- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
SDG [Beta]
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2023Publisher:American Chemical Society (ACS) Authors: Qi Li; Shuwen Yan; Ruiyang Xiao; Weihua Song;pmid: 37219455
Chlorination is one of the most common disinfection methods for water treatments. Although the direct photolysis of free available chlorine (FAC) induced by solar irradiation has been extensively investigated, the photosensitized transformation of FAC caused by chromophoric dissolved organic matter (CDOM) has not previously been examined. Our results suggest that the photosensitized transformation of FAC can occur in sunlit CDOM-enriched solutions. Interestingly, the photosensitized decay of FAC can be fitted using a combined zero- and first-order kinetic model. The photogenerated O2•- from CDOM contributes to the zero-order kinetic component. The reductive triplet CDOM (3CDOM*) contributes to the pseudo-first-order decay kinetic component. The bimolecular reaction rate constants of the model triplet (3-methoxyacetophenone) with HOCl and OCl- were (3.6 ± 0.2) × 109 and (2.7 ± 0.3) × 109 M-1 s-1, respectively. Under simulated solar irradiation, the quantum yield coefficient of the reductive 3CDOM* toward FAC attenuation (fFAC = 840 ± 40 M-1) was 13 times greater than that of the oxidative 3CDOM* toward trimethylphenol (TMP) attenuation (fTMP = 64 ± 4 M-1). This study provides new insights into the photochemical transformation of FAC in sunlit surface waters, and the results are applicable when sunlight/FAC system is employed as an advanced oxidation process.
Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2023 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.3c02349&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2023 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.3c02349&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:American Chemical Society (ACS) Yiqi Yan; Zongsu Wei; Xiaoguang Duan; Mingce Long; Richard Spinney; Dionysios D. Dionysiou; Ruiyang Xiao; Pedro J. J. Alvarez;pmid: 37535865
Urbanization and industrialization have exerted significant adverse effects on water quality, resulting in a growing need for reliable and eco-friendly treatment technologies. Persulfate (PS)-based advanced oxidation processes (AOPs) are emerging as viable technologies to treat challenging industrial wastewaters or remediate groundwater impacted by hazardous wastes. While the generated reactive species can degrade a variety of priority organic contaminants through radical and nonradical pathways, there is a lack of systematic and in-depth comparison of these pathways for practical implementation in different treatment scenarios. Our comparative analysis of reaction rate constants for radical vs. nonradical species indicates that radical-based AOPs may achieve high removal efficiency of organic contaminants with relatively short contact time. Nonradical AOPs feature advantages with minimal water matrix interference for complex wastewater treatments. Nonradical species (e.g., singlet oxygen, high-valent metals, and surface activated PS) preferentially react with contaminants bearing electron-donating groups, allowing enhancement of degradation efficiency of known target contaminants. For byproduct formation, analytical limitations and computational chemistry applications are also considered. Finally, we propose a holistically estimated electrical energy per order of reaction (EE/O) parameter and show significantly higher energy requirements for the nonradical pathways. Overall, these critical comparisons help prioritize basic research on PS-based AOPs and inform the merits and limitations of system-specific applications.
PURE Aarhus Universi... arrow_drop_down Environmental Science & TechnologyArticle . 2023 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.3c05153&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu268 citations 268 popularity Top 10% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert PURE Aarhus Universi... arrow_drop_down Environmental Science & TechnologyArticle . 2023 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.3c05153&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2023Publisher:American Chemical Society (ACS) Authors: Qi Li; Shuwen Yan; Ruiyang Xiao; Weihua Song;pmid: 37219455
Chlorination is one of the most common disinfection methods for water treatments. Although the direct photolysis of free available chlorine (FAC) induced by solar irradiation has been extensively investigated, the photosensitized transformation of FAC caused by chromophoric dissolved organic matter (CDOM) has not previously been examined. Our results suggest that the photosensitized transformation of FAC can occur in sunlit CDOM-enriched solutions. Interestingly, the photosensitized decay of FAC can be fitted using a combined zero- and first-order kinetic model. The photogenerated O2•- from CDOM contributes to the zero-order kinetic component. The reductive triplet CDOM (3CDOM*) contributes to the pseudo-first-order decay kinetic component. The bimolecular reaction rate constants of the model triplet (3-methoxyacetophenone) with HOCl and OCl- were (3.6 ± 0.2) × 109 and (2.7 ± 0.3) × 109 M-1 s-1, respectively. Under simulated solar irradiation, the quantum yield coefficient of the reductive 3CDOM* toward FAC attenuation (fFAC = 840 ± 40 M-1) was 13 times greater than that of the oxidative 3CDOM* toward trimethylphenol (TMP) attenuation (fTMP = 64 ± 4 M-1). This study provides new insights into the photochemical transformation of FAC in sunlit surface waters, and the results are applicable when sunlight/FAC system is employed as an advanced oxidation process.
Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2023 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.3c02349&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2023 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.3c02349&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:American Chemical Society (ACS) Yiqi Yan; Zongsu Wei; Xiaoguang Duan; Mingce Long; Richard Spinney; Dionysios D. Dionysiou; Ruiyang Xiao; Pedro J. J. Alvarez;pmid: 37535865
Urbanization and industrialization have exerted significant adverse effects on water quality, resulting in a growing need for reliable and eco-friendly treatment technologies. Persulfate (PS)-based advanced oxidation processes (AOPs) are emerging as viable technologies to treat challenging industrial wastewaters or remediate groundwater impacted by hazardous wastes. While the generated reactive species can degrade a variety of priority organic contaminants through radical and nonradical pathways, there is a lack of systematic and in-depth comparison of these pathways for practical implementation in different treatment scenarios. Our comparative analysis of reaction rate constants for radical vs. nonradical species indicates that radical-based AOPs may achieve high removal efficiency of organic contaminants with relatively short contact time. Nonradical AOPs feature advantages with minimal water matrix interference for complex wastewater treatments. Nonradical species (e.g., singlet oxygen, high-valent metals, and surface activated PS) preferentially react with contaminants bearing electron-donating groups, allowing enhancement of degradation efficiency of known target contaminants. For byproduct formation, analytical limitations and computational chemistry applications are also considered. Finally, we propose a holistically estimated electrical energy per order of reaction (EE/O) parameter and show significantly higher energy requirements for the nonradical pathways. Overall, these critical comparisons help prioritize basic research on PS-based AOPs and inform the merits and limitations of system-specific applications.
PURE Aarhus Universi... arrow_drop_down Environmental Science & TechnologyArticle . 2023 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.3c05153&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu268 citations 268 popularity Top 10% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert PURE Aarhus Universi... arrow_drop_down Environmental Science & TechnologyArticle . 2023 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.3c05153&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu