- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2022Publisher:Wiley Lei Zhang; Hanqin Tian; Hao Shi; Shufen Pan; Jinfeng Chang; Shree R. S. Dangal; Xiaoyu Qin; Siyuan Wang; Francesco N. Tubiello; Josep G. Canadell; Robert B. Jackson;doi: 10.1111/gcb.16280
pmid: 35642457
AbstractLivestock contributes approximately one‐third of global anthropogenic methane (CH4) emissions. Quantifying the spatial and temporal variations of these emissions is crucial for climate change mitigation. Although country‐level information is reported regularly through national inventories and global databases, spatially explicit quantification of century‐long dynamics of CH4 emissions from livestock has been poorly investigated. Using the Tier 2 method adopted from the 2019 Refinement to 2006 IPCC guidelines, we estimated CH4 emissions from global livestock at a spatial resolution of 0.083° (~9 km at the equator) during the period 1890–2019. We find that global CH4 emissions from livestock increased from 31.8 [26.5–37.1] (mean [minimum−maximum of 95% confidence interval) Tg CH4 yr−1 in 1890 to 131.7 [109.6–153.7] Tg CH4 yr−1 in 2019, a fourfold increase in the past 130 years. The growth in global CH4 emissions mostly occurred after 1950 and was mainly attributed to the cattle sector. Our estimate shows faster growth in livestock CH4 emissions as compared to the previous Tier 1 estimates and is ~20% higher than the estimate from FAOSTAT for the year 2019. Regionally, South Asia, Brazil, North Africa, China, the United States, Western Europe, and Equatorial Africa shared the majority of the global emissions in the 2010s. South Asia, tropical Africa, and Brazil have dominated the growth in global CH4 emissions from livestock in the recent three decades. Changes in livestock CH4 emissions were primarily associated with changes in population and national income and were also affected by the policy, diet shifts, livestock productivity improvement, and international trade. The new geospatial information on the magnitude and trends of livestock CH4 emissions identifies emission hotspots and spatial–temporal patterns, which will help to guide meaningful CH4 mitigation practices in the livestock sector at both local and global scales.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16280&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu40 citations 40 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16280&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United StatesPublisher:American Geophysical Union (AGU) Shree R. S. Dangal; Hanqin Tian; Chaoqun Lu; Wei Ren; Shufen Pan; Jia Yang; Nicola Di Cosmo; Amy Hessl;doi: 10.1002/2016ms000904
handle: 20.500.12876/23234
AbstractMammalian herbivores are an essential component of grassland and savanna ecosystems, and with feedbacks to the climate system. To date, the response and feedbacks of mammalian herbivores to changes in both abiotic and biotic factors are poorly quantified and not adequately represented in the current global land surface modeling framework. In this study, we coupled herbivore population dynamics in a global land model (the Dynamic Land Ecosystem Model, DLEM 3.0) to simulate populations of horses, cattle, sheep, and goats, and their responses to changes in multiple environmental factors at the site level across different continents during 1980–2010. Simulated results show that the model is capable of reproducing observed herbivore population dynamics across all sites for these animal groups. Our simulation results also indicate that during this period, climate extremes led to a maximum mortality of 27% of the total herbivores in Mongolia. Across all sites, herbivores reduced aboveground net primary productivity (ANPP) and heterotrophic respiration (Rh) by 14% and 15%, respectively (p < 0.05). With adequate parameterization, the model can be used for historical assessment and future prediction of mammalian herbivore populations and their relevant impacts on biogeochemical cycles. Our simulation results demonstrate a strong coupling between primary producers and consumers, indicating that inclusion of herbivores into the global land modeling framework is essential to better understand the potentially large effect of herbivores on carbon cycles in grassland and savanna ecosystems.
Journal of Advances ... arrow_drop_down Journal of Advances in Modeling Earth SystemsArticle . 2017 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefDigital Repository @ Iowa State UniversityArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2016ms000904&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Advances ... arrow_drop_down Journal of Advances in Modeling Earth SystemsArticle . 2017 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefDigital Repository @ Iowa State UniversityArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2016ms000904&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:IOP Publishing Shree R S Dangal; Hanqin Tian; Shufen Pan; Lei Zhang; Rongting Xu;Abstract Grassland ecosystems play an essential role in climate regulation through carbon (C) storage in plant and soil. But, anthropogenic practices such as livestock grazing, grazing related excreta nitrogen (N) deposition, and manure/fertilizer N application have the potential to reduce the effectiveness of grassland C sink through increased nitrous oxide (N2O) and methane (CH4) emissions. Although the effect of anthropogenic activities on net greenhouse gas (GHG) fluxes in grassland ecosystems have been investigated at local to regional scales, estimates of net GHG balance at the global scale remains uncertain. With the data-model framework integrating empirical estimates of livestock CH4 emissions with process-based modeling estimates of land CO2, N2O and CH4 fluxes, we examined the overall global warming potential (GWP) of grassland ecosystems during 1961–2010. We then quantified the grassland-specific and regional variations to identify hotspots of GHG fluxes. Our results show that, over a 100-year time horizon, grassland ecosystems sequestered a cumulative total of 113.9 Pg CO2-eq in plant and soil, but then released 91.9 Pg CO2-eq to the atmosphere, offsetting 81% of the net CO2 sink. We also found large grassland-specific variations in net GHG fluxes, with pasturelands acting as a small GHG source of 1.52 ± 143 Tg CO2-eq yr−1 (mean ± 1.0 s.d.) and rangelands a strong GHG sink (−442 ± 266 Tg CO2-eq yr−1) during 1961–2010. Regionally, Europe acted as a GHG source of 23 ± 10 Tg CO2-eq yr−1, while other regions (i.e. Africa, Southern Asia) were strong GHG sinks during 2001–2010. Our study highlights the importance of considering regional and grassland-specific differences in GHG fluxes for guiding future management and climate mitigation strategies in global grasslands.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/abaa79&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/abaa79&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Wiley Funded by:NSF | CNH: Pluvials, Droughts, ...NSF| CNH: Pluvials, Droughts, Energetics, and the Mongol EmpireShufen Pan; Shufen Pan; Bowen Zhang; Jia Yang; Chaoqun Lu; Hanqin Tian; Hanqin Tian; Shree R. S. Dangal;doi: 10.1111/gcb.13709
pmid: 28370720
AbstractHuman demand for livestock products has increased rapidly during the past few decades largely due to dietary transition and population growth, with significant impact on climate and the environment. The contribution of ruminant livestock to greenhouse gas (GHG) emissions has been investigated extensively at various scales from regional to global, but the long‐term trend, regional variation and drivers of methane (CH4) emission remain unclear. In this study, we use Intergovernmental Panel on Climate Change (IPCC) Tier II guidelines to quantify the evolution of CH4 emissions from ruminant livestock during 1890–2014. We estimate that total CH4 emissions in 2014 was 97.1 million tonnes (MT) CH4 or 2.72 Gigatonnes (Gt) CO2‐eq (1 MT = 1012 g, 1 Gt = 1015 g) from ruminant livestock, which accounted for 47%–54% of all non‐CO2 GHG emissions from the agricultural sector. Our estimate shows that CH4 emissions from the ruminant livestock had increased by 332% (73.6 MT CH4 or 2.06 Gt CO2‐eq) since the 1890s. Our results further indicate that livestock sector in drylands had 36% higher emission intensity (CH4 emissions/km2) compared to that in nondrylands in 2014, due to the combined effect of higher rate of increase in livestock population and low feed quality. We also find that the contribution of developing regions (Africa, Asia and Latin America) to the total CH4 emissions had increased from 51.7% in the 1890s to 72.5% in the 2010s. These changes were driven by increases in livestock numbers (LU units) by up to 121% in developing regions, but decreases in livestock numbers and emission intensity (emission/km2) by up to 47% and 32%, respectively, in developed regions. Our results indicate that future increases in livestock production would likely contribute to higher CH4 emissions, unless effective strategies to mitigate GHG emissions in livestock system are implemented.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13709&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 116 citations 116 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13709&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2022Publisher:Wiley Lei Zhang; Hanqin Tian; Hao Shi; Shufen Pan; Jinfeng Chang; Shree R. S. Dangal; Xiaoyu Qin; Siyuan Wang; Francesco N. Tubiello; Josep G. Canadell; Robert B. Jackson;doi: 10.1111/gcb.16280
pmid: 35642457
AbstractLivestock contributes approximately one‐third of global anthropogenic methane (CH4) emissions. Quantifying the spatial and temporal variations of these emissions is crucial for climate change mitigation. Although country‐level information is reported regularly through national inventories and global databases, spatially explicit quantification of century‐long dynamics of CH4 emissions from livestock has been poorly investigated. Using the Tier 2 method adopted from the 2019 Refinement to 2006 IPCC guidelines, we estimated CH4 emissions from global livestock at a spatial resolution of 0.083° (~9 km at the equator) during the period 1890–2019. We find that global CH4 emissions from livestock increased from 31.8 [26.5–37.1] (mean [minimum−maximum of 95% confidence interval) Tg CH4 yr−1 in 1890 to 131.7 [109.6–153.7] Tg CH4 yr−1 in 2019, a fourfold increase in the past 130 years. The growth in global CH4 emissions mostly occurred after 1950 and was mainly attributed to the cattle sector. Our estimate shows faster growth in livestock CH4 emissions as compared to the previous Tier 1 estimates and is ~20% higher than the estimate from FAOSTAT for the year 2019. Regionally, South Asia, Brazil, North Africa, China, the United States, Western Europe, and Equatorial Africa shared the majority of the global emissions in the 2010s. South Asia, tropical Africa, and Brazil have dominated the growth in global CH4 emissions from livestock in the recent three decades. Changes in livestock CH4 emissions were primarily associated with changes in population and national income and were also affected by the policy, diet shifts, livestock productivity improvement, and international trade. The new geospatial information on the magnitude and trends of livestock CH4 emissions identifies emission hotspots and spatial–temporal patterns, which will help to guide meaningful CH4 mitigation practices in the livestock sector at both local and global scales.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16280&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu40 citations 40 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16280&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United StatesPublisher:American Geophysical Union (AGU) Shree R. S. Dangal; Hanqin Tian; Chaoqun Lu; Wei Ren; Shufen Pan; Jia Yang; Nicola Di Cosmo; Amy Hessl;doi: 10.1002/2016ms000904
handle: 20.500.12876/23234
AbstractMammalian herbivores are an essential component of grassland and savanna ecosystems, and with feedbacks to the climate system. To date, the response and feedbacks of mammalian herbivores to changes in both abiotic and biotic factors are poorly quantified and not adequately represented in the current global land surface modeling framework. In this study, we coupled herbivore population dynamics in a global land model (the Dynamic Land Ecosystem Model, DLEM 3.0) to simulate populations of horses, cattle, sheep, and goats, and their responses to changes in multiple environmental factors at the site level across different continents during 1980–2010. Simulated results show that the model is capable of reproducing observed herbivore population dynamics across all sites for these animal groups. Our simulation results also indicate that during this period, climate extremes led to a maximum mortality of 27% of the total herbivores in Mongolia. Across all sites, herbivores reduced aboveground net primary productivity (ANPP) and heterotrophic respiration (Rh) by 14% and 15%, respectively (p < 0.05). With adequate parameterization, the model can be used for historical assessment and future prediction of mammalian herbivore populations and their relevant impacts on biogeochemical cycles. Our simulation results demonstrate a strong coupling between primary producers and consumers, indicating that inclusion of herbivores into the global land modeling framework is essential to better understand the potentially large effect of herbivores on carbon cycles in grassland and savanna ecosystems.
Journal of Advances ... arrow_drop_down Journal of Advances in Modeling Earth SystemsArticle . 2017 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefDigital Repository @ Iowa State UniversityArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2016ms000904&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Advances ... arrow_drop_down Journal of Advances in Modeling Earth SystemsArticle . 2017 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefDigital Repository @ Iowa State UniversityArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2016ms000904&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:IOP Publishing Shree R S Dangal; Hanqin Tian; Shufen Pan; Lei Zhang; Rongting Xu;Abstract Grassland ecosystems play an essential role in climate regulation through carbon (C) storage in plant and soil. But, anthropogenic practices such as livestock grazing, grazing related excreta nitrogen (N) deposition, and manure/fertilizer N application have the potential to reduce the effectiveness of grassland C sink through increased nitrous oxide (N2O) and methane (CH4) emissions. Although the effect of anthropogenic activities on net greenhouse gas (GHG) fluxes in grassland ecosystems have been investigated at local to regional scales, estimates of net GHG balance at the global scale remains uncertain. With the data-model framework integrating empirical estimates of livestock CH4 emissions with process-based modeling estimates of land CO2, N2O and CH4 fluxes, we examined the overall global warming potential (GWP) of grassland ecosystems during 1961–2010. We then quantified the grassland-specific and regional variations to identify hotspots of GHG fluxes. Our results show that, over a 100-year time horizon, grassland ecosystems sequestered a cumulative total of 113.9 Pg CO2-eq in plant and soil, but then released 91.9 Pg CO2-eq to the atmosphere, offsetting 81% of the net CO2 sink. We also found large grassland-specific variations in net GHG fluxes, with pasturelands acting as a small GHG source of 1.52 ± 143 Tg CO2-eq yr−1 (mean ± 1.0 s.d.) and rangelands a strong GHG sink (−442 ± 266 Tg CO2-eq yr−1) during 1961–2010. Regionally, Europe acted as a GHG source of 23 ± 10 Tg CO2-eq yr−1, while other regions (i.e. Africa, Southern Asia) were strong GHG sinks during 2001–2010. Our study highlights the importance of considering regional and grassland-specific differences in GHG fluxes for guiding future management and climate mitigation strategies in global grasslands.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/abaa79&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/abaa79&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Wiley Funded by:NSF | CNH: Pluvials, Droughts, ...NSF| CNH: Pluvials, Droughts, Energetics, and the Mongol EmpireShufen Pan; Shufen Pan; Bowen Zhang; Jia Yang; Chaoqun Lu; Hanqin Tian; Hanqin Tian; Shree R. S. Dangal;doi: 10.1111/gcb.13709
pmid: 28370720
AbstractHuman demand for livestock products has increased rapidly during the past few decades largely due to dietary transition and population growth, with significant impact on climate and the environment. The contribution of ruminant livestock to greenhouse gas (GHG) emissions has been investigated extensively at various scales from regional to global, but the long‐term trend, regional variation and drivers of methane (CH4) emission remain unclear. In this study, we use Intergovernmental Panel on Climate Change (IPCC) Tier II guidelines to quantify the evolution of CH4 emissions from ruminant livestock during 1890–2014. We estimate that total CH4 emissions in 2014 was 97.1 million tonnes (MT) CH4 or 2.72 Gigatonnes (Gt) CO2‐eq (1 MT = 1012 g, 1 Gt = 1015 g) from ruminant livestock, which accounted for 47%–54% of all non‐CO2 GHG emissions from the agricultural sector. Our estimate shows that CH4 emissions from the ruminant livestock had increased by 332% (73.6 MT CH4 or 2.06 Gt CO2‐eq) since the 1890s. Our results further indicate that livestock sector in drylands had 36% higher emission intensity (CH4 emissions/km2) compared to that in nondrylands in 2014, due to the combined effect of higher rate of increase in livestock population and low feed quality. We also find that the contribution of developing regions (Africa, Asia and Latin America) to the total CH4 emissions had increased from 51.7% in the 1890s to 72.5% in the 2010s. These changes were driven by increases in livestock numbers (LU units) by up to 121% in developing regions, but decreases in livestock numbers and emission intensity (emission/km2) by up to 47% and 32%, respectively, in developed regions. Our results indicate that future increases in livestock production would likely contribute to higher CH4 emissions, unless effective strategies to mitigate GHG emissions in livestock system are implemented.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13709&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 116 citations 116 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13709&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu