- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2018 SwitzerlandPublisher:Elsevier BV Alejandro García-Gil; Samanta Gasco-Cavero; Eduardo Garrido; Miguel Mejías; Jannis Epting; Mercedes Navarro-Elipe; Carmen Alejandre; Elena Sevilla-Alcaine;pmid: 29602115
The implications of intensive use of shallow geothermal energy resources in shallow urban aquifers are still not known for waterborne pathogens relevant to human health. Firstly, we hypothesized that waterborne enteric pathogens would be relatively increased in heated groundwater plumes. To prove this, microbiological sampling of 31 piezometers covering the domain of an urban groundwater body affected by microbiological contamination and energetically exploited by 70 groundwater heat pump systems was performed. Mean differences of pathogenic bacteria contents between impacted and non-impacted monitoring points were assessed with a two-tailed independent Student's t-test or Mann-Whitney U and correlation coefficients were also calculated. Surprisingly, the results obtained revealed a significant and generalized decrease in waterborne pathogen contents in thermally impacted piezometers compared to that of non-impacted piezometers. This decrease is hypothesized to be caused by a heat shock to bacteria within the heat exchangers. The statistically significant negative correlations obtained between waterborne pathogen counts and temperature could be explained by the spatial distribution of the bacteria, finding that bacteria start to recover with increasing distance from the injection point. Also, different behavior groups fitting exponential regression models were found for the bacteria species studied, justified by the different presence and influence of several aquifer parameters and major, minor and trace elements studied, as well as the coexistence with other bacteria species. The results obtained from this work reinforce the concept of shallow geothermal resources as a clean energy source, as they could also provide the basis to control the pathogenic bacteria contents in groundwater bodies.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2018.03.245&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2018.03.245&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 SwitzerlandPublisher:Elsevier BV Jannis Epting; Fabian Böttcher; Matthias H. Mueller; Alejandro García-Gil; Kai Zosseder; Peter Huggenberger;Abstract One solution for reducing the current consumption of fossil fuels is a more frequent use of shallow geothermal energy. However, particularly regarding urban subsurface resources, increased use conflicts are predictable. Consequently, reasonable exploitation of subsurface resources requires an assessment of technologically achievable energy potentials with scientific based tools. We present application-oriented management tools which target on deriving shallow subsurface energy potentials. 3D groundwater flow and heat-transport models are used to capture groundwater flow and heat-transport dynamics on the city- and quarter-scale, 2D box models are used to quantify technically feasible extraction rates of well doublets for groundwater heat pump systems. For Basel (Switzerland), prospective large theoretical energy potentials can be derived for areas with high advective heat flux and high temperature gradients. Likewise, single city quarters are suitable for ‘active’ thermal use with well doublets, whereas thermal power potentials reach 1.2 MW. Regarding ‘passive’ installations of energy absorbers in subsurface structures located within the groundwater, energy potentials amount to 4 and up to 40 W m−2. The assessment results can be integrated into urban energy plans and support architects, city planners and potential users to acquire initial site-specific information on the technical feasibility of shallow geothermal energy systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2019.09.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2019.09.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 SwitzerlandPublisher:Elsevier BV Authors: Matthias H. Mueller; Peter Huggenberger; Jannis Epting;pmid: 29426130
Increasing anthropogenic impacts lead to elevated temperatures of the shallow subsurface, including the unsaturated and groundwater saturated zone, in many urban areas in comparison to unaffected natural thermal states. The "current thermal state" of four groundwater bodies in the urban area of Basel-City, Switzerland, was investigated by means of high-resolution multilevel temperature wells and numerical 3D groundwater flow and heat transport models. The calibrated and validated numerical groundwater flow and heat transport models allow evaluating and comparing groundwater and heat fluxes for the investigated groundwater bodies and defined cross-sections for differing urban districts, e.g. residential and industrial areas under development. We present the overall and the specific advective heat fluxes within two urban districts, which will be restructured in the near future. The management of groundwater resources in urban areas plays an important role not only for groundwater quantity but also for its quality, i.e. thermal subsurface and groundwater regimes. We demonstrate how monitoring and modelling tools can be the basis for a sustainable management of complex urban groundwater resources. Furthermore, we argue that such tools should be integrated in the thermal management of urban groundwater bodies. Such tools also allow integrating the potentially available energy of shallow subsurface resources into energetic management strategies on the urban scale.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2018.01.250&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu57 citations 57 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2018.01.250&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2013Embargo end date: 01 Jan 2013 SwitzerlandPublisher:Copernicus GmbH Authors: Jannis Epting; Falk Händel; Falk Händel; Peter Huggenberger;Abstract. This study presents the development of tools for the sustainable thermal management of a shallow unconsolidated urban groundwater body in the city of Basel (Switzerland). The concept of the investigations is based on (1) a characterization of the present thermal state of the urban groundwater body, and (2) the evaluation of potential mitigation measures for the future thermal management of specific regions within the groundwater body. The investigations focus on thermal processes down-gradient of thermal groundwater use, effects of heated buildings in the subsurface as well as the thermal influence of river–groundwater interaction. Investigation methods include (1) short- and long-term data analysis, (2) high-resolution multilevel groundwater temperature monitoring, as well as (3) 3-D numerical groundwater flow and heat transport modeling and scenario development. The combination of these methods allows for the quantifying of the thermal influences on the investigated urban groundwater body, including the influences of thermal groundwater use and heated subsurface constructions. Subsequently, first implications for management strategies are discussed, including minimizing further groundwater temperature increase, targeting "potential natural" groundwater temperatures for specific aquifer regions and exploiting the thermal potential.
University of Basel:... arrow_drop_down University of Basel: edocArticle . 2013License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Hydrology and Earth System Sciences (HESS)Article . 2013 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/hess-17-1851-2013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 88 citations 88 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of Basel:... arrow_drop_down University of Basel: edocArticle . 2013License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Hydrology and Earth System Sciences (HESS)Article . 2013 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/hess-17-1851-2013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 Italy, Cyprus, Malta, United Kingdom, NetherlandsPublisher:Elsevier BV Authors: Figueira, João S.; García Gil, Alejandro; Vieira, Ana; Michopoulos, Apostolos K.; +13 AuthorsFigueira, João S.; García Gil, Alejandro; Vieira, Ana; Michopoulos, Apostolos K.; Boon, David P.; Loveridge, Fleur; Cecinato, Francesco; Götzl, Gregor; Epting, Jannis; Zosseder, Kai; Bloemendal, Martin; Woods, Michael; Christodoulides, Paul; Vardon, Philip J.; Borg, Simon Paul; Erbs Poulsen, Søren; Andersen, Theis Raaschou;handle: 2434/1124259 , 20.500.14279/33457
Heating and Cooling constitute a major part of society's final energy use and a significant contributor to greenhouse gas emissions. The world society ought to mitigate climate change through decarbonisation, which must include the transition to low-temperature, sustainable and renewable heating and cooling technologies. Shallow Geothermal Energy is one of the most energy efficient and least greenhouse gas emitting available alternatives to provide space heating and cooling. The decarbonisation of the heating and cooling sector may have to comprise both individual systems and shared electrified heating and cooling systems from renewable sources of energy, where economies of scale and synergies between different types of consumers can be exploited. To this end, the focus of this paper is on the integration of shallow geothermal energy technologies into district heating and cooling systems. A key contribution of this work is the illustration of a number of practical case studies, highlighting the potential of existing shallow geothermal systems for DHC networks, which, as front runners in adopting such technologies, serve as paradigms for future development. Follows a discussion providing an outlook over the next 25 years. All in all, the future of utilizing shallow geothermal energy for district heating and cooling seems to be promising to play a pivotal role in sustainable urban development and decarbonizing the heating and cooling sector.
NERC Open Research A... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2024.121436&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 9 citations 9 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2024.121436&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 SwitzerlandPublisher:Elsevier BV Alejandro García-Gil; Jannis Epting; Eduardo Garrido; Enric Vázquez-Suñé; Jesús Mateo Lázaro; José Ángel Sánchez Navarro; P. Huggenberger; Miguel Ángel Marazuela Calvo;pmid: 27522282
As a result of the increasing use of shallow geothermal resources, hydraulic, thermal and chemical impacts affecting groundwater quality can be observed with ever increasing frequency (Possemiers et al., 2014). To overcome the uncertainty associated with chemical impacts, a city scale study on the effects of intensive geothermal resource use by groundwater heat pump systems on groundwater quality, with special emphasis on heavy metal contents was performed. Statistical analysis of geochemical data obtained from several field campaigns has allowed studying the spatiotemporal relationship between temperature anomalies in the aquifer and trace element composition of groundwater. The relationship between temperature and the concentrations of trace elements resulted in weak correlations, indicating that temperature changes are not the driving factor in enhancing heavy metal contaminations. Regression models established for these correlations showed a very low reactivity or response of heavy metal contents to temperature changes. The change rates of heavy metal contents with respect to temperature changes obtained indicate a low risk of exceeding quality threshold values by means of the exploitation regimes used, neither producing nor enhancing contamination significantly. However, modification of pH, redox potential, electrical conductivity, dissolved oxygen and alkalinity correlated with the concentrations of heavy metals. In this case, the change rates of heavy metal contents are higher, with a greater risk of exceeding threshold values.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2016.08.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2016.08.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Switzerland, United Kingdom, Croatia, Netherlands, CroatiaPublisher:Elsevier BV Publicly fundedFunded by:EC | GeoERAEC| GeoERAGarcía-Gil, Alejandro; Goetzl, Gregor; Kłonowski, Maciej R.; Borovic, Staša; Boon, David P.; Abesser, Corinna; Janza, Mitja; Herms, Ignasi; Petitclerc, Estelle; Erlström, Mikael; Holecek, Jan; Hunter, Taly; Vandeweijer, Vincent P.; Cernak, Radovan; Mejías Moreno, Miguel; Epting, Jannis;Successful electrification of cities' heating and cooling demands depends on the sustainable implementation of highly efficient ground source heat pumps (GSHP). During the last decade, the use of shallow geothermal energy (SGE) resources in urban areas has experienced an unprecedented boost which nowadays is still showing a steady 9% market growth trend. However, the intensive market incorporation experienced by this technology entails different responsibilities towards the long-term technical and environmental sustainability in order to maintain this positive trend. Here we present a SGE management framework structure and a governance model agreed among 13 European Geological Surveys, providing a roadmap for the different levels of management development, adaptable to any urban scale, and independent of the hydrogeological conditions and the grade of development of SGE technology implementation. The management approach reported is based on the adaptive management concept, thus offering a working flow for the non-linear relationship between planning, implementation and control that establishes a cyclical and iterative management process. The generalized structure of the SGE management framework provided allows the effective analysis of policy to identify and plan for management problems and to select the best management objectives, strategies and measures according to the policy principles proposed here.
NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Croatian Scientific Bibliography - CROSBIArticle . 2020Data sources: Croatian Scientific Bibliography - CROSBIDANS (Data Archiving and Networked Services)Article . 2020Data sources: DANS (Data Archiving and Networked Services)http://dx.doi.org/10.1016/j.en...Article . 2020 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2020.111283&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 48 citations 48 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Croatian Scientific Bibliography - CROSBIArticle . 2020Data sources: Croatian Scientific Bibliography - CROSBIDANS (Data Archiving and Networked Services)Article . 2020Data sources: DANS (Data Archiving and Networked Services)http://dx.doi.org/10.1016/j.en...Article . 2020 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2020.111283&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 United Kingdom, Slovenia, SloveniaPublisher:Elsevier BV Authors: Martínez-León, Jorge; Marazuela, Miguel Ángel; Baquedano, Carlos; Garrido Schneider, Eduardo; +8 AuthorsMartínez-León, Jorge; Marazuela, Miguel Ángel; Baquedano, Carlos; Garrido Schneider, Eduardo; Gasco-Cavero, Samanta; García Escayola, Olga; Janža, Mitja; Boon, David P.; Zosseder, Kai; Epting, Jannis; Binder, Martin; García-Gil, Alejandro;Soavtorji: Miguel Ángel Marazuela, Carlos Baquedano, Eduardo Garrido Schneider, Samanta Gasco-Cavero, Olga García Escayola, Mitja Janža, David P. Boon, Kai Zosseder, Jannis Epting, Martin Binder, Alejandro García-Gil. Bibliografija: str. 11-12. Št. članka: 122163.
NERC Open Research A... arrow_drop_down dCOBISS.SI Digital RepositoryArticle . 2024License: CC BY NC NDData sources: dCOBISS.SI Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2024.122163&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down dCOBISS.SI Digital RepositoryArticle . 2024License: CC BY NC NDData sources: dCOBISS.SI Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2024.122163&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 Spain, United KingdomPublisher:Wiley Authors: Yu‐Feng Forrest Lin; Corinna Abesser; Jannis Epting; Alejandro García‐Gil;Parte del Special Issue on Advances in Thermal Use of Groundwater. Peer reviewed
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAGround WaterArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gwat.13293&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 29visibility views 29 download downloads 53 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAGround WaterArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gwat.13293&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 SwitzerlandPublisher:Elsevier BV Authors: Jannis Epting; Matthias H. Müller; Dieter Genske; Peter Huggenberger;Abstract To sustainably plan the use of subsurface resources, a discussion about thermal management is needed, as well as a more coordinated and efficient thermal use of subsurface resources. This contribution outlines a theoretical consideration for how to effectively manage urban subsurface resources. The consideration is made by means of assessing the heat-potential from urban groundwater resources against the background of heat-demand. We illustrate that, in principle, the heat-potential of subsurface resources could be directly ‘mined’ to exploit them and store thermal ‘waste energy’. We show how quantitative flow- and heat-transport modeling approaches can offer a scientific basis for thermal management strategies. In combination with geographic information systems, evaluating heat-potential and heat-demand can become the basis for management concepts as well as for the overall economic and ecological thermal planning of subsurface resource usage. An index which relates groundwater heat-potential to heat-demand is introduced here. This index allows us to quantify the share that thermal ‘waste energy’ from groundwater resources could have to satisfy heat-demand. On the one hand, we demonstrate how the spatial distribution of this index can be derived for the urban area of Basel, Switzerland. On the other hand, we exemplify the temporal evolution of the heat-potential for selected urban areas and discuss the capacity for space heating with a typical annual heat-demand profile.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.06.154&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu38 citations 38 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.06.154&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2018 SwitzerlandPublisher:Elsevier BV Alejandro García-Gil; Samanta Gasco-Cavero; Eduardo Garrido; Miguel Mejías; Jannis Epting; Mercedes Navarro-Elipe; Carmen Alejandre; Elena Sevilla-Alcaine;pmid: 29602115
The implications of intensive use of shallow geothermal energy resources in shallow urban aquifers are still not known for waterborne pathogens relevant to human health. Firstly, we hypothesized that waterborne enteric pathogens would be relatively increased in heated groundwater plumes. To prove this, microbiological sampling of 31 piezometers covering the domain of an urban groundwater body affected by microbiological contamination and energetically exploited by 70 groundwater heat pump systems was performed. Mean differences of pathogenic bacteria contents between impacted and non-impacted monitoring points were assessed with a two-tailed independent Student's t-test or Mann-Whitney U and correlation coefficients were also calculated. Surprisingly, the results obtained revealed a significant and generalized decrease in waterborne pathogen contents in thermally impacted piezometers compared to that of non-impacted piezometers. This decrease is hypothesized to be caused by a heat shock to bacteria within the heat exchangers. The statistically significant negative correlations obtained between waterborne pathogen counts and temperature could be explained by the spatial distribution of the bacteria, finding that bacteria start to recover with increasing distance from the injection point. Also, different behavior groups fitting exponential regression models were found for the bacteria species studied, justified by the different presence and influence of several aquifer parameters and major, minor and trace elements studied, as well as the coexistence with other bacteria species. The results obtained from this work reinforce the concept of shallow geothermal resources as a clean energy source, as they could also provide the basis to control the pathogenic bacteria contents in groundwater bodies.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2018.03.245&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2018.03.245&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 SwitzerlandPublisher:Elsevier BV Jannis Epting; Fabian Böttcher; Matthias H. Mueller; Alejandro García-Gil; Kai Zosseder; Peter Huggenberger;Abstract One solution for reducing the current consumption of fossil fuels is a more frequent use of shallow geothermal energy. However, particularly regarding urban subsurface resources, increased use conflicts are predictable. Consequently, reasonable exploitation of subsurface resources requires an assessment of technologically achievable energy potentials with scientific based tools. We present application-oriented management tools which target on deriving shallow subsurface energy potentials. 3D groundwater flow and heat-transport models are used to capture groundwater flow and heat-transport dynamics on the city- and quarter-scale, 2D box models are used to quantify technically feasible extraction rates of well doublets for groundwater heat pump systems. For Basel (Switzerland), prospective large theoretical energy potentials can be derived for areas with high advective heat flux and high temperature gradients. Likewise, single city quarters are suitable for ‘active’ thermal use with well doublets, whereas thermal power potentials reach 1.2 MW. Regarding ‘passive’ installations of energy absorbers in subsurface structures located within the groundwater, energy potentials amount to 4 and up to 40 W m−2. The assessment results can be integrated into urban energy plans and support architects, city planners and potential users to acquire initial site-specific information on the technical feasibility of shallow geothermal energy systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2019.09.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2019.09.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 SwitzerlandPublisher:Elsevier BV Authors: Matthias H. Mueller; Peter Huggenberger; Jannis Epting;pmid: 29426130
Increasing anthropogenic impacts lead to elevated temperatures of the shallow subsurface, including the unsaturated and groundwater saturated zone, in many urban areas in comparison to unaffected natural thermal states. The "current thermal state" of four groundwater bodies in the urban area of Basel-City, Switzerland, was investigated by means of high-resolution multilevel temperature wells and numerical 3D groundwater flow and heat transport models. The calibrated and validated numerical groundwater flow and heat transport models allow evaluating and comparing groundwater and heat fluxes for the investigated groundwater bodies and defined cross-sections for differing urban districts, e.g. residential and industrial areas under development. We present the overall and the specific advective heat fluxes within two urban districts, which will be restructured in the near future. The management of groundwater resources in urban areas plays an important role not only for groundwater quantity but also for its quality, i.e. thermal subsurface and groundwater regimes. We demonstrate how monitoring and modelling tools can be the basis for a sustainable management of complex urban groundwater resources. Furthermore, we argue that such tools should be integrated in the thermal management of urban groundwater bodies. Such tools also allow integrating the potentially available energy of shallow subsurface resources into energetic management strategies on the urban scale.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2018.01.250&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu57 citations 57 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2018.01.250&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2013Embargo end date: 01 Jan 2013 SwitzerlandPublisher:Copernicus GmbH Authors: Jannis Epting; Falk Händel; Falk Händel; Peter Huggenberger;Abstract. This study presents the development of tools for the sustainable thermal management of a shallow unconsolidated urban groundwater body in the city of Basel (Switzerland). The concept of the investigations is based on (1) a characterization of the present thermal state of the urban groundwater body, and (2) the evaluation of potential mitigation measures for the future thermal management of specific regions within the groundwater body. The investigations focus on thermal processes down-gradient of thermal groundwater use, effects of heated buildings in the subsurface as well as the thermal influence of river–groundwater interaction. Investigation methods include (1) short- and long-term data analysis, (2) high-resolution multilevel groundwater temperature monitoring, as well as (3) 3-D numerical groundwater flow and heat transport modeling and scenario development. The combination of these methods allows for the quantifying of the thermal influences on the investigated urban groundwater body, including the influences of thermal groundwater use and heated subsurface constructions. Subsequently, first implications for management strategies are discussed, including minimizing further groundwater temperature increase, targeting "potential natural" groundwater temperatures for specific aquifer regions and exploiting the thermal potential.
University of Basel:... arrow_drop_down University of Basel: edocArticle . 2013License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Hydrology and Earth System Sciences (HESS)Article . 2013 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/hess-17-1851-2013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 88 citations 88 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of Basel:... arrow_drop_down University of Basel: edocArticle . 2013License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Hydrology and Earth System Sciences (HESS)Article . 2013 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/hess-17-1851-2013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 Italy, Cyprus, Malta, United Kingdom, NetherlandsPublisher:Elsevier BV Authors: Figueira, João S.; García Gil, Alejandro; Vieira, Ana; Michopoulos, Apostolos K.; +13 AuthorsFigueira, João S.; García Gil, Alejandro; Vieira, Ana; Michopoulos, Apostolos K.; Boon, David P.; Loveridge, Fleur; Cecinato, Francesco; Götzl, Gregor; Epting, Jannis; Zosseder, Kai; Bloemendal, Martin; Woods, Michael; Christodoulides, Paul; Vardon, Philip J.; Borg, Simon Paul; Erbs Poulsen, Søren; Andersen, Theis Raaschou;handle: 2434/1124259 , 20.500.14279/33457
Heating and Cooling constitute a major part of society's final energy use and a significant contributor to greenhouse gas emissions. The world society ought to mitigate climate change through decarbonisation, which must include the transition to low-temperature, sustainable and renewable heating and cooling technologies. Shallow Geothermal Energy is one of the most energy efficient and least greenhouse gas emitting available alternatives to provide space heating and cooling. The decarbonisation of the heating and cooling sector may have to comprise both individual systems and shared electrified heating and cooling systems from renewable sources of energy, where economies of scale and synergies between different types of consumers can be exploited. To this end, the focus of this paper is on the integration of shallow geothermal energy technologies into district heating and cooling systems. A key contribution of this work is the illustration of a number of practical case studies, highlighting the potential of existing shallow geothermal systems for DHC networks, which, as front runners in adopting such technologies, serve as paradigms for future development. Follows a discussion providing an outlook over the next 25 years. All in all, the future of utilizing shallow geothermal energy for district heating and cooling seems to be promising to play a pivotal role in sustainable urban development and decarbonizing the heating and cooling sector.
NERC Open Research A... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2024.121436&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 9 citations 9 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2024.121436&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 SwitzerlandPublisher:Elsevier BV Alejandro García-Gil; Jannis Epting; Eduardo Garrido; Enric Vázquez-Suñé; Jesús Mateo Lázaro; José Ángel Sánchez Navarro; P. Huggenberger; Miguel Ángel Marazuela Calvo;pmid: 27522282
As a result of the increasing use of shallow geothermal resources, hydraulic, thermal and chemical impacts affecting groundwater quality can be observed with ever increasing frequency (Possemiers et al., 2014). To overcome the uncertainty associated with chemical impacts, a city scale study on the effects of intensive geothermal resource use by groundwater heat pump systems on groundwater quality, with special emphasis on heavy metal contents was performed. Statistical analysis of geochemical data obtained from several field campaigns has allowed studying the spatiotemporal relationship between temperature anomalies in the aquifer and trace element composition of groundwater. The relationship between temperature and the concentrations of trace elements resulted in weak correlations, indicating that temperature changes are not the driving factor in enhancing heavy metal contaminations. Regression models established for these correlations showed a very low reactivity or response of heavy metal contents to temperature changes. The change rates of heavy metal contents with respect to temperature changes obtained indicate a low risk of exceeding quality threshold values by means of the exploitation regimes used, neither producing nor enhancing contamination significantly. However, modification of pH, redox potential, electrical conductivity, dissolved oxygen and alkalinity correlated with the concentrations of heavy metals. In this case, the change rates of heavy metal contents are higher, with a greater risk of exceeding threshold values.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2016.08.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2016.08.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Switzerland, United Kingdom, Croatia, Netherlands, CroatiaPublisher:Elsevier BV Publicly fundedFunded by:EC | GeoERAEC| GeoERAGarcía-Gil, Alejandro; Goetzl, Gregor; Kłonowski, Maciej R.; Borovic, Staša; Boon, David P.; Abesser, Corinna; Janza, Mitja; Herms, Ignasi; Petitclerc, Estelle; Erlström, Mikael; Holecek, Jan; Hunter, Taly; Vandeweijer, Vincent P.; Cernak, Radovan; Mejías Moreno, Miguel; Epting, Jannis;Successful electrification of cities' heating and cooling demands depends on the sustainable implementation of highly efficient ground source heat pumps (GSHP). During the last decade, the use of shallow geothermal energy (SGE) resources in urban areas has experienced an unprecedented boost which nowadays is still showing a steady 9% market growth trend. However, the intensive market incorporation experienced by this technology entails different responsibilities towards the long-term technical and environmental sustainability in order to maintain this positive trend. Here we present a SGE management framework structure and a governance model agreed among 13 European Geological Surveys, providing a roadmap for the different levels of management development, adaptable to any urban scale, and independent of the hydrogeological conditions and the grade of development of SGE technology implementation. The management approach reported is based on the adaptive management concept, thus offering a working flow for the non-linear relationship between planning, implementation and control that establishes a cyclical and iterative management process. The generalized structure of the SGE management framework provided allows the effective analysis of policy to identify and plan for management problems and to select the best management objectives, strategies and measures according to the policy principles proposed here.
NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Croatian Scientific Bibliography - CROSBIArticle . 2020Data sources: Croatian Scientific Bibliography - CROSBIDANS (Data Archiving and Networked Services)Article . 2020Data sources: DANS (Data Archiving and Networked Services)http://dx.doi.org/10.1016/j.en...Article . 2020 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2020.111283&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 48 citations 48 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Croatian Scientific Bibliography - CROSBIArticle . 2020Data sources: Croatian Scientific Bibliography - CROSBIDANS (Data Archiving and Networked Services)Article . 2020Data sources: DANS (Data Archiving and Networked Services)http://dx.doi.org/10.1016/j.en...Article . 2020 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2020.111283&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 United Kingdom, Slovenia, SloveniaPublisher:Elsevier BV Authors: Martínez-León, Jorge; Marazuela, Miguel Ángel; Baquedano, Carlos; Garrido Schneider, Eduardo; +8 AuthorsMartínez-León, Jorge; Marazuela, Miguel Ángel; Baquedano, Carlos; Garrido Schneider, Eduardo; Gasco-Cavero, Samanta; García Escayola, Olga; Janža, Mitja; Boon, David P.; Zosseder, Kai; Epting, Jannis; Binder, Martin; García-Gil, Alejandro;Soavtorji: Miguel Ángel Marazuela, Carlos Baquedano, Eduardo Garrido Schneider, Samanta Gasco-Cavero, Olga García Escayola, Mitja Janža, David P. Boon, Kai Zosseder, Jannis Epting, Martin Binder, Alejandro García-Gil. Bibliografija: str. 11-12. Št. članka: 122163.
NERC Open Research A... arrow_drop_down dCOBISS.SI Digital RepositoryArticle . 2024License: CC BY NC NDData sources: dCOBISS.SI Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2024.122163&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down dCOBISS.SI Digital RepositoryArticle . 2024License: CC BY NC NDData sources: dCOBISS.SI Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2024.122163&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 Spain, United KingdomPublisher:Wiley Authors: Yu‐Feng Forrest Lin; Corinna Abesser; Jannis Epting; Alejandro García‐Gil;Parte del Special Issue on Advances in Thermal Use of Groundwater. Peer reviewed
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAGround WaterArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gwat.13293&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 29visibility views 29 download downloads 53 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAGround WaterArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gwat.13293&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 SwitzerlandPublisher:Elsevier BV Authors: Jannis Epting; Matthias H. Müller; Dieter Genske; Peter Huggenberger;Abstract To sustainably plan the use of subsurface resources, a discussion about thermal management is needed, as well as a more coordinated and efficient thermal use of subsurface resources. This contribution outlines a theoretical consideration for how to effectively manage urban subsurface resources. The consideration is made by means of assessing the heat-potential from urban groundwater resources against the background of heat-demand. We illustrate that, in principle, the heat-potential of subsurface resources could be directly ‘mined’ to exploit them and store thermal ‘waste energy’. We show how quantitative flow- and heat-transport modeling approaches can offer a scientific basis for thermal management strategies. In combination with geographic information systems, evaluating heat-potential and heat-demand can become the basis for management concepts as well as for the overall economic and ecological thermal planning of subsurface resource usage. An index which relates groundwater heat-potential to heat-demand is introduced here. This index allows us to quantify the share that thermal ‘waste energy’ from groundwater resources could have to satisfy heat-demand. On the one hand, we demonstrate how the spatial distribution of this index can be derived for the urban area of Basel, Switzerland. On the other hand, we exemplify the temporal evolution of the heat-potential for selected urban areas and discuss the capacity for space heating with a typical annual heat-demand profile.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.06.154&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu38 citations 38 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.06.154&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu