- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Authors: Agnieszka Starzyk; Kinga Rybak-Niedziółka; Aleksandra Nowysz; Janusz Marchwiński; +12 AuthorsAgnieszka Starzyk; Kinga Rybak-Niedziółka; Aleksandra Nowysz; Janusz Marchwiński; Alicja Kozarzewska; Joanna Koszewska; Anna Piętocha; Polina Vietrova; Przemysław Łacek; Mikołaj Donderewicz; Karol Langie; Katarzyna Walasek; Karol Zawada; Ivanna Voronkova; Barbara Francke; Anna Podlasek;doi: 10.3390/en17174502
A Carbon Footprint (CF) is defined as the total emissions of greenhouse gases, primarily carbon dioxide, methane, and nitrous oxide, and is a specific type of Environmental Footprint that measures human impact on the environment. Carbon dioxide emissions are a major contributor to anthropogenic greenhouse gases driving climate change. Wood, as a renewable and ecological material, has relatively low carbon emissions. The study aimed to review and analyze the criteria influencing the feasibility of constructing modern zero-carbon wooden buildings. The review was conducted in two phases: (i) a literature review and (ii) an assessment of existing buildings. The preliminary research led to (i) narrowing the focus to the years 2020–2024 and (ii) identifying key criteria for analysis: sustainable material sourcing, carbon sequestration, energy efficiency, life cycle assessment (LCA), and innovative construction practices. The study’s findings indicate that all these criteria play a vital role in the design and construction of new zero-carbon wooden buildings. They highlight the significant potential of wood as a renewable material in achieving zero-carbon buildings (ZCBs), positioning it as a compelling alternative to traditional construction materials. However, the research also underscores that despite wood’s numerous potential benefits, its implementation in ZCBs faces several challenges, including social, regulatory, and financial barriers.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17174502&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17174502&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Barbara Francke; Anna Szymczak-Graczyk; Barbara Ksit; Jarosław Szulc; Jan Sieczkowski;doi: 10.3390/en16093647
This manuscript provides an overview of the most commonly-produced bitumen roofing sheets, focusing on the types of reinforcements used for their production and the reinforcements’ effects on the durability of tensile mechanical properties of roofing sheets under thermal loads. The paper includes the analysis of working conditions of roof coverings in the mid-European transitional climate, i.e., exposed to temperatures passing through 0 °C for three seasons in a year, periodic exposure to negative temperatures reaching −15 °C and positive temperatures up to +70 °C, justifying the above-mentioned emphasis on thermal load. It draws attention to technical problems related to the cooperation of roofing sheets with roofing substrates, with particular emphasis on concrete substrates. For the purposes of the work, the analyses were carried out with regard to the assessment of the service life of roof coverings made of various reinforcements working in conditions of variable temperatures and thus exposed to the transfer of thermal movements of substrate plates. The analyses also included the impact of different coefficients of thermal expansion of the materials in contact with other materials within roof coverings on the incidence of damage to cover layers. Particular attention was paid to the conditions resulting from the production process of roofing sheets effect on the durability of roof coverings made of these materials. Additionally, there were set directions for further work to calculate the impact of stresses, arising in layers of roof coverings during their operation in changeable negative and positive temperatures, on the incidence of mechanical damage to these coverings.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16093647&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16093647&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Authors: Agnieszka Starzyk; Kinga Rybak-Niedziółka; Aleksandra Nowysz; Janusz Marchwiński; +12 AuthorsAgnieszka Starzyk; Kinga Rybak-Niedziółka; Aleksandra Nowysz; Janusz Marchwiński; Alicja Kozarzewska; Joanna Koszewska; Anna Piętocha; Polina Vietrova; Przemysław Łacek; Mikołaj Donderewicz; Karol Langie; Katarzyna Walasek; Karol Zawada; Ivanna Voronkova; Barbara Francke; Anna Podlasek;doi: 10.3390/en17174502
A Carbon Footprint (CF) is defined as the total emissions of greenhouse gases, primarily carbon dioxide, methane, and nitrous oxide, and is a specific type of Environmental Footprint that measures human impact on the environment. Carbon dioxide emissions are a major contributor to anthropogenic greenhouse gases driving climate change. Wood, as a renewable and ecological material, has relatively low carbon emissions. The study aimed to review and analyze the criteria influencing the feasibility of constructing modern zero-carbon wooden buildings. The review was conducted in two phases: (i) a literature review and (ii) an assessment of existing buildings. The preliminary research led to (i) narrowing the focus to the years 2020–2024 and (ii) identifying key criteria for analysis: sustainable material sourcing, carbon sequestration, energy efficiency, life cycle assessment (LCA), and innovative construction practices. The study’s findings indicate that all these criteria play a vital role in the design and construction of new zero-carbon wooden buildings. They highlight the significant potential of wood as a renewable material in achieving zero-carbon buildings (ZCBs), positioning it as a compelling alternative to traditional construction materials. However, the research also underscores that despite wood’s numerous potential benefits, its implementation in ZCBs faces several challenges, including social, regulatory, and financial barriers.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17174502&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17174502&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Barbara Francke; Anna Szymczak-Graczyk; Barbara Ksit; Jarosław Szulc; Jan Sieczkowski;doi: 10.3390/en16093647
This manuscript provides an overview of the most commonly-produced bitumen roofing sheets, focusing on the types of reinforcements used for their production and the reinforcements’ effects on the durability of tensile mechanical properties of roofing sheets under thermal loads. The paper includes the analysis of working conditions of roof coverings in the mid-European transitional climate, i.e., exposed to temperatures passing through 0 °C for three seasons in a year, periodic exposure to negative temperatures reaching −15 °C and positive temperatures up to +70 °C, justifying the above-mentioned emphasis on thermal load. It draws attention to technical problems related to the cooperation of roofing sheets with roofing substrates, with particular emphasis on concrete substrates. For the purposes of the work, the analyses were carried out with regard to the assessment of the service life of roof coverings made of various reinforcements working in conditions of variable temperatures and thus exposed to the transfer of thermal movements of substrate plates. The analyses also included the impact of different coefficients of thermal expansion of the materials in contact with other materials within roof coverings on the incidence of damage to cover layers. Particular attention was paid to the conditions resulting from the production process of roofing sheets effect on the durability of roof coverings made of these materials. Additionally, there were set directions for further work to calculate the impact of stresses, arising in layers of roof coverings during their operation in changeable negative and positive temperatures, on the incidence of mechanical damage to these coverings.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16093647&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16093647&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu