecasting. In this work, we place our emphasis on three forecasting related issues. First, on the forecasting explainability, i.e. the ability to understand and explain to the user what shapes the forecast. To this extent we rely on concepts and approaches that are inherently explainable, such as the evolutionary approach of genetic programming (GP) and its associated symbolic expressions, as well as the so-called SHAP (SHapley Additive eXplanations) values, which is a well established model agnostic approach for explainability, especially in terms of feature importance. Second, we investigate the impact of the training timeframe on the forecasting accuracy; this is driven by the realization that a fast training would allow for faster deployment of forecasting in real life solutions. And third, we explore the concept of counterfactual analysis on actionable features, i.e. features that the user can really act upon and which therefore present an inherent advantage when it comes to decision support. We have found that SHAP values can provide important insights into the model explainability. As for GP models, we have found comparable and in some cases superior accuracy when compared to its neural-network and time-series counterparts but a rather questionable potential to produce crisp and insightful symbolic expressions, allowing a better insight into the model performance. We have also found, and report here on an important potential especially for practical, decision support, solutions of counterfactuals built on actionable features and short training timeframes.
Energies arrow_drop_down https://doi.org/10.20944/prepr...Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints202308.1230.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down https://doi.org/10.20944/prepr...Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints202308.1230.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu