- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Elsevier BV Laurence J. Clarke; Laurence J. Clarke; Andrea M. Polanowski; Rowan Trebilco; A Walters; Bruce E. Deagle; Bruce E. Deagle;Mesopelagic fish form an important link between zooplankton and higher trophic levels in Southern Ocean food webs, however their diets are poorly known. Most of the dietary information available comes from morphological analysis of stomach contents and to a lesser extent fatty acid and stable isotopes. DNA sequencing could substantially improve our knowledge of mesopelagic fish diets, but has not previously been applied. We used high-throughput DNA sequencing (HTS) of the 18S ribosomal DNA and mitochondrial cytochrome oxidase I (COI) to characterise stomach contents of four myctophid and one bathylagid species collected at the southern extension of the Kerguelen Plateau (southern Kerguelen Axis), one of the most productive regions in the Indian sector of the Southern Ocean. Diets of the four myctophid species were dominated by amphipods, euphausiids and copepods, whereas radiolarians and siphonophores contributed a much greater proportion of HTS reads for Bathylagus sp. Analysis of mitochondrial COI showed that all species preyed on Thysanoessa macrura, but Euphausia superba was only detected in the stomach contents of myctophids. Size-based shifts in diet were apparent, with larger individuals of both bathylagid and myctophid species more likely to consume euphausiids, but we found little evidence for regional differences in diet composition for each species over the survey area. The presence of DNA from coelenterates and other gelatinous prey in the stomach contents of all five species suggests the importance of these taxa in the diet of Southern Ocean mesopelagics has been underestimated to date. Our study demonstrates the use of DNA-based diet assessment to determine the role of mesopelagic fish and their trophic position in the Southern Ocean and inform the development of ecosystem models.
Deep Sea Research Pa... arrow_drop_down Deep Sea Research Part II Topical Studies in OceanographyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefDeep Sea Research Part II Topical Studies in OceanographyJournalData sources: Microsoft Academic GraphUniversity of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.dsr2.2018.09.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Deep Sea Research Pa... arrow_drop_down Deep Sea Research Part II Topical Studies in OceanographyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefDeep Sea Research Part II Topical Studies in OceanographyJournalData sources: Microsoft Academic GraphUniversity of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.dsr2.2018.09.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Elsevier BV Laurence J. Clarke; Laurence J. Clarke; Andrea M. Polanowski; Rowan Trebilco; A Walters; Bruce E. Deagle; Bruce E. Deagle;Mesopelagic fish form an important link between zooplankton and higher trophic levels in Southern Ocean food webs, however their diets are poorly known. Most of the dietary information available comes from morphological analysis of stomach contents and to a lesser extent fatty acid and stable isotopes. DNA sequencing could substantially improve our knowledge of mesopelagic fish diets, but has not previously been applied. We used high-throughput DNA sequencing (HTS) of the 18S ribosomal DNA and mitochondrial cytochrome oxidase I (COI) to characterise stomach contents of four myctophid and one bathylagid species collected at the southern extension of the Kerguelen Plateau (southern Kerguelen Axis), one of the most productive regions in the Indian sector of the Southern Ocean. Diets of the four myctophid species were dominated by amphipods, euphausiids and copepods, whereas radiolarians and siphonophores contributed a much greater proportion of HTS reads for Bathylagus sp. Analysis of mitochondrial COI showed that all species preyed on Thysanoessa macrura, but Euphausia superba was only detected in the stomach contents of myctophids. Size-based shifts in diet were apparent, with larger individuals of both bathylagid and myctophid species more likely to consume euphausiids, but we found little evidence for regional differences in diet composition for each species over the survey area. The presence of DNA from coelenterates and other gelatinous prey in the stomach contents of all five species suggests the importance of these taxa in the diet of Southern Ocean mesopelagics has been underestimated to date. Our study demonstrates the use of DNA-based diet assessment to determine the role of mesopelagic fish and their trophic position in the Southern Ocean and inform the development of ecosystem models.
Deep Sea Research Pa... arrow_drop_down Deep Sea Research Part II Topical Studies in OceanographyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefDeep Sea Research Part II Topical Studies in OceanographyJournalData sources: Microsoft Academic GraphUniversity of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.dsr2.2018.09.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Deep Sea Research Pa... arrow_drop_down Deep Sea Research Part II Topical Studies in OceanographyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefDeep Sea Research Part II Topical Studies in OceanographyJournalData sources: Microsoft Academic GraphUniversity of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.dsr2.2018.09.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Belgium, AustraliaPublisher:Elsevier BV Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP180103124Turschwell, MP; Hayes, MA; Lacharite, M; Abundo, M; Adams, J; Blanchard, J; Brain, E; Buelow, CA; Bulman, C; Condie, SA; Connolly, RM; Dutton, I; Fulton, EA; Gallagher, S; Maynard, D; Pethybridge, H; Plaganyi, E; Porobic, J; Taelman, SE; Trebilco, R; Woods, G; Brown, CJ;handle: 1854/LU-8749967 , 10072/414126
Multiple ocean sectors compete for space and resources, creating conflicts but also opportunities to plan for synergistic outcomes that benefit multiple sectors. Planning and management are increasingly informed by qualitative and quantitative methods for assessing multi-sector interactions to identify trade-offs and synergies among sectors and with the environment, but there is a need to critically review the alignment of these tools with the requirements of Blue Economy stakeholders. Through a systematic literature review, an operational maturity analysis, and a survey of Blue Economy stakeholders, we found that the most well-developed tools for assessing interactions between multiple Blue Economy industries, and with the environment, are spatial prioritization tools, such as Marxan and multi-criteria decision support tools; and spatial static tools, such as cumulative effect mapping. More complex process/dynamic tools such as ecosystem and oceanographic models are well developed for single sectors, particularly water quality assessments and commercial fisheries, but have been less commonly applied in multi-sector contexts. Our review and stakeholder survey highlighted that assessing the environmental and operational suitability of sites for Blue Economy infrastructure in conjunction with operational impacts, trade-offs and decommissioning considerations requires: 1) a toolbox of approaches that covers a range of spatial, temporal and ecological scales; 2) tools that capture interactions and feedbacks among sectors, and with the environment, without being unnecessarily complicated (i.e., tractable to use and allow for effective communication of findings); and 3) continued synthesis of approaches and tools used across sectors such as commercial fishing, aquaculture, offshore renewable energy, and offshore engineering.
Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2022License: CC BY NC NDFull-Text: http://hdl.handle.net/10072/414126Data sources: Bielefeld Academic Search Engine (BASE)Environmental Science & PolicyArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefGhent University Academic BibliographyArticle . 2022Data sources: Ghent University Academic BibliographyUniversity of Tasmania: UTas ePrintsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envsci.2022.03.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2022License: CC BY NC NDFull-Text: http://hdl.handle.net/10072/414126Data sources: Bielefeld Academic Search Engine (BASE)Environmental Science & PolicyArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefGhent University Academic BibliographyArticle . 2022Data sources: Ghent University Academic BibliographyUniversity of Tasmania: UTas ePrintsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envsci.2022.03.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Belgium, AustraliaPublisher:Elsevier BV Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP180103124Turschwell, MP; Hayes, MA; Lacharite, M; Abundo, M; Adams, J; Blanchard, J; Brain, E; Buelow, CA; Bulman, C; Condie, SA; Connolly, RM; Dutton, I; Fulton, EA; Gallagher, S; Maynard, D; Pethybridge, H; Plaganyi, E; Porobic, J; Taelman, SE; Trebilco, R; Woods, G; Brown, CJ;handle: 1854/LU-8749967 , 10072/414126
Multiple ocean sectors compete for space and resources, creating conflicts but also opportunities to plan for synergistic outcomes that benefit multiple sectors. Planning and management are increasingly informed by qualitative and quantitative methods for assessing multi-sector interactions to identify trade-offs and synergies among sectors and with the environment, but there is a need to critically review the alignment of these tools with the requirements of Blue Economy stakeholders. Through a systematic literature review, an operational maturity analysis, and a survey of Blue Economy stakeholders, we found that the most well-developed tools for assessing interactions between multiple Blue Economy industries, and with the environment, are spatial prioritization tools, such as Marxan and multi-criteria decision support tools; and spatial static tools, such as cumulative effect mapping. More complex process/dynamic tools such as ecosystem and oceanographic models are well developed for single sectors, particularly water quality assessments and commercial fisheries, but have been less commonly applied in multi-sector contexts. Our review and stakeholder survey highlighted that assessing the environmental and operational suitability of sites for Blue Economy infrastructure in conjunction with operational impacts, trade-offs and decommissioning considerations requires: 1) a toolbox of approaches that covers a range of spatial, temporal and ecological scales; 2) tools that capture interactions and feedbacks among sectors, and with the environment, without being unnecessarily complicated (i.e., tractable to use and allow for effective communication of findings); and 3) continued synthesis of approaches and tools used across sectors such as commercial fishing, aquaculture, offshore renewable energy, and offshore engineering.
Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2022License: CC BY NC NDFull-Text: http://hdl.handle.net/10072/414126Data sources: Bielefeld Academic Search Engine (BASE)Environmental Science & PolicyArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefGhent University Academic BibliographyArticle . 2022Data sources: Ghent University Academic BibliographyUniversity of Tasmania: UTas ePrintsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envsci.2022.03.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2022License: CC BY NC NDFull-Text: http://hdl.handle.net/10072/414126Data sources: Bielefeld Academic Search Engine (BASE)Environmental Science & PolicyArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefGhent University Academic BibliographyArticle . 2022Data sources: Ghent University Academic BibliographyUniversity of Tasmania: UTas ePrintsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envsci.2022.03.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Elsevier BV Authors: Andrew J. Constable; Andrew J. Constable; Stacey A. McCormack; Stacey A. McCormack; +4 AuthorsAndrew J. Constable; Andrew J. Constable; Stacey A. McCormack; Stacey A. McCormack; Jessica Melbourne-Thomas; Jessica Melbourne-Thomas; Rowan Trebilco; Julia L. Blanchard;In recent years, there has been a shift away from the long-standing paradigm in which a short, krill-dominated food chain was considered to be the central element in Southern Ocean food webs. Instead, there is now increasing recognition that alternative energy pathways through mid-trophic level groups (mesopelagic fish and squid) may be equally (if not more) important than the krill pathway in many regions. Ecosystem models are a valuable tool to synthesise existing data on the structure of marine food webs and to visualise and quantify alternative energy pathways. In this study we develop a static mass balance food web model for the southern Kerguelen Axis region (Prydz Bay and Princess Elizabeth Trough) to evaluate the importance of alternative energy pathways through mid-trophic level groups, including fish, squid and krill, in maintaining energy flow to top predators within East Antarctica. Our model reveals several major trophic pathways distinct from, and equally important to the Antarctic krill (Euphausia superba) pathway. Using simple scenarios of reductions in krill biomass, we investigate how the system might switch to a state dominated by fish and squid pathways with the response of krill-reliant predators strongly dependent on their ability to switch to other prey sources. We conclude by discussing what these findings might suggest for the future vulnerability of East Antarctic food webs and the implications for future modelling work in the region.
Deep Sea Research Pa... arrow_drop_down Deep Sea Research Part II Topical Studies in OceanographyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefDeep Sea Research Part II Topical Studies in OceanographyJournalData sources: Microsoft Academic GraphUniversity of Tasmania: UTas ePrintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.dsr2.2019.07.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu30 citations 30 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Deep Sea Research Pa... arrow_drop_down Deep Sea Research Part II Topical Studies in OceanographyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefDeep Sea Research Part II Topical Studies in OceanographyJournalData sources: Microsoft Academic GraphUniversity of Tasmania: UTas ePrintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.dsr2.2019.07.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Elsevier BV Authors: Andrew J. Constable; Andrew J. Constable; Stacey A. McCormack; Stacey A. McCormack; +4 AuthorsAndrew J. Constable; Andrew J. Constable; Stacey A. McCormack; Stacey A. McCormack; Jessica Melbourne-Thomas; Jessica Melbourne-Thomas; Rowan Trebilco; Julia L. Blanchard;In recent years, there has been a shift away from the long-standing paradigm in which a short, krill-dominated food chain was considered to be the central element in Southern Ocean food webs. Instead, there is now increasing recognition that alternative energy pathways through mid-trophic level groups (mesopelagic fish and squid) may be equally (if not more) important than the krill pathway in many regions. Ecosystem models are a valuable tool to synthesise existing data on the structure of marine food webs and to visualise and quantify alternative energy pathways. In this study we develop a static mass balance food web model for the southern Kerguelen Axis region (Prydz Bay and Princess Elizabeth Trough) to evaluate the importance of alternative energy pathways through mid-trophic level groups, including fish, squid and krill, in maintaining energy flow to top predators within East Antarctica. Our model reveals several major trophic pathways distinct from, and equally important to the Antarctic krill (Euphausia superba) pathway. Using simple scenarios of reductions in krill biomass, we investigate how the system might switch to a state dominated by fish and squid pathways with the response of krill-reliant predators strongly dependent on their ability to switch to other prey sources. We conclude by discussing what these findings might suggest for the future vulnerability of East Antarctic food webs and the implications for future modelling work in the region.
Deep Sea Research Pa... arrow_drop_down Deep Sea Research Part II Topical Studies in OceanographyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefDeep Sea Research Part II Topical Studies in OceanographyJournalData sources: Microsoft Academic GraphUniversity of Tasmania: UTas ePrintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.dsr2.2019.07.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu30 citations 30 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Deep Sea Research Pa... arrow_drop_down Deep Sea Research Part II Topical Studies in OceanographyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefDeep Sea Research Part II Topical Studies in OceanographyJournalData sources: Microsoft Academic GraphUniversity of Tasmania: UTas ePrintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.dsr2.2019.07.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 AustraliaPublisher:Springer Science and Business Media LLC Funded by:ARC | ARC Centres of Excellence...ARC| ARC Centres of Excellences - Grant ID: CE170100023Hannah E. Fogarty; Phillipa C. McCormack; Leo X.C. Dutra; Leo X.C. Dutra; Emily Ogier; Amelie Meyer; Amelie Meyer; Rowan Trebilco; Rowan Trebilco; Gretta T. Pecl; Kelli Anderson; Narissa Bax; Kaisu Mustonen; Stuart Corney; Jess Melbourne-Thomas; Jess Melbourne-Thomas; Jan McDonald; Aysha Fleming; Aysha Fleming; Andrew J. Constable; Kimberley Norris; Jeffrey McGee; Tero Mustonen; Alistair J. Hobday; Alistair J. Hobday;Proactive and coordinated action to mitigate and adapt to climate change will be essential for achieving the healthy, resilient, safe, sustainably harvested and biodiverse ocean that the UN Decade of Ocean Science and sustainable development goals (SDGs) seek. Ocean-based mitigation actions could contribute 12% of the emissions reductions required by 2030 to keep warming to less than 1.5 ºC but, because substantial warming is already locked in, extensive adaptation action is also needed. Here, as part of the Future Seas project, we use a "foresighting/hindcasting" technique to describe two scenarios for 2030 in the context of climate change mitigation and adaptation for ocean systems. The "business-as-usual" future is expected if current trends continue, while an alternative future could be realised if society were to effectively use available data and knowledge to push as far as possible towards achieving the UN SDGs. We identify three drivers that differentiate between these alternative futures: (i) appetite for climate action, (ii) handling extreme events, and (iii) climate interventions. Actions that could navigate towards the optimistic, sustainable and technically achievable future include:(i)proactive creation and enhancement of economic incentives for mitigation and adaptation;(ii)supporting the proliferation of local initiatives to spur a global transformation;(iii)enhancing proactive coastal adaptation management;(iv)investing in research to support adaptation to emerging risks;(v)deploying marine-based renewable energy;(vi)deploying marine-based negative emissions technologies;(vii)developing and assessing solar radiation management approaches; and(viii)deploying appropriate solar radiation management approaches to help safeguard critical ecosystems.The online version contains supplementary material available at 10.1007/s11160-021-09678-4.
Reviews in Fish Biol... arrow_drop_down Reviews in Fish Biology and FisheriesArticle . 2021 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUniversity of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11160-021-09678-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Reviews in Fish Biol... arrow_drop_down Reviews in Fish Biology and FisheriesArticle . 2021 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUniversity of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11160-021-09678-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 AustraliaPublisher:Springer Science and Business Media LLC Funded by:ARC | ARC Centres of Excellence...ARC| ARC Centres of Excellences - Grant ID: CE170100023Hannah E. Fogarty; Phillipa C. McCormack; Leo X.C. Dutra; Leo X.C. Dutra; Emily Ogier; Amelie Meyer; Amelie Meyer; Rowan Trebilco; Rowan Trebilco; Gretta T. Pecl; Kelli Anderson; Narissa Bax; Kaisu Mustonen; Stuart Corney; Jess Melbourne-Thomas; Jess Melbourne-Thomas; Jan McDonald; Aysha Fleming; Aysha Fleming; Andrew J. Constable; Kimberley Norris; Jeffrey McGee; Tero Mustonen; Alistair J. Hobday; Alistair J. Hobday;Proactive and coordinated action to mitigate and adapt to climate change will be essential for achieving the healthy, resilient, safe, sustainably harvested and biodiverse ocean that the UN Decade of Ocean Science and sustainable development goals (SDGs) seek. Ocean-based mitigation actions could contribute 12% of the emissions reductions required by 2030 to keep warming to less than 1.5 ºC but, because substantial warming is already locked in, extensive adaptation action is also needed. Here, as part of the Future Seas project, we use a "foresighting/hindcasting" technique to describe two scenarios for 2030 in the context of climate change mitigation and adaptation for ocean systems. The "business-as-usual" future is expected if current trends continue, while an alternative future could be realised if society were to effectively use available data and knowledge to push as far as possible towards achieving the UN SDGs. We identify three drivers that differentiate between these alternative futures: (i) appetite for climate action, (ii) handling extreme events, and (iii) climate interventions. Actions that could navigate towards the optimistic, sustainable and technically achievable future include:(i)proactive creation and enhancement of economic incentives for mitigation and adaptation;(ii)supporting the proliferation of local initiatives to spur a global transformation;(iii)enhancing proactive coastal adaptation management;(iv)investing in research to support adaptation to emerging risks;(v)deploying marine-based renewable energy;(vi)deploying marine-based negative emissions technologies;(vii)developing and assessing solar radiation management approaches; and(viii)deploying appropriate solar radiation management approaches to help safeguard critical ecosystems.The online version contains supplementary material available at 10.1007/s11160-021-09678-4.
Reviews in Fish Biol... arrow_drop_down Reviews in Fish Biology and FisheriesArticle . 2021 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUniversity of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11160-021-09678-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Reviews in Fish Biol... arrow_drop_down Reviews in Fish Biology and FisheriesArticle . 2021 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUniversity of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11160-021-09678-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 AustraliaPublisher:Elsevier BV Authors: Turschwell, Mischa P.; Brown, Christopher J.; Lacharité, Myriam; Melbourne-Thomas, Jess; +20 AuthorsTurschwell, Mischa P.; Brown, Christopher J.; Lacharité, Myriam; Melbourne-Thomas, Jess; Hayes, Keith R.; Bustamante, Rodrigo H.; Dambacher, Jeffrey M.; Evans, Karen; Fidelman, Pedro; MacDonald, Darla H.; Van Putten, Ingrid; Wood, Graham; Abdussamie, Nagi; Bates, Mathilda; Blackwell, Damien; D'Alessandro, Steven; Dutton, Ian; Ericson, Jessica A.; Frid, Christopher L. J.; McDougall, Carmel; Lea, Mary-Anne; Rissik, David; Trebilco, Rowan; Fulton, Elizabeth A.;handle: 10072/427703
A multi-sectoral assessment of risks can support the management and investment decisions necessary for emerging blue economy industries to succeed. Traditional risk assessment methods will be challenged when applied to the complex socio-ecological systems that characterise offshore environments, and when data available to support management are lacking. Therefore, there is a need for assessments that account for multiple sectors. Here we describe the development of an efficient method for an integrated hazard analysis that is a precursor to full risk assessments. Our approach combines diverse disciplinary expertise, expert elicitation and multi-criteria analysis to rank hazards, so it encompasses all types of hazards including human-caused, natural and technological. We demonstrate our approach for two sectors that are predicted to grow rapidly in Australia: offshore aquaculture and marine renewable energy. Experts ranked Climate Change as the hazard with the highest overall concern, but hazards including Altered Ecosystem Function, Biosecurity, Cumulative Effects, Structural Failure and Social Licence were also highly ranked. We show here how outputs from this approach (multi-criteria scores and ranks) could be used to identify hazards that; i) could be safely retired, ii) should be progressed to more quantitative risk assessments or iii) require ongoing information collection. The approach can encompass all types of hazards, which enables it to holistically consider priorities. The expert-based multi-criteria approach outlined here represents a pragmatic way to solve some of the challenges of applying risk assessments to emerging industries by using a method that can be applied across multiple blue economy sectors.
James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2023Full-Text: https://doi.org/10.1016/j.envsci.2023.06.008Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2023License: CC BYFull-Text: https://ro.ecu.edu.au/ecuworks2022-2026/2873Data sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/10072/427703Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envsci.2023.06.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2023Full-Text: https://doi.org/10.1016/j.envsci.2023.06.008Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2023License: CC BYFull-Text: https://ro.ecu.edu.au/ecuworks2022-2026/2873Data sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/10072/427703Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envsci.2023.06.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 AustraliaPublisher:Elsevier BV Authors: Turschwell, Mischa P.; Brown, Christopher J.; Lacharité, Myriam; Melbourne-Thomas, Jess; +20 AuthorsTurschwell, Mischa P.; Brown, Christopher J.; Lacharité, Myriam; Melbourne-Thomas, Jess; Hayes, Keith R.; Bustamante, Rodrigo H.; Dambacher, Jeffrey M.; Evans, Karen; Fidelman, Pedro; MacDonald, Darla H.; Van Putten, Ingrid; Wood, Graham; Abdussamie, Nagi; Bates, Mathilda; Blackwell, Damien; D'Alessandro, Steven; Dutton, Ian; Ericson, Jessica A.; Frid, Christopher L. J.; McDougall, Carmel; Lea, Mary-Anne; Rissik, David; Trebilco, Rowan; Fulton, Elizabeth A.;handle: 10072/427703
A multi-sectoral assessment of risks can support the management and investment decisions necessary for emerging blue economy industries to succeed. Traditional risk assessment methods will be challenged when applied to the complex socio-ecological systems that characterise offshore environments, and when data available to support management are lacking. Therefore, there is a need for assessments that account for multiple sectors. Here we describe the development of an efficient method for an integrated hazard analysis that is a precursor to full risk assessments. Our approach combines diverse disciplinary expertise, expert elicitation and multi-criteria analysis to rank hazards, so it encompasses all types of hazards including human-caused, natural and technological. We demonstrate our approach for two sectors that are predicted to grow rapidly in Australia: offshore aquaculture and marine renewable energy. Experts ranked Climate Change as the hazard with the highest overall concern, but hazards including Altered Ecosystem Function, Biosecurity, Cumulative Effects, Structural Failure and Social Licence were also highly ranked. We show here how outputs from this approach (multi-criteria scores and ranks) could be used to identify hazards that; i) could be safely retired, ii) should be progressed to more quantitative risk assessments or iii) require ongoing information collection. The approach can encompass all types of hazards, which enables it to holistically consider priorities. The expert-based multi-criteria approach outlined here represents a pragmatic way to solve some of the challenges of applying risk assessments to emerging industries by using a method that can be applied across multiple blue economy sectors.
James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2023Full-Text: https://doi.org/10.1016/j.envsci.2023.06.008Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2023License: CC BYFull-Text: https://ro.ecu.edu.au/ecuworks2022-2026/2873Data sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/10072/427703Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envsci.2023.06.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2023Full-Text: https://doi.org/10.1016/j.envsci.2023.06.008Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2023License: CC BYFull-Text: https://ro.ecu.edu.au/ecuworks2022-2026/2873Data sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/10072/427703Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envsci.2023.06.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Australia, Australia, Australia, United Kingdom, GermanyPublisher:Springer Science and Business Media LLC Christine Klaas; Evgeny A. Pakhomov; Ulrich Freier; Michael D. Sumner; Michael D. Sumner; Klaus M Meiners; Klaus M Meiners; Robert Ricker; I. Noyan Yilmaz; Rowan Trebilco; Albrecht Götz; Albrecht Götz; Robert King; Sven E. Kerwath; Sven E. Kerwath; Sven E. Kerwath; Lutz Auerswald; Lutz Auerswald; Sally E. Thorpe; Jürgen Groeneveld; Gernot Nehrke; Dieter Wolf-Gladrow; Brian P. V. Hunt; Laura Halbach; Eugene J. Murphy; Volker Grimm; Jessica Melbourne-Thomas; Jessica Melbourne-Thomas; Simon N. Jarman; Simon N. Jarman; So Kawaguchi; So Kawaguchi; Mathias Teschke; Thomas Krumpen; Bettina Meyer; Bettina Meyer; Sharon Stammerjohn;A dominant Antarctic ecological paradigm suggests that winter sea ice is generally the main feeding ground for krill larvae. Observations from our winter cruise to the southwest Atlantic sector of the Southern Ocean contradict this view and present the first evidence that the pack-ice zone is a food-poor habitat for larval development. In contrast, the more open marginal ice zone provides a more favourable food environment for high larval krill growth rates. We found that complex under-ice habitats are, however, vital for larval krill when water column productivity is limited by light, by providing structures that offer protection from predators and to collect organic material released from the ice. The larvae feed on this sparse ice-associated food during the day. After sunset, they migrate into the water below the ice (upper 20 m) and drift away from the ice areas where they have previously fed. Model analyses indicate that this behaviour increases both food uptake in a patchy food environment and the likelihood of overwinter transport to areas where feeding conditions are more favourable in spring.
Nature Ecology & Evo... arrow_drop_down Electronic Publication Information CenterArticle . 2017Data sources: Electronic Publication Information CenterNature Ecology & EvolutionArticle . 2017 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUniversity of Tasmania: UTas ePrintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-017-0368-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 102 citations 102 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Nature Ecology & Evo... arrow_drop_down Electronic Publication Information CenterArticle . 2017Data sources: Electronic Publication Information CenterNature Ecology & EvolutionArticle . 2017 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUniversity of Tasmania: UTas ePrintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-017-0368-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Australia, Australia, Australia, United Kingdom, GermanyPublisher:Springer Science and Business Media LLC Christine Klaas; Evgeny A. Pakhomov; Ulrich Freier; Michael D. Sumner; Michael D. Sumner; Klaus M Meiners; Klaus M Meiners; Robert Ricker; I. Noyan Yilmaz; Rowan Trebilco; Albrecht Götz; Albrecht Götz; Robert King; Sven E. Kerwath; Sven E. Kerwath; Sven E. Kerwath; Lutz Auerswald; Lutz Auerswald; Sally E. Thorpe; Jürgen Groeneveld; Gernot Nehrke; Dieter Wolf-Gladrow; Brian P. V. Hunt; Laura Halbach; Eugene J. Murphy; Volker Grimm; Jessica Melbourne-Thomas; Jessica Melbourne-Thomas; Simon N. Jarman; Simon N. Jarman; So Kawaguchi; So Kawaguchi; Mathias Teschke; Thomas Krumpen; Bettina Meyer; Bettina Meyer; Sharon Stammerjohn;A dominant Antarctic ecological paradigm suggests that winter sea ice is generally the main feeding ground for krill larvae. Observations from our winter cruise to the southwest Atlantic sector of the Southern Ocean contradict this view and present the first evidence that the pack-ice zone is a food-poor habitat for larval development. In contrast, the more open marginal ice zone provides a more favourable food environment for high larval krill growth rates. We found that complex under-ice habitats are, however, vital for larval krill when water column productivity is limited by light, by providing structures that offer protection from predators and to collect organic material released from the ice. The larvae feed on this sparse ice-associated food during the day. After sunset, they migrate into the water below the ice (upper 20 m) and drift away from the ice areas where they have previously fed. Model analyses indicate that this behaviour increases both food uptake in a patchy food environment and the likelihood of overwinter transport to areas where feeding conditions are more favourable in spring.
Nature Ecology & Evo... arrow_drop_down Electronic Publication Information CenterArticle . 2017Data sources: Electronic Publication Information CenterNature Ecology & EvolutionArticle . 2017 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUniversity of Tasmania: UTas ePrintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-017-0368-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 102 citations 102 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Nature Ecology & Evo... arrow_drop_down Electronic Publication Information CenterArticle . 2017Data sources: Electronic Publication Information CenterNature Ecology & EvolutionArticle . 2017 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUniversity of Tasmania: UTas ePrintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-017-0368-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 Australia, Italy, Belgium, France, Australia, United Kingdom, PortugalPublisher:Frontiers Media SA Funded by:UKRI | GW4+ - a consortium of ex..., NSF | EAGER: Origin and Physiol...UKRI| GW4+ - a consortium of excellence in innovative research training ,NSF| EAGER: Origin and Physiological Consequences of a Neoplasm Outbreak in Antarctic FishAuthors: Jilda Alicia Caccavo; Jilda Alicia Caccavo; Jilda Alicia Caccavo; Henrik Christiansen; +23 AuthorsJilda Alicia Caccavo; Jilda Alicia Caccavo; Jilda Alicia Caccavo; Henrik Christiansen; Andrew J. Constable; Andrew J. Constable; Laura Ghigliotti; Rowan Trebilco; Rowan Trebilco; Cassandra M. Brooks; Cédric Cotte; Thomas Desvignes; Tracey Dornan; Tracey Dornan; Christopher D. Jones; Philippe Koubbi; Philippe Koubbi; Ryan A. Saunders; Anneli Strobel; Marino Vacchi; Anton P. van de Putte; Anton P. van de Putte; Andrea Walters; Claire M. Waluda; Briannyn L. Woods; José C. Xavier; José C. Xavier;Southern Ocean ecosystems are globally important and vulnerable to global drivers of change, yet they remain challenging to study. Fish and squid make up a significant portion of the biomass within the Southern Ocean, filling key roles in food webs from forage to mid-trophic species and top predators. They comprise a diverse array of species uniquely adapted to the extreme habitats of the region. Adaptations such as antifreeze glycoproteins, lipid-retention, extended larval phases, delayed senescence, and energy-conserving life strategies equip Antarctic fish and squid to withstand the dark winters and yearlong subzero temperatures experienced in much of the Southern Ocean. In addition to krill exploitation, the comparatively high commercial value of Antarctic fish, particularly the lucrative toothfish, drives fisheries interests, which has included illegal fishing. Uncertainty about the population dynamics of target species and ecosystem structure and function more broadly has necessitated a precautionary, ecosystem approach to managing these stocks and enabling the recovery of depleted species. Fisheries currently remain the major local driver of change in Southern Ocean fish productivity, but global climate change presents an even greater challenge to assessing future changes. Parts of the Southern Ocean are experiencing ocean-warming, such as the West Antarctic Peninsula, while other areas, such as the Ross Sea shelf, have undergone cooling in recent years. These trends are expected to result in a redistribution of species based on their tolerances to different temperature regimes. Climate variability may impair the migratory response of these species to environmental change, while imposing increased pressures on recruitment. Fisheries and climate change, coupled with related local and global drivers such as pollution and sea ice change, have the potential to produce synergistic impacts that compound the risks to Antarctic fish and squid species. The uncertainty surrounding how different species will respond to these challenges, given their varying life histories, environmental dependencies, and resiliencies, necessitates regular assessment to inform conservation and management decisions. Urgent attention is needed to determine whether the current management strategies are suitably precautionary to achieve conservation objectives in light of the impending changes to the ecosystem.
IRIS Cnr arrow_drop_down École Polytechnique, Université Paris-Saclay: HALArticle . 2021Full-Text: https://hal.science/hal-03336075Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03336075Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03336075Data sources: Bielefeld Academic Search Engine (BASE)Frontiers in Ecology and EvolutionArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefFachrepositorium LebenswissenschaftenArticle . 2021Data sources: Fachrepositorium LebenswissenschaftenArchiMer - Institutional Archive of IfremerOther literature type . 2021Data sources: ArchiMer - Institutional Archive of IfremerUniversity of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fevo.2021.624918&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down École Polytechnique, Université Paris-Saclay: HALArticle . 2021Full-Text: https://hal.science/hal-03336075Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03336075Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03336075Data sources: Bielefeld Academic Search Engine (BASE)Frontiers in Ecology and EvolutionArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefFachrepositorium LebenswissenschaftenArticle . 2021Data sources: Fachrepositorium LebenswissenschaftenArchiMer - Institutional Archive of IfremerOther literature type . 2021Data sources: ArchiMer - Institutional Archive of IfremerUniversity of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fevo.2021.624918&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 Australia, Italy, Belgium, France, Australia, United Kingdom, PortugalPublisher:Frontiers Media SA Funded by:UKRI | GW4+ - a consortium of ex..., NSF | EAGER: Origin and Physiol...UKRI| GW4+ - a consortium of excellence in innovative research training ,NSF| EAGER: Origin and Physiological Consequences of a Neoplasm Outbreak in Antarctic FishAuthors: Jilda Alicia Caccavo; Jilda Alicia Caccavo; Jilda Alicia Caccavo; Henrik Christiansen; +23 AuthorsJilda Alicia Caccavo; Jilda Alicia Caccavo; Jilda Alicia Caccavo; Henrik Christiansen; Andrew J. Constable; Andrew J. Constable; Laura Ghigliotti; Rowan Trebilco; Rowan Trebilco; Cassandra M. Brooks; Cédric Cotte; Thomas Desvignes; Tracey Dornan; Tracey Dornan; Christopher D. Jones; Philippe Koubbi; Philippe Koubbi; Ryan A. Saunders; Anneli Strobel; Marino Vacchi; Anton P. van de Putte; Anton P. van de Putte; Andrea Walters; Claire M. Waluda; Briannyn L. Woods; José C. Xavier; José C. Xavier;Southern Ocean ecosystems are globally important and vulnerable to global drivers of change, yet they remain challenging to study. Fish and squid make up a significant portion of the biomass within the Southern Ocean, filling key roles in food webs from forage to mid-trophic species and top predators. They comprise a diverse array of species uniquely adapted to the extreme habitats of the region. Adaptations such as antifreeze glycoproteins, lipid-retention, extended larval phases, delayed senescence, and energy-conserving life strategies equip Antarctic fish and squid to withstand the dark winters and yearlong subzero temperatures experienced in much of the Southern Ocean. In addition to krill exploitation, the comparatively high commercial value of Antarctic fish, particularly the lucrative toothfish, drives fisheries interests, which has included illegal fishing. Uncertainty about the population dynamics of target species and ecosystem structure and function more broadly has necessitated a precautionary, ecosystem approach to managing these stocks and enabling the recovery of depleted species. Fisheries currently remain the major local driver of change in Southern Ocean fish productivity, but global climate change presents an even greater challenge to assessing future changes. Parts of the Southern Ocean are experiencing ocean-warming, such as the West Antarctic Peninsula, while other areas, such as the Ross Sea shelf, have undergone cooling in recent years. These trends are expected to result in a redistribution of species based on their tolerances to different temperature regimes. Climate variability may impair the migratory response of these species to environmental change, while imposing increased pressures on recruitment. Fisheries and climate change, coupled with related local and global drivers such as pollution and sea ice change, have the potential to produce synergistic impacts that compound the risks to Antarctic fish and squid species. The uncertainty surrounding how different species will respond to these challenges, given their varying life histories, environmental dependencies, and resiliencies, necessitates regular assessment to inform conservation and management decisions. Urgent attention is needed to determine whether the current management strategies are suitably precautionary to achieve conservation objectives in light of the impending changes to the ecosystem.
IRIS Cnr arrow_drop_down École Polytechnique, Université Paris-Saclay: HALArticle . 2021Full-Text: https://hal.science/hal-03336075Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03336075Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03336075Data sources: Bielefeld Academic Search Engine (BASE)Frontiers in Ecology and EvolutionArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefFachrepositorium LebenswissenschaftenArticle . 2021Data sources: Fachrepositorium LebenswissenschaftenArchiMer - Institutional Archive of IfremerOther literature type . 2021Data sources: ArchiMer - Institutional Archive of IfremerUniversity of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fevo.2021.624918&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down École Polytechnique, Université Paris-Saclay: HALArticle . 2021Full-Text: https://hal.science/hal-03336075Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03336075Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03336075Data sources: Bielefeld Academic Search Engine (BASE)Frontiers in Ecology and EvolutionArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefFachrepositorium LebenswissenschaftenArticle . 2021Data sources: Fachrepositorium LebenswissenschaftenArchiMer - Institutional Archive of IfremerOther literature type . 2021Data sources: ArchiMer - Institutional Archive of IfremerUniversity of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fevo.2021.624918&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 United States, United Kingdom, United States, Australia, United States, AustraliaPublisher:Frontiers Media SA Louise Newman; Petra Heil; Petra Heil; Rowan Trebilco; Rowan Trebilco; Katsuro Katsumata; Andrew Constable; Andrew Constable; Esmee van Wijk; Esmee van Wijk; Karen Assmann; Joana Beja; Phillippa Bricher; Richard Coleman; Richard Coleman; Daniel Costa; Steve Diggs; Riccardo Farneti; Sarah Fawcett; Sarah T. Gille; Katharine R. Hendry; Sian Henley; Eileen Hofmann; Ted Maksym; Matthew Mazloff; Andrew Meijers; Michael M. Meredith; Sebastien Moreau; Burcu Ozsoy; Robin Robertson; Irene Schloss; Irene Schloss; Irene Schloss; Oscar Schofield; Jiuxin Shi; Elisabeth Sikes; Inga J. Smith; Sebastiaan Swart; Sebastiaan Swart; Anna Wahlin; Guy Williams; Guy Williams; Michael J. M. Williams; Laura Herraiz-Borreguero; Laura Herraiz-Borreguero; Stefan Kern; Jan Lieser; Jan Lieser; Robert A. Massom; Robert A. Massom; Jessica Melbourne-Thomas; Jessica Melbourne-Thomas; Jessica Melbourne-Thomas; Patricia Miloslavich; Patricia Miloslavich; Gunnar Spreen;L'océan Austral est d'une importance disproportionnée dans son effet sur le système terrestre, ayant un impact sur les systèmes climatiques, biogéochimiques et écologiques, ce qui rend les changements observés récemment dans ce système préoccupants à l'échelle mondiale. L'amélioration de la compréhension et des compétences prédictives nécessaires pour comprendre et projeter les états futurs de l'océan Austral nécessite des observations soutenues. Au cours de la dernière décennie, le Système d'observation de l'océan Austral (SOOS) a établi des réseaux pour améliorer la coordination régionale et les groupes communautaires de recherche afin de faire progresser le développement des capacités du système d'observation. Ces réseaux soutiennent la réalisation de la vision à 20 ans de SOOS, qui consiste à développer un système circumpolaire qui assure des séries chronologiques de variables clés et offre le plus grand impact des données à tous les utilisateurs finaux clés. Bien que l'océan Austral reste l'une des régions océaniques les moins observées, une coordination internationale accrue et des progrès dans les plates-formes autonomes ont permis de progresser vers la satisfaction du besoin d'observations durables de cette région. Depuis 2009, la communauté de l'océan Austral a déployé plus de 5700 plateformes d'observation au sud du 40°S. Des efforts multidisciplinaires à grande échelle, pluriannuels ou soutenus ont été soutenus et fournissent maintenant des observations de variables essentielles à des échelles spatiales et temporelles qui permettent d'évaluer les changements observés dans les systèmes de l'océan Austral. La couverture d'observation améliorée, cependant, est principalement pour l'océan ouvert, englobe l'été, se compose principalement de variables océanographiques physiques et couvre la surface jusqu'à 2000 m. Des lacunes importantes subsistent dans les observations de l'océan impacté par la glace, de la glace de mer, des profondeurs de plus de 2000 m, de l'interface air-glace, des variables biogéochimiques et biologiques, et pour les saisons autres que l'été. Pour combler durablement ces lacunes en matière de données, il faut des avancées parallèles dans les réseaux de coordination, la cyberinfrastructure et les outils de gestion des données, la technologie des plateformes d'observation et des capteurs, les technologies d'interrogation des plateformes et de transmission des données, les cadres de modélisation et les exigences d'échantillonnage des variables clés convenues au niveau international. Cet article présente une déclaration de la communauté sur les principaux progrès scientifiques et observationnels de la dernière décennie et, surtout, une évaluation des principales priorités pour la décennie à venir, en vue de réaliser la vision de SOOS et de fournir des données essentielles à tous les utilisateurs finaux. El Océano Austral es desproporcionadamente importante en su efecto sobre el sistema de la Tierra, impactando en los sistemas climáticos, biogeoquímicos y ecológicos, lo que hace que los cambios observados recientemente en este sistema sean motivo de preocupación mundial. La mayor comprensión y las mejoras en la habilidad predictiva necesarias para comprender y proyectar los estados futuros del Océano Austral requieren observar de forma sostenida. Durante la última década, el Sistema de Observación del Océano Austral (SOOS) ha establecido redes para mejorar la coordinación regional y los grupos comunitarios de investigación para avanzar en el desarrollo de las capacidades del sistema de observación. Estas redes respaldan la entrega de la visión de 20 años de SOOS, que es desarrollar un sistema circumpolar que garantice series temporales de variables clave y brinde el mayor impacto de los datos a todos los usuarios finales clave. Aunque el Océano Austral sigue siendo una de las regiones oceánicas menos observadas, la mejora de la coordinación internacional y los avances en las plataformas autónomas han dado lugar a avances para abordar la necesidad de observar de forma sostenida esta región. Desde 2009, la comunidad del Océano Austral ha desplegado más de 5700 plataformas de observación al sur de 40°S. Se han apoyado esfuerzos multidisciplinarios a gran escala, plurianuales o sostenidos, y ahora se están observando variables esenciales a escalas espaciales y temporales que permiten evaluar los cambios observados en los sistemas del Océano Austral. Sin embargo, la cobertura observacional mejorada es predominantemente para el océano abierto, abarca el verano, consiste principalmente en variables oceanográficas físicas y cubre la superficie hasta 2000 m. Siguen existiendo lagunas significativas en las observaciones del océano afectado por el hielo, el hielo marino, las profundidades de más de 2000 m, la interfaz aire-mar-hielo, las variables biogeoquímicas y biológicas, y para estaciones distintas del verano. Abordar estas brechas de datos de manera sostenida requiere avances paralelos en las redes de coordinación, la ciberinfraestructura y las herramientas de gestión de datos, la plataforma de observación y la tecnología de sensores, las tecnologías de interrogación y transmisión de datos de la plataforma, los marcos de modelado y los requisitos de muestreo acordados internacionalmente de variables clave. Este documento presenta una declaración de la comunidad sobre el principal progreso científico y observacional de la última década y, lo que es más importante, una evaluación de las prioridades clave para la próxima década, hacia el logro de la visión de SOOS y la entrega de datos esenciales a todos los usuarios finales. The Southern Ocean is disproportionately important in its effect on the Earth system, impacting climatic, biogeochemical and ecological systems, which makes recent observed changes to this system cause for global concern. The enhanced understanding and improvements in predictive skill needed for understanding and projecting future states of the Southern Ocean require sustained observations. Over the last decade, the Southern Ocean Observing System (SOOS) has established networks for enhancing regional coordination and research community groups to advance development of observing system capabilities. These networks support delivery of the SOOS 20-year vision, which is to develop a circumpolar system that ensures time series of key variables, and deliver the greatest impact from data to all key end-users. Although the Southern Ocean remains one of the least-observed ocean regions, enhanced international coordination and advances in autonomous platforms have resulted in progress towards addressing the need for sustained observations of this region. Since 2009, the Southern Ocean community has deployed over 5700 observational platforms south of 40°S. Large-scale, multi-year or sustained, multidisciplinary efforts have been supported and are now delivering observations of essential variables at space and time scales that enable assessment of changes being observed in Southern Ocean systems. The improved observational coverage, however, is predominantly for the open ocean, encompasses the summer, consists of primarily physical oceanographic variables and covers surface to 2000 m. Significant gaps remain in observations of the ice-impacted ocean, the sea ice, depths more than 2000 m, the air-sea-ice interface, biogeochemical and biological variables, and for seasons other than summer. Addressing these data gaps in a sustained way requires parallel advances in coordination networks, cyberinfrastructure and data management tools, observational platform and sensor technology, platform interrogation and data-transmission technologies, modeling frameworks, and internationally agreed sampling requirements of key variables. This paper presents a community statement on the major scientific and observational progress of the last decade, and importantly, an assessment of key priorities for the coming decade, towards achieving the SOOS vision and delivering essential data to all end users. المحيط الجنوبي مهم بشكل غير متناسب في تأثيره على نظام الأرض، مما يؤثر على النظم المناخية والكيميائية الحيوية والإيكولوجية، مما يجعل التغييرات التي لوحظت مؤخرًا في هذا النظام مصدر قلق عالمي. يتطلب الفهم المعزز والتحسينات في المهارات التنبؤية اللازمة لفهم وإسقاط الحالات المستقبلية للمحيط الجنوبي ملاحظات مستمرة. على مدى العقد الماضي، أنشأ نظام مراقبة المحيط الجنوبي (SOOS) شبكات لتعزيز التنسيق الإقليمي ومجموعات مجتمع البحث لتعزيز تطوير قدرات نظام المراقبة. تدعم هذه الشبكات تقديم رؤية SOOS لمدة 20 عامًا، وهي تطوير نظام قطبي يضمن سلسلة زمنية من المتغيرات الرئيسية، وتحقيق أكبر تأثير من البيانات لجميع المستخدمين النهائيين الرئيسيين. على الرغم من أن المحيط الجنوبي لا يزال أحد مناطق المحيطات الأقل رصدًا، إلا أن التنسيق الدولي المعزز والتقدم في المنصات المستقلة أدى إلى إحراز تقدم نحو تلبية الحاجة إلى عمليات مراقبة مستدامة لهذه المنطقة. منذ عام 2009، نشر مجتمع المحيط الجنوبي أكثر من 5700 منصة مراقبة جنوب 40درجةجنوباً. تم دعم الجهود متعددة التخصصات واسعة النطاق أو متعددة السنوات أو المستمرة، وهي تقدم الآن ملاحظات للمتغيرات الأساسية في نطاقات المكان والزمان التي تمكن من تقييم التغييرات التي يتم ملاحظتها في أنظمة المحيط الجنوبي. ومع ذلك، فإن التغطية الرصدية المحسنة هي في الغالب للمحيط المفتوح، وتشمل الصيف، وتتكون في المقام الأول من المتغيرات الأوقيانوغرافية الفيزيائية وتغطي السطح حتى 2000 متر. لا تزال هناك فجوات كبيرة في ملاحظات المحيط المتأثر بالجليد، والجليد البحري، والأعماق التي تزيد عن 2000 متر، والواجهة بين الهواء والبحر والجليد، والمتغيرات البيوكيميائية والبيولوجية، ولمواسم أخرى غير الصيف. تتطلب معالجة فجوات البيانات هذه بطريقة مستدامة تقدمًا موازيًا في شبكات التنسيق والبنية التحتية السيبرانية وأدوات إدارة البيانات ومنصة المراقبة وتكنولوجيا الاستشعار واستجواب المنصة وتقنيات نقل البيانات وأطر النمذجة ومتطلبات أخذ العينات المتفق عليها دوليًا للمتغيرات الرئيسية. تقدم هذه الورقة بيانًا مجتمعيًا حول التقدم العلمي والرصدي الرئيسي في العقد الماضي، والأهم من ذلك، تقييم الأولويات الرئيسية للعقد المقبل، نحو تحقيق رؤية SOOS وتقديم البيانات الأساسية لجميع المستخدمين النهائيين.
Frontiers in Marine ... arrow_drop_down University of California: eScholarshipArticle . 2019Full-Text: https://escholarship.org/uc/item/68h2n79kData sources: Bielefeld Academic Search Engine (BASE)Woods Hole Open Access ServerArticle . 2019License: CC BYFull-Text: https://doi.org/10.3389/fmars.2019.00433Data sources: Bielefeld Academic Search Engine (BASE)Old Dominion University: ODU Digital CommonsArticle . 2019License: CC BYFull-Text: https://digitalcommons.odu.edu/ccpo_pubs/398Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2019Data sources: eScholarship - University of CaliforniaUniversity of Tasmania: UTas ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2019.00433&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 74 citations 74 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Frontiers in Marine ... arrow_drop_down University of California: eScholarshipArticle . 2019Full-Text: https://escholarship.org/uc/item/68h2n79kData sources: Bielefeld Academic Search Engine (BASE)Woods Hole Open Access ServerArticle . 2019License: CC BYFull-Text: https://doi.org/10.3389/fmars.2019.00433Data sources: Bielefeld Academic Search Engine (BASE)Old Dominion University: ODU Digital CommonsArticle . 2019License: CC BYFull-Text: https://digitalcommons.odu.edu/ccpo_pubs/398Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2019Data sources: eScholarship - University of CaliforniaUniversity of Tasmania: UTas ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2019.00433&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 United States, United Kingdom, United States, Australia, United States, AustraliaPublisher:Frontiers Media SA Louise Newman; Petra Heil; Petra Heil; Rowan Trebilco; Rowan Trebilco; Katsuro Katsumata; Andrew Constable; Andrew Constable; Esmee van Wijk; Esmee van Wijk; Karen Assmann; Joana Beja; Phillippa Bricher; Richard Coleman; Richard Coleman; Daniel Costa; Steve Diggs; Riccardo Farneti; Sarah Fawcett; Sarah T. Gille; Katharine R. Hendry; Sian Henley; Eileen Hofmann; Ted Maksym; Matthew Mazloff; Andrew Meijers; Michael M. Meredith; Sebastien Moreau; Burcu Ozsoy; Robin Robertson; Irene Schloss; Irene Schloss; Irene Schloss; Oscar Schofield; Jiuxin Shi; Elisabeth Sikes; Inga J. Smith; Sebastiaan Swart; Sebastiaan Swart; Anna Wahlin; Guy Williams; Guy Williams; Michael J. M. Williams; Laura Herraiz-Borreguero; Laura Herraiz-Borreguero; Stefan Kern; Jan Lieser; Jan Lieser; Robert A. Massom; Robert A. Massom; Jessica Melbourne-Thomas; Jessica Melbourne-Thomas; Jessica Melbourne-Thomas; Patricia Miloslavich; Patricia Miloslavich; Gunnar Spreen;L'océan Austral est d'une importance disproportionnée dans son effet sur le système terrestre, ayant un impact sur les systèmes climatiques, biogéochimiques et écologiques, ce qui rend les changements observés récemment dans ce système préoccupants à l'échelle mondiale. L'amélioration de la compréhension et des compétences prédictives nécessaires pour comprendre et projeter les états futurs de l'océan Austral nécessite des observations soutenues. Au cours de la dernière décennie, le Système d'observation de l'océan Austral (SOOS) a établi des réseaux pour améliorer la coordination régionale et les groupes communautaires de recherche afin de faire progresser le développement des capacités du système d'observation. Ces réseaux soutiennent la réalisation de la vision à 20 ans de SOOS, qui consiste à développer un système circumpolaire qui assure des séries chronologiques de variables clés et offre le plus grand impact des données à tous les utilisateurs finaux clés. Bien que l'océan Austral reste l'une des régions océaniques les moins observées, une coordination internationale accrue et des progrès dans les plates-formes autonomes ont permis de progresser vers la satisfaction du besoin d'observations durables de cette région. Depuis 2009, la communauté de l'océan Austral a déployé plus de 5700 plateformes d'observation au sud du 40°S. Des efforts multidisciplinaires à grande échelle, pluriannuels ou soutenus ont été soutenus et fournissent maintenant des observations de variables essentielles à des échelles spatiales et temporelles qui permettent d'évaluer les changements observés dans les systèmes de l'océan Austral. La couverture d'observation améliorée, cependant, est principalement pour l'océan ouvert, englobe l'été, se compose principalement de variables océanographiques physiques et couvre la surface jusqu'à 2000 m. Des lacunes importantes subsistent dans les observations de l'océan impacté par la glace, de la glace de mer, des profondeurs de plus de 2000 m, de l'interface air-glace, des variables biogéochimiques et biologiques, et pour les saisons autres que l'été. Pour combler durablement ces lacunes en matière de données, il faut des avancées parallèles dans les réseaux de coordination, la cyberinfrastructure et les outils de gestion des données, la technologie des plateformes d'observation et des capteurs, les technologies d'interrogation des plateformes et de transmission des données, les cadres de modélisation et les exigences d'échantillonnage des variables clés convenues au niveau international. Cet article présente une déclaration de la communauté sur les principaux progrès scientifiques et observationnels de la dernière décennie et, surtout, une évaluation des principales priorités pour la décennie à venir, en vue de réaliser la vision de SOOS et de fournir des données essentielles à tous les utilisateurs finaux. El Océano Austral es desproporcionadamente importante en su efecto sobre el sistema de la Tierra, impactando en los sistemas climáticos, biogeoquímicos y ecológicos, lo que hace que los cambios observados recientemente en este sistema sean motivo de preocupación mundial. La mayor comprensión y las mejoras en la habilidad predictiva necesarias para comprender y proyectar los estados futuros del Océano Austral requieren observar de forma sostenida. Durante la última década, el Sistema de Observación del Océano Austral (SOOS) ha establecido redes para mejorar la coordinación regional y los grupos comunitarios de investigación para avanzar en el desarrollo de las capacidades del sistema de observación. Estas redes respaldan la entrega de la visión de 20 años de SOOS, que es desarrollar un sistema circumpolar que garantice series temporales de variables clave y brinde el mayor impacto de los datos a todos los usuarios finales clave. Aunque el Océano Austral sigue siendo una de las regiones oceánicas menos observadas, la mejora de la coordinación internacional y los avances en las plataformas autónomas han dado lugar a avances para abordar la necesidad de observar de forma sostenida esta región. Desde 2009, la comunidad del Océano Austral ha desplegado más de 5700 plataformas de observación al sur de 40°S. Se han apoyado esfuerzos multidisciplinarios a gran escala, plurianuales o sostenidos, y ahora se están observando variables esenciales a escalas espaciales y temporales que permiten evaluar los cambios observados en los sistemas del Océano Austral. Sin embargo, la cobertura observacional mejorada es predominantemente para el océano abierto, abarca el verano, consiste principalmente en variables oceanográficas físicas y cubre la superficie hasta 2000 m. Siguen existiendo lagunas significativas en las observaciones del océano afectado por el hielo, el hielo marino, las profundidades de más de 2000 m, la interfaz aire-mar-hielo, las variables biogeoquímicas y biológicas, y para estaciones distintas del verano. Abordar estas brechas de datos de manera sostenida requiere avances paralelos en las redes de coordinación, la ciberinfraestructura y las herramientas de gestión de datos, la plataforma de observación y la tecnología de sensores, las tecnologías de interrogación y transmisión de datos de la plataforma, los marcos de modelado y los requisitos de muestreo acordados internacionalmente de variables clave. Este documento presenta una declaración de la comunidad sobre el principal progreso científico y observacional de la última década y, lo que es más importante, una evaluación de las prioridades clave para la próxima década, hacia el logro de la visión de SOOS y la entrega de datos esenciales a todos los usuarios finales. The Southern Ocean is disproportionately important in its effect on the Earth system, impacting climatic, biogeochemical and ecological systems, which makes recent observed changes to this system cause for global concern. The enhanced understanding and improvements in predictive skill needed for understanding and projecting future states of the Southern Ocean require sustained observations. Over the last decade, the Southern Ocean Observing System (SOOS) has established networks for enhancing regional coordination and research community groups to advance development of observing system capabilities. These networks support delivery of the SOOS 20-year vision, which is to develop a circumpolar system that ensures time series of key variables, and deliver the greatest impact from data to all key end-users. Although the Southern Ocean remains one of the least-observed ocean regions, enhanced international coordination and advances in autonomous platforms have resulted in progress towards addressing the need for sustained observations of this region. Since 2009, the Southern Ocean community has deployed over 5700 observational platforms south of 40°S. Large-scale, multi-year or sustained, multidisciplinary efforts have been supported and are now delivering observations of essential variables at space and time scales that enable assessment of changes being observed in Southern Ocean systems. The improved observational coverage, however, is predominantly for the open ocean, encompasses the summer, consists of primarily physical oceanographic variables and covers surface to 2000 m. Significant gaps remain in observations of the ice-impacted ocean, the sea ice, depths more than 2000 m, the air-sea-ice interface, biogeochemical and biological variables, and for seasons other than summer. Addressing these data gaps in a sustained way requires parallel advances in coordination networks, cyberinfrastructure and data management tools, observational platform and sensor technology, platform interrogation and data-transmission technologies, modeling frameworks, and internationally agreed sampling requirements of key variables. This paper presents a community statement on the major scientific and observational progress of the last decade, and importantly, an assessment of key priorities for the coming decade, towards achieving the SOOS vision and delivering essential data to all end users. المحيط الجنوبي مهم بشكل غير متناسب في تأثيره على نظام الأرض، مما يؤثر على النظم المناخية والكيميائية الحيوية والإيكولوجية، مما يجعل التغييرات التي لوحظت مؤخرًا في هذا النظام مصدر قلق عالمي. يتطلب الفهم المعزز والتحسينات في المهارات التنبؤية اللازمة لفهم وإسقاط الحالات المستقبلية للمحيط الجنوبي ملاحظات مستمرة. على مدى العقد الماضي، أنشأ نظام مراقبة المحيط الجنوبي (SOOS) شبكات لتعزيز التنسيق الإقليمي ومجموعات مجتمع البحث لتعزيز تطوير قدرات نظام المراقبة. تدعم هذه الشبكات تقديم رؤية SOOS لمدة 20 عامًا، وهي تطوير نظام قطبي يضمن سلسلة زمنية من المتغيرات الرئيسية، وتحقيق أكبر تأثير من البيانات لجميع المستخدمين النهائيين الرئيسيين. على الرغم من أن المحيط الجنوبي لا يزال أحد مناطق المحيطات الأقل رصدًا، إلا أن التنسيق الدولي المعزز والتقدم في المنصات المستقلة أدى إلى إحراز تقدم نحو تلبية الحاجة إلى عمليات مراقبة مستدامة لهذه المنطقة. منذ عام 2009، نشر مجتمع المحيط الجنوبي أكثر من 5700 منصة مراقبة جنوب 40درجةجنوباً. تم دعم الجهود متعددة التخصصات واسعة النطاق أو متعددة السنوات أو المستمرة، وهي تقدم الآن ملاحظات للمتغيرات الأساسية في نطاقات المكان والزمان التي تمكن من تقييم التغييرات التي يتم ملاحظتها في أنظمة المحيط الجنوبي. ومع ذلك، فإن التغطية الرصدية المحسنة هي في الغالب للمحيط المفتوح، وتشمل الصيف، وتتكون في المقام الأول من المتغيرات الأوقيانوغرافية الفيزيائية وتغطي السطح حتى 2000 متر. لا تزال هناك فجوات كبيرة في ملاحظات المحيط المتأثر بالجليد، والجليد البحري، والأعماق التي تزيد عن 2000 متر، والواجهة بين الهواء والبحر والجليد، والمتغيرات البيوكيميائية والبيولوجية، ولمواسم أخرى غير الصيف. تتطلب معالجة فجوات البيانات هذه بطريقة مستدامة تقدمًا موازيًا في شبكات التنسيق والبنية التحتية السيبرانية وأدوات إدارة البيانات ومنصة المراقبة وتكنولوجيا الاستشعار واستجواب المنصة وتقنيات نقل البيانات وأطر النمذجة ومتطلبات أخذ العينات المتفق عليها دوليًا للمتغيرات الرئيسية. تقدم هذه الورقة بيانًا مجتمعيًا حول التقدم العلمي والرصدي الرئيسي في العقد الماضي، والأهم من ذلك، تقييم الأولويات الرئيسية للعقد المقبل، نحو تحقيق رؤية SOOS وتقديم البيانات الأساسية لجميع المستخدمين النهائيين.
Frontiers in Marine ... arrow_drop_down University of California: eScholarshipArticle . 2019Full-Text: https://escholarship.org/uc/item/68h2n79kData sources: Bielefeld Academic Search Engine (BASE)Woods Hole Open Access ServerArticle . 2019License: CC BYFull-Text: https://doi.org/10.3389/fmars.2019.00433Data sources: Bielefeld Academic Search Engine (BASE)Old Dominion University: ODU Digital CommonsArticle . 2019License: CC BYFull-Text: https://digitalcommons.odu.edu/ccpo_pubs/398Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2019Data sources: eScholarship - University of CaliforniaUniversity of Tasmania: UTas ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2019.00433&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 74 citations 74 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Frontiers in Marine ... arrow_drop_down University of California: eScholarshipArticle . 2019Full-Text: https://escholarship.org/uc/item/68h2n79kData sources: Bielefeld Academic Search Engine (BASE)Woods Hole Open Access ServerArticle . 2019License: CC BYFull-Text: https://doi.org/10.3389/fmars.2019.00433Data sources: Bielefeld Academic Search Engine (BASE)Old Dominion University: ODU Digital CommonsArticle . 2019License: CC BYFull-Text: https://digitalcommons.odu.edu/ccpo_pubs/398Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2019Data sources: eScholarship - University of CaliforniaUniversity of Tasmania: UTas ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2019.00433&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Australia, Australia, United KingdomPublisher:Frontiers Media SA Funded by:ARC | Australian Laureate Fello...ARC| Australian Laureate Fellowships - Grant ID: FL160100131Simeon L. Hill; Eugene J. Murphy; Rowan Trebilco; Rowan Trebilco; Kevin A. Hughes; Svenja Halfter; David K. A. Barnes; Jess Melbourne-Thomas; Jess Melbourne-Thomas; Susie M. Grant; Michael P. Meredith; Rachel D. Cavanagh;The Southern Ocean supports ecosystem services that are important on a global scale. Climate change and human activities (tourism, fishing, and research) will affect both the demand for, and the provision of, these services into the future. Here we synthesize recent assessments of the current status and expected future climate-driven changes in Southern Ocean ecosystems and evaluate the potential consequences of these changes for the provision of ecosystem services. We explore in detail three key services (the ‘blue carbon’ pathway, the Antarctic krill fishery, and Antarctic tourism), tracing the consequences of climate change from physical drivers through biological impacts to the benefits to humans. We consider potential non-climatic drivers of change, current and future demands for the services, and the main global and regional policy frameworks that could be used to manage risks to the provision of these services in a changing climate. We also develop a formal representation of the network of interactions between the suite of potential drivers and the suite of services, providing a framework to capture the complexity of this network and its embedded feedback loops. Increased consideration of the linkages and feedbacks between drivers and ecosystem services will be required to underpin robust management responses into the future.
NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2020.615214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 82 citations 82 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2020.615214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Australia, Australia, United KingdomPublisher:Frontiers Media SA Funded by:ARC | Australian Laureate Fello...ARC| Australian Laureate Fellowships - Grant ID: FL160100131Simeon L. Hill; Eugene J. Murphy; Rowan Trebilco; Rowan Trebilco; Kevin A. Hughes; Svenja Halfter; David K. A. Barnes; Jess Melbourne-Thomas; Jess Melbourne-Thomas; Susie M. Grant; Michael P. Meredith; Rachel D. Cavanagh;The Southern Ocean supports ecosystem services that are important on a global scale. Climate change and human activities (tourism, fishing, and research) will affect both the demand for, and the provision of, these services into the future. Here we synthesize recent assessments of the current status and expected future climate-driven changes in Southern Ocean ecosystems and evaluate the potential consequences of these changes for the provision of ecosystem services. We explore in detail three key services (the ‘blue carbon’ pathway, the Antarctic krill fishery, and Antarctic tourism), tracing the consequences of climate change from physical drivers through biological impacts to the benefits to humans. We consider potential non-climatic drivers of change, current and future demands for the services, and the main global and regional policy frameworks that could be used to manage risks to the provision of these services in a changing climate. We also develop a formal representation of the network of interactions between the suite of potential drivers and the suite of services, providing a framework to capture the complexity of this network and its embedded feedback loops. Increased consideration of the linkages and feedbacks between drivers and ecosystem services will be required to underpin robust management responses into the future.
NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2020.615214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 82 citations 82 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2020.615214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United States, United Kingdom, United Kingdom, Australia, Portugal, AustraliaPublisher:Frontiers Media SA Funded by:UKRI | Isotopic characterisation...UKRI| Isotopic characterisation of nutrient dynamics and UCDW behaviour in the west Antarctic Peninsula sea ice environmentEugene J. Murphy; Nadine M. Johnston; Eileen E. Hofmann; Richard A. Phillips; Jennifer A. Jackson; Andrew J. Constable; Andrew J. Constable; Sian F. Henley; Jessica Melbourne-Thomas; Rowan Trebilco; Rachel D. Cavanagh; Geraint A. Tarling; Ryan A. Saunders; David K. A. Barnes; Daniel P. Costa; Stuart P. Corney; Stuart P. Corney; Ceridwen I. Fraser; Juan Höfer; Juan Höfer; Kevin A. Hughes; Chester J. Sands; Sally E. Thorpe; Philip N. Trathan; José C. Xavier; José C. Xavier;Southern Ocean ecosystems are globally important. Processes in the Antarctic atmosphere, cryosphere, and the Southern Ocean directly influence global atmospheric and oceanic systems. Southern Ocean biogeochemistry has also been shown to have global importance. In contrast, ocean ecological processes are often seen as largely separate from the rest of the global system. In this paper, we consider the degree of ecological connectivity at different trophic levels, linking Southern Ocean ecosystems with the global ocean, and their importance not only for the regional ecosystem but also the wider Earth system. We also consider the human system connections, including the role of Southern Ocean ecosystems in supporting society, culture, and economy in many nations, influencing public and political views and hence policy. Rather than Southern Ocean ecosystems being defined by barriers at particular oceanic fronts, ecological changes are gradual due to cross-front exchanges involving oceanographic processes and organism movement. Millions of seabirds and hundreds of thousands of cetaceans move north out of polar waters in the austral autumn interacting in food webs across the Southern Hemisphere, and a few species cross the equator. A number of species migrate into the east and west ocean-basin boundary current and continental shelf regions of the major southern continents. Human travel in and out of the Southern Ocean region includes fisheries, tourism, and scientific vessels in all ocean sectors. These operations arise from many nations, particularly in the Northern Hemisphere, and are important in local communities as well as national economic, scientific, and political activities. As a result of the extensive connectivity, future changes in Southern Ocean ecosystems will have consequences throughout the Earth system, affecting ecosystem services with socio-economic impacts throughout the world. The high level of connectivity also means that changes and policy decisions in marine ecosystems outside the Southern Ocean have consequences for ecosystems south of the Antarctic Polar Front. Knowledge of Southern Ocean ecosystems and their global connectivity is critical for interpreting current change, projecting future change impacts, and identifying integrated strategies for conserving and managing both the Southern Ocean and the broader Earth system.
NERC Open Research A... arrow_drop_down Old Dominion University: ODU Digital CommonsArticle . 2021License: CC BYFull-Text: https://digitalcommons.odu.edu/ccpo_pubs/360Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Frontiers in Ecology and EvolutionArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefUniversity of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fevo.2021.624451&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 48 citations 48 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Old Dominion University: ODU Digital CommonsArticle . 2021License: CC BYFull-Text: https://digitalcommons.odu.edu/ccpo_pubs/360Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Frontiers in Ecology and EvolutionArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefUniversity of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fevo.2021.624451&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United States, United Kingdom, United Kingdom, Australia, Portugal, AustraliaPublisher:Frontiers Media SA Funded by:UKRI | Isotopic characterisation...UKRI| Isotopic characterisation of nutrient dynamics and UCDW behaviour in the west Antarctic Peninsula sea ice environmentEugene J. Murphy; Nadine M. Johnston; Eileen E. Hofmann; Richard A. Phillips; Jennifer A. Jackson; Andrew J. Constable; Andrew J. Constable; Sian F. Henley; Jessica Melbourne-Thomas; Rowan Trebilco; Rachel D. Cavanagh; Geraint A. Tarling; Ryan A. Saunders; David K. A. Barnes; Daniel P. Costa; Stuart P. Corney; Stuart P. Corney; Ceridwen I. Fraser; Juan Höfer; Juan Höfer; Kevin A. Hughes; Chester J. Sands; Sally E. Thorpe; Philip N. Trathan; José C. Xavier; José C. Xavier;Southern Ocean ecosystems are globally important. Processes in the Antarctic atmosphere, cryosphere, and the Southern Ocean directly influence global atmospheric and oceanic systems. Southern Ocean biogeochemistry has also been shown to have global importance. In contrast, ocean ecological processes are often seen as largely separate from the rest of the global system. In this paper, we consider the degree of ecological connectivity at different trophic levels, linking Southern Ocean ecosystems with the global ocean, and their importance not only for the regional ecosystem but also the wider Earth system. We also consider the human system connections, including the role of Southern Ocean ecosystems in supporting society, culture, and economy in many nations, influencing public and political views and hence policy. Rather than Southern Ocean ecosystems being defined by barriers at particular oceanic fronts, ecological changes are gradual due to cross-front exchanges involving oceanographic processes and organism movement. Millions of seabirds and hundreds of thousands of cetaceans move north out of polar waters in the austral autumn interacting in food webs across the Southern Hemisphere, and a few species cross the equator. A number of species migrate into the east and west ocean-basin boundary current and continental shelf regions of the major southern continents. Human travel in and out of the Southern Ocean region includes fisheries, tourism, and scientific vessels in all ocean sectors. These operations arise from many nations, particularly in the Northern Hemisphere, and are important in local communities as well as national economic, scientific, and political activities. As a result of the extensive connectivity, future changes in Southern Ocean ecosystems will have consequences throughout the Earth system, affecting ecosystem services with socio-economic impacts throughout the world. The high level of connectivity also means that changes and policy decisions in marine ecosystems outside the Southern Ocean have consequences for ecosystems south of the Antarctic Polar Front. Knowledge of Southern Ocean ecosystems and their global connectivity is critical for interpreting current change, projecting future change impacts, and identifying integrated strategies for conserving and managing both the Southern Ocean and the broader Earth system.
NERC Open Research A... arrow_drop_down Old Dominion University: ODU Digital CommonsArticle . 2021License: CC BYFull-Text: https://digitalcommons.odu.edu/ccpo_pubs/360Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Frontiers in Ecology and EvolutionArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefUniversity of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fevo.2021.624451&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 48 citations 48 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Old Dominion University: ODU Digital CommonsArticle . 2021License: CC BYFull-Text: https://digitalcommons.odu.edu/ccpo_pubs/360Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Frontiers in Ecology and EvolutionArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefUniversity of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fevo.2021.624451&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Elsevier BV Laurence J. Clarke; Laurence J. Clarke; Andrea M. Polanowski; Rowan Trebilco; A Walters; Bruce E. Deagle; Bruce E. Deagle;Mesopelagic fish form an important link between zooplankton and higher trophic levels in Southern Ocean food webs, however their diets are poorly known. Most of the dietary information available comes from morphological analysis of stomach contents and to a lesser extent fatty acid and stable isotopes. DNA sequencing could substantially improve our knowledge of mesopelagic fish diets, but has not previously been applied. We used high-throughput DNA sequencing (HTS) of the 18S ribosomal DNA and mitochondrial cytochrome oxidase I (COI) to characterise stomach contents of four myctophid and one bathylagid species collected at the southern extension of the Kerguelen Plateau (southern Kerguelen Axis), one of the most productive regions in the Indian sector of the Southern Ocean. Diets of the four myctophid species were dominated by amphipods, euphausiids and copepods, whereas radiolarians and siphonophores contributed a much greater proportion of HTS reads for Bathylagus sp. Analysis of mitochondrial COI showed that all species preyed on Thysanoessa macrura, but Euphausia superba was only detected in the stomach contents of myctophids. Size-based shifts in diet were apparent, with larger individuals of both bathylagid and myctophid species more likely to consume euphausiids, but we found little evidence for regional differences in diet composition for each species over the survey area. The presence of DNA from coelenterates and other gelatinous prey in the stomach contents of all five species suggests the importance of these taxa in the diet of Southern Ocean mesopelagics has been underestimated to date. Our study demonstrates the use of DNA-based diet assessment to determine the role of mesopelagic fish and their trophic position in the Southern Ocean and inform the development of ecosystem models.
Deep Sea Research Pa... arrow_drop_down Deep Sea Research Part II Topical Studies in OceanographyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefDeep Sea Research Part II Topical Studies in OceanographyJournalData sources: Microsoft Academic GraphUniversity of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.dsr2.2018.09.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Deep Sea Research Pa... arrow_drop_down Deep Sea Research Part II Topical Studies in OceanographyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefDeep Sea Research Part II Topical Studies in OceanographyJournalData sources: Microsoft Academic GraphUniversity of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.dsr2.2018.09.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Elsevier BV Laurence J. Clarke; Laurence J. Clarke; Andrea M. Polanowski; Rowan Trebilco; A Walters; Bruce E. Deagle; Bruce E. Deagle;Mesopelagic fish form an important link between zooplankton and higher trophic levels in Southern Ocean food webs, however their diets are poorly known. Most of the dietary information available comes from morphological analysis of stomach contents and to a lesser extent fatty acid and stable isotopes. DNA sequencing could substantially improve our knowledge of mesopelagic fish diets, but has not previously been applied. We used high-throughput DNA sequencing (HTS) of the 18S ribosomal DNA and mitochondrial cytochrome oxidase I (COI) to characterise stomach contents of four myctophid and one bathylagid species collected at the southern extension of the Kerguelen Plateau (southern Kerguelen Axis), one of the most productive regions in the Indian sector of the Southern Ocean. Diets of the four myctophid species were dominated by amphipods, euphausiids and copepods, whereas radiolarians and siphonophores contributed a much greater proportion of HTS reads for Bathylagus sp. Analysis of mitochondrial COI showed that all species preyed on Thysanoessa macrura, but Euphausia superba was only detected in the stomach contents of myctophids. Size-based shifts in diet were apparent, with larger individuals of both bathylagid and myctophid species more likely to consume euphausiids, but we found little evidence for regional differences in diet composition for each species over the survey area. The presence of DNA from coelenterates and other gelatinous prey in the stomach contents of all five species suggests the importance of these taxa in the diet of Southern Ocean mesopelagics has been underestimated to date. Our study demonstrates the use of DNA-based diet assessment to determine the role of mesopelagic fish and their trophic position in the Southern Ocean and inform the development of ecosystem models.
Deep Sea Research Pa... arrow_drop_down Deep Sea Research Part II Topical Studies in OceanographyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefDeep Sea Research Part II Topical Studies in OceanographyJournalData sources: Microsoft Academic GraphUniversity of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.dsr2.2018.09.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Deep Sea Research Pa... arrow_drop_down Deep Sea Research Part II Topical Studies in OceanographyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefDeep Sea Research Part II Topical Studies in OceanographyJournalData sources: Microsoft Academic GraphUniversity of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.dsr2.2018.09.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Belgium, AustraliaPublisher:Elsevier BV Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP180103124Turschwell, MP; Hayes, MA; Lacharite, M; Abundo, M; Adams, J; Blanchard, J; Brain, E; Buelow, CA; Bulman, C; Condie, SA; Connolly, RM; Dutton, I; Fulton, EA; Gallagher, S; Maynard, D; Pethybridge, H; Plaganyi, E; Porobic, J; Taelman, SE; Trebilco, R; Woods, G; Brown, CJ;handle: 1854/LU-8749967 , 10072/414126
Multiple ocean sectors compete for space and resources, creating conflicts but also opportunities to plan for synergistic outcomes that benefit multiple sectors. Planning and management are increasingly informed by qualitative and quantitative methods for assessing multi-sector interactions to identify trade-offs and synergies among sectors and with the environment, but there is a need to critically review the alignment of these tools with the requirements of Blue Economy stakeholders. Through a systematic literature review, an operational maturity analysis, and a survey of Blue Economy stakeholders, we found that the most well-developed tools for assessing interactions between multiple Blue Economy industries, and with the environment, are spatial prioritization tools, such as Marxan and multi-criteria decision support tools; and spatial static tools, such as cumulative effect mapping. More complex process/dynamic tools such as ecosystem and oceanographic models are well developed for single sectors, particularly water quality assessments and commercial fisheries, but have been less commonly applied in multi-sector contexts. Our review and stakeholder survey highlighted that assessing the environmental and operational suitability of sites for Blue Economy infrastructure in conjunction with operational impacts, trade-offs and decommissioning considerations requires: 1) a toolbox of approaches that covers a range of spatial, temporal and ecological scales; 2) tools that capture interactions and feedbacks among sectors, and with the environment, without being unnecessarily complicated (i.e., tractable to use and allow for effective communication of findings); and 3) continued synthesis of approaches and tools used across sectors such as commercial fishing, aquaculture, offshore renewable energy, and offshore engineering.
Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2022License: CC BY NC NDFull-Text: http://hdl.handle.net/10072/414126Data sources: Bielefeld Academic Search Engine (BASE)Environmental Science & PolicyArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefGhent University Academic BibliographyArticle . 2022Data sources: Ghent University Academic BibliographyUniversity of Tasmania: UTas ePrintsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envsci.2022.03.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2022License: CC BY NC NDFull-Text: http://hdl.handle.net/10072/414126Data sources: Bielefeld Academic Search Engine (BASE)Environmental Science & PolicyArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefGhent University Academic BibliographyArticle . 2022Data sources: Ghent University Academic BibliographyUniversity of Tasmania: UTas ePrintsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envsci.2022.03.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Belgium, AustraliaPublisher:Elsevier BV Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP180103124Turschwell, MP; Hayes, MA; Lacharite, M; Abundo, M; Adams, J; Blanchard, J; Brain, E; Buelow, CA; Bulman, C; Condie, SA; Connolly, RM; Dutton, I; Fulton, EA; Gallagher, S; Maynard, D; Pethybridge, H; Plaganyi, E; Porobic, J; Taelman, SE; Trebilco, R; Woods, G; Brown, CJ;handle: 1854/LU-8749967 , 10072/414126
Multiple ocean sectors compete for space and resources, creating conflicts but also opportunities to plan for synergistic outcomes that benefit multiple sectors. Planning and management are increasingly informed by qualitative and quantitative methods for assessing multi-sector interactions to identify trade-offs and synergies among sectors and with the environment, but there is a need to critically review the alignment of these tools with the requirements of Blue Economy stakeholders. Through a systematic literature review, an operational maturity analysis, and a survey of Blue Economy stakeholders, we found that the most well-developed tools for assessing interactions between multiple Blue Economy industries, and with the environment, are spatial prioritization tools, such as Marxan and multi-criteria decision support tools; and spatial static tools, such as cumulative effect mapping. More complex process/dynamic tools such as ecosystem and oceanographic models are well developed for single sectors, particularly water quality assessments and commercial fisheries, but have been less commonly applied in multi-sector contexts. Our review and stakeholder survey highlighted that assessing the environmental and operational suitability of sites for Blue Economy infrastructure in conjunction with operational impacts, trade-offs and decommissioning considerations requires: 1) a toolbox of approaches that covers a range of spatial, temporal and ecological scales; 2) tools that capture interactions and feedbacks among sectors, and with the environment, without being unnecessarily complicated (i.e., tractable to use and allow for effective communication of findings); and 3) continued synthesis of approaches and tools used across sectors such as commercial fishing, aquaculture, offshore renewable energy, and offshore engineering.
Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2022License: CC BY NC NDFull-Text: http://hdl.handle.net/10072/414126Data sources: Bielefeld Academic Search Engine (BASE)Environmental Science & PolicyArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefGhent University Academic BibliographyArticle . 2022Data sources: Ghent University Academic BibliographyUniversity of Tasmania: UTas ePrintsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envsci.2022.03.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2022License: CC BY NC NDFull-Text: http://hdl.handle.net/10072/414126Data sources: Bielefeld Academic Search Engine (BASE)Environmental Science & PolicyArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefGhent University Academic BibliographyArticle . 2022Data sources: Ghent University Academic BibliographyUniversity of Tasmania: UTas ePrintsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envsci.2022.03.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Elsevier BV Authors: Andrew J. Constable; Andrew J. Constable; Stacey A. McCormack; Stacey A. McCormack; +4 AuthorsAndrew J. Constable; Andrew J. Constable; Stacey A. McCormack; Stacey A. McCormack; Jessica Melbourne-Thomas; Jessica Melbourne-Thomas; Rowan Trebilco; Julia L. Blanchard;In recent years, there has been a shift away from the long-standing paradigm in which a short, krill-dominated food chain was considered to be the central element in Southern Ocean food webs. Instead, there is now increasing recognition that alternative energy pathways through mid-trophic level groups (mesopelagic fish and squid) may be equally (if not more) important than the krill pathway in many regions. Ecosystem models are a valuable tool to synthesise existing data on the structure of marine food webs and to visualise and quantify alternative energy pathways. In this study we develop a static mass balance food web model for the southern Kerguelen Axis region (Prydz Bay and Princess Elizabeth Trough) to evaluate the importance of alternative energy pathways through mid-trophic level groups, including fish, squid and krill, in maintaining energy flow to top predators within East Antarctica. Our model reveals several major trophic pathways distinct from, and equally important to the Antarctic krill (Euphausia superba) pathway. Using simple scenarios of reductions in krill biomass, we investigate how the system might switch to a state dominated by fish and squid pathways with the response of krill-reliant predators strongly dependent on their ability to switch to other prey sources. We conclude by discussing what these findings might suggest for the future vulnerability of East Antarctic food webs and the implications for future modelling work in the region.
Deep Sea Research Pa... arrow_drop_down Deep Sea Research Part II Topical Studies in OceanographyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefDeep Sea Research Part II Topical Studies in OceanographyJournalData sources: Microsoft Academic GraphUniversity of Tasmania: UTas ePrintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.dsr2.2019.07.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu30 citations 30 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Deep Sea Research Pa... arrow_drop_down Deep Sea Research Part II Topical Studies in OceanographyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefDeep Sea Research Part II Topical Studies in OceanographyJournalData sources: Microsoft Academic GraphUniversity of Tasmania: UTas ePrintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.dsr2.2019.07.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Elsevier BV Authors: Andrew J. Constable; Andrew J. Constable; Stacey A. McCormack; Stacey A. McCormack; +4 AuthorsAndrew J. Constable; Andrew J. Constable; Stacey A. McCormack; Stacey A. McCormack; Jessica Melbourne-Thomas; Jessica Melbourne-Thomas; Rowan Trebilco; Julia L. Blanchard;In recent years, there has been a shift away from the long-standing paradigm in which a short, krill-dominated food chain was considered to be the central element in Southern Ocean food webs. Instead, there is now increasing recognition that alternative energy pathways through mid-trophic level groups (mesopelagic fish and squid) may be equally (if not more) important than the krill pathway in many regions. Ecosystem models are a valuable tool to synthesise existing data on the structure of marine food webs and to visualise and quantify alternative energy pathways. In this study we develop a static mass balance food web model for the southern Kerguelen Axis region (Prydz Bay and Princess Elizabeth Trough) to evaluate the importance of alternative energy pathways through mid-trophic level groups, including fish, squid and krill, in maintaining energy flow to top predators within East Antarctica. Our model reveals several major trophic pathways distinct from, and equally important to the Antarctic krill (Euphausia superba) pathway. Using simple scenarios of reductions in krill biomass, we investigate how the system might switch to a state dominated by fish and squid pathways with the response of krill-reliant predators strongly dependent on their ability to switch to other prey sources. We conclude by discussing what these findings might suggest for the future vulnerability of East Antarctic food webs and the implications for future modelling work in the region.
Deep Sea Research Pa... arrow_drop_down Deep Sea Research Part II Topical Studies in OceanographyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefDeep Sea Research Part II Topical Studies in OceanographyJournalData sources: Microsoft Academic GraphUniversity of Tasmania: UTas ePrintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.dsr2.2019.07.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu30 citations 30 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Deep Sea Research Pa... arrow_drop_down Deep Sea Research Part II Topical Studies in OceanographyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefDeep Sea Research Part II Topical Studies in OceanographyJournalData sources: Microsoft Academic GraphUniversity of Tasmania: UTas ePrintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.dsr2.2019.07.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 AustraliaPublisher:Springer Science and Business Media LLC Funded by:ARC | ARC Centres of Excellence...ARC| ARC Centres of Excellences - Grant ID: CE170100023Hannah E. Fogarty; Phillipa C. McCormack; Leo X.C. Dutra; Leo X.C. Dutra; Emily Ogier; Amelie Meyer; Amelie Meyer; Rowan Trebilco; Rowan Trebilco; Gretta T. Pecl; Kelli Anderson; Narissa Bax; Kaisu Mustonen; Stuart Corney; Jess Melbourne-Thomas; Jess Melbourne-Thomas; Jan McDonald; Aysha Fleming; Aysha Fleming; Andrew J. Constable; Kimberley Norris; Jeffrey McGee; Tero Mustonen; Alistair J. Hobday; Alistair J. Hobday;Proactive and coordinated action to mitigate and adapt to climate change will be essential for achieving the healthy, resilient, safe, sustainably harvested and biodiverse ocean that the UN Decade of Ocean Science and sustainable development goals (SDGs) seek. Ocean-based mitigation actions could contribute 12% of the emissions reductions required by 2030 to keep warming to less than 1.5 ºC but, because substantial warming is already locked in, extensive adaptation action is also needed. Here, as part of the Future Seas project, we use a "foresighting/hindcasting" technique to describe two scenarios for 2030 in the context of climate change mitigation and adaptation for ocean systems. The "business-as-usual" future is expected if current trends continue, while an alternative future could be realised if society were to effectively use available data and knowledge to push as far as possible towards achieving the UN SDGs. We identify three drivers that differentiate between these alternative futures: (i) appetite for climate action, (ii) handling extreme events, and (iii) climate interventions. Actions that could navigate towards the optimistic, sustainable and technically achievable future include:(i)proactive creation and enhancement of economic incentives for mitigation and adaptation;(ii)supporting the proliferation of local initiatives to spur a global transformation;(iii)enhancing proactive coastal adaptation management;(iv)investing in research to support adaptation to emerging risks;(v)deploying marine-based renewable energy;(vi)deploying marine-based negative emissions technologies;(vii)developing and assessing solar radiation management approaches; and(viii)deploying appropriate solar radiation management approaches to help safeguard critical ecosystems.The online version contains supplementary material available at 10.1007/s11160-021-09678-4.
Reviews in Fish Biol... arrow_drop_down Reviews in Fish Biology and FisheriesArticle . 2021 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUniversity of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11160-021-09678-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Reviews in Fish Biol... arrow_drop_down Reviews in Fish Biology and FisheriesArticle . 2021 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUniversity of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11160-021-09678-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 AustraliaPublisher:Springer Science and Business Media LLC Funded by:ARC | ARC Centres of Excellence...ARC| ARC Centres of Excellences - Grant ID: CE170100023Hannah E. Fogarty; Phillipa C. McCormack; Leo X.C. Dutra; Leo X.C. Dutra; Emily Ogier; Amelie Meyer; Amelie Meyer; Rowan Trebilco; Rowan Trebilco; Gretta T. Pecl; Kelli Anderson; Narissa Bax; Kaisu Mustonen; Stuart Corney; Jess Melbourne-Thomas; Jess Melbourne-Thomas; Jan McDonald; Aysha Fleming; Aysha Fleming; Andrew J. Constable; Kimberley Norris; Jeffrey McGee; Tero Mustonen; Alistair J. Hobday; Alistair J. Hobday;Proactive and coordinated action to mitigate and adapt to climate change will be essential for achieving the healthy, resilient, safe, sustainably harvested and biodiverse ocean that the UN Decade of Ocean Science and sustainable development goals (SDGs) seek. Ocean-based mitigation actions could contribute 12% of the emissions reductions required by 2030 to keep warming to less than 1.5 ºC but, because substantial warming is already locked in, extensive adaptation action is also needed. Here, as part of the Future Seas project, we use a "foresighting/hindcasting" technique to describe two scenarios for 2030 in the context of climate change mitigation and adaptation for ocean systems. The "business-as-usual" future is expected if current trends continue, while an alternative future could be realised if society were to effectively use available data and knowledge to push as far as possible towards achieving the UN SDGs. We identify three drivers that differentiate between these alternative futures: (i) appetite for climate action, (ii) handling extreme events, and (iii) climate interventions. Actions that could navigate towards the optimistic, sustainable and technically achievable future include:(i)proactive creation and enhancement of economic incentives for mitigation and adaptation;(ii)supporting the proliferation of local initiatives to spur a global transformation;(iii)enhancing proactive coastal adaptation management;(iv)investing in research to support adaptation to emerging risks;(v)deploying marine-based renewable energy;(vi)deploying marine-based negative emissions technologies;(vii)developing and assessing solar radiation management approaches; and(viii)deploying appropriate solar radiation management approaches to help safeguard critical ecosystems.The online version contains supplementary material available at 10.1007/s11160-021-09678-4.
Reviews in Fish Biol... arrow_drop_down Reviews in Fish Biology and FisheriesArticle . 2021 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUniversity of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11160-021-09678-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Reviews in Fish Biol... arrow_drop_down Reviews in Fish Biology and FisheriesArticle . 2021 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUniversity of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11160-021-09678-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 AustraliaPublisher:Elsevier BV Authors: Turschwell, Mischa P.; Brown, Christopher J.; Lacharité, Myriam; Melbourne-Thomas, Jess; +20 AuthorsTurschwell, Mischa P.; Brown, Christopher J.; Lacharité, Myriam; Melbourne-Thomas, Jess; Hayes, Keith R.; Bustamante, Rodrigo H.; Dambacher, Jeffrey M.; Evans, Karen; Fidelman, Pedro; MacDonald, Darla H.; Van Putten, Ingrid; Wood, Graham; Abdussamie, Nagi; Bates, Mathilda; Blackwell, Damien; D'Alessandro, Steven; Dutton, Ian; Ericson, Jessica A.; Frid, Christopher L. J.; McDougall, Carmel; Lea, Mary-Anne; Rissik, David; Trebilco, Rowan; Fulton, Elizabeth A.;handle: 10072/427703
A multi-sectoral assessment of risks can support the management and investment decisions necessary for emerging blue economy industries to succeed. Traditional risk assessment methods will be challenged when applied to the complex socio-ecological systems that characterise offshore environments, and when data available to support management are lacking. Therefore, there is a need for assessments that account for multiple sectors. Here we describe the development of an efficient method for an integrated hazard analysis that is a precursor to full risk assessments. Our approach combines diverse disciplinary expertise, expert elicitation and multi-criteria analysis to rank hazards, so it encompasses all types of hazards including human-caused, natural and technological. We demonstrate our approach for two sectors that are predicted to grow rapidly in Australia: offshore aquaculture and marine renewable energy. Experts ranked Climate Change as the hazard with the highest overall concern, but hazards including Altered Ecosystem Function, Biosecurity, Cumulative Effects, Structural Failure and Social Licence were also highly ranked. We show here how outputs from this approach (multi-criteria scores and ranks) could be used to identify hazards that; i) could be safely retired, ii) should be progressed to more quantitative risk assessments or iii) require ongoing information collection. The approach can encompass all types of hazards, which enables it to holistically consider priorities. The expert-based multi-criteria approach outlined here represents a pragmatic way to solve some of the challenges of applying risk assessments to emerging industries by using a method that can be applied across multiple blue economy sectors.
James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2023Full-Text: https://doi.org/10.1016/j.envsci.2023.06.008Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2023License: CC BYFull-Text: https://ro.ecu.edu.au/ecuworks2022-2026/2873Data sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/10072/427703Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envsci.2023.06.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2023Full-Text: https://doi.org/10.1016/j.envsci.2023.06.008Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2023License: CC BYFull-Text: https://ro.ecu.edu.au/ecuworks2022-2026/2873Data sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/10072/427703Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envsci.2023.06.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 AustraliaPublisher:Elsevier BV Authors: Turschwell, Mischa P.; Brown, Christopher J.; Lacharité, Myriam; Melbourne-Thomas, Jess; +20 AuthorsTurschwell, Mischa P.; Brown, Christopher J.; Lacharité, Myriam; Melbourne-Thomas, Jess; Hayes, Keith R.; Bustamante, Rodrigo H.; Dambacher, Jeffrey M.; Evans, Karen; Fidelman, Pedro; MacDonald, Darla H.; Van Putten, Ingrid; Wood, Graham; Abdussamie, Nagi; Bates, Mathilda; Blackwell, Damien; D'Alessandro, Steven; Dutton, Ian; Ericson, Jessica A.; Frid, Christopher L. J.; McDougall, Carmel; Lea, Mary-Anne; Rissik, David; Trebilco, Rowan; Fulton, Elizabeth A.;handle: 10072/427703
A multi-sectoral assessment of risks can support the management and investment decisions necessary for emerging blue economy industries to succeed. Traditional risk assessment methods will be challenged when applied to the complex socio-ecological systems that characterise offshore environments, and when data available to support management are lacking. Therefore, there is a need for assessments that account for multiple sectors. Here we describe the development of an efficient method for an integrated hazard analysis that is a precursor to full risk assessments. Our approach combines diverse disciplinary expertise, expert elicitation and multi-criteria analysis to rank hazards, so it encompasses all types of hazards including human-caused, natural and technological. We demonstrate our approach for two sectors that are predicted to grow rapidly in Australia: offshore aquaculture and marine renewable energy. Experts ranked Climate Change as the hazard with the highest overall concern, but hazards including Altered Ecosystem Function, Biosecurity, Cumulative Effects, Structural Failure and Social Licence were also highly ranked. We show here how outputs from this approach (multi-criteria scores and ranks) could be used to identify hazards that; i) could be safely retired, ii) should be progressed to more quantitative risk assessments or iii) require ongoing information collection. The approach can encompass all types of hazards, which enables it to holistically consider priorities. The expert-based multi-criteria approach outlined here represents a pragmatic way to solve some of the challenges of applying risk assessments to emerging industries by using a method that can be applied across multiple blue economy sectors.
James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2023Full-Text: https://doi.org/10.1016/j.envsci.2023.06.008Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2023License: CC BYFull-Text: https://ro.ecu.edu.au/ecuworks2022-2026/2873Data sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/10072/427703Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envsci.2023.06.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2023Full-Text: https://doi.org/10.1016/j.envsci.2023.06.008Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2023License: CC BYFull-Text: https://ro.ecu.edu.au/ecuworks2022-2026/2873Data sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/10072/427703Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envsci.2023.06.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Australia, Australia, Australia, United Kingdom, GermanyPublisher:Springer Science and Business Media LLC Christine Klaas; Evgeny A. Pakhomov; Ulrich Freier; Michael D. Sumner; Michael D. Sumner; Klaus M Meiners; Klaus M Meiners; Robert Ricker; I. Noyan Yilmaz; Rowan Trebilco; Albrecht Götz; Albrecht Götz; Robert King; Sven E. Kerwath; Sven E. Kerwath; Sven E. Kerwath; Lutz Auerswald; Lutz Auerswald; Sally E. Thorpe; Jürgen Groeneveld; Gernot Nehrke; Dieter Wolf-Gladrow; Brian P. V. Hunt; Laura Halbach; Eugene J. Murphy; Volker Grimm; Jessica Melbourne-Thomas; Jessica Melbourne-Thomas; Simon N. Jarman; Simon N. Jarman; So Kawaguchi; So Kawaguchi; Mathias Teschke; Thomas Krumpen; Bettina Meyer; Bettina Meyer; Sharon Stammerjohn;A dominant Antarctic ecological paradigm suggests that winter sea ice is generally the main feeding ground for krill larvae. Observations from our winter cruise to the southwest Atlantic sector of the Southern Ocean contradict this view and present the first evidence that the pack-ice zone is a food-poor habitat for larval development. In contrast, the more open marginal ice zone provides a more favourable food environment for high larval krill growth rates. We found that complex under-ice habitats are, however, vital for larval krill when water column productivity is limited by light, by providing structures that offer protection from predators and to collect organic material released from the ice. The larvae feed on this sparse ice-associated food during the day. After sunset, they migrate into the water below the ice (upper 20 m) and drift away from the ice areas where they have previously fed. Model analyses indicate that this behaviour increases both food uptake in a patchy food environment and the likelihood of overwinter transport to areas where feeding conditions are more favourable in spring.
Nature Ecology & Evo... arrow_drop_down Electronic Publication Information CenterArticle . 2017Data sources: Electronic Publication Information CenterNature Ecology & EvolutionArticle . 2017 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUniversity of Tasmania: UTas ePrintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-017-0368-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 102 citations 102 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Nature Ecology & Evo... arrow_drop_down Electronic Publication Information CenterArticle . 2017Data sources: Electronic Publication Information CenterNature Ecology & EvolutionArticle . 2017 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUniversity of Tasmania: UTas ePrintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-017-0368-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Australia, Australia, Australia, United Kingdom, GermanyPublisher:Springer Science and Business Media LLC Christine Klaas; Evgeny A. Pakhomov; Ulrich Freier; Michael D. Sumner; Michael D. Sumner; Klaus M Meiners; Klaus M Meiners; Robert Ricker; I. Noyan Yilmaz; Rowan Trebilco; Albrecht Götz; Albrecht Götz; Robert King; Sven E. Kerwath; Sven E. Kerwath; Sven E. Kerwath; Lutz Auerswald; Lutz Auerswald; Sally E. Thorpe; Jürgen Groeneveld; Gernot Nehrke; Dieter Wolf-Gladrow; Brian P. V. Hunt; Laura Halbach; Eugene J. Murphy; Volker Grimm; Jessica Melbourne-Thomas; Jessica Melbourne-Thomas; Simon N. Jarman; Simon N. Jarman; So Kawaguchi; So Kawaguchi; Mathias Teschke; Thomas Krumpen; Bettina Meyer; Bettina Meyer; Sharon Stammerjohn;A dominant Antarctic ecological paradigm suggests that winter sea ice is generally the main feeding ground for krill larvae. Observations from our winter cruise to the southwest Atlantic sector of the Southern Ocean contradict this view and present the first evidence that the pack-ice zone is a food-poor habitat for larval development. In contrast, the more open marginal ice zone provides a more favourable food environment for high larval krill growth rates. We found that complex under-ice habitats are, however, vital for larval krill when water column productivity is limited by light, by providing structures that offer protection from predators and to collect organic material released from the ice. The larvae feed on this sparse ice-associated food during the day. After sunset, they migrate into the water below the ice (upper 20 m) and drift away from the ice areas where they have previously fed. Model analyses indicate that this behaviour increases both food uptake in a patchy food environment and the likelihood of overwinter transport to areas where feeding conditions are more favourable in spring.
Nature Ecology & Evo... arrow_drop_down Electronic Publication Information CenterArticle . 2017Data sources: Electronic Publication Information CenterNature Ecology & EvolutionArticle . 2017 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUniversity of Tasmania: UTas ePrintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-017-0368-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 102 citations 102 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Nature Ecology & Evo... arrow_drop_down Electronic Publication Information CenterArticle . 2017Data sources: Electronic Publication Information CenterNature Ecology & EvolutionArticle . 2017 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUniversity of Tasmania: UTas ePrintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-017-0368-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 Australia, Italy, Belgium, France, Australia, United Kingdom, PortugalPublisher:Frontiers Media SA Funded by:UKRI | GW4+ - a consortium of ex..., NSF | EAGER: Origin and Physiol...UKRI| GW4+ - a consortium of excellence in innovative research training ,NSF| EAGER: Origin and Physiological Consequences of a Neoplasm Outbreak in Antarctic FishAuthors: Jilda Alicia Caccavo; Jilda Alicia Caccavo; Jilda Alicia Caccavo; Henrik Christiansen; +23 AuthorsJilda Alicia Caccavo; Jilda Alicia Caccavo; Jilda Alicia Caccavo; Henrik Christiansen; Andrew J. Constable; Andrew J. Constable; Laura Ghigliotti; Rowan Trebilco; Rowan Trebilco; Cassandra M. Brooks; Cédric Cotte; Thomas Desvignes; Tracey Dornan; Tracey Dornan; Christopher D. Jones; Philippe Koubbi; Philippe Koubbi; Ryan A. Saunders; Anneli Strobel; Marino Vacchi; Anton P. van de Putte; Anton P. van de Putte; Andrea Walters; Claire M. Waluda; Briannyn L. Woods; José C. Xavier; José C. Xavier;Southern Ocean ecosystems are globally important and vulnerable to global drivers of change, yet they remain challenging to study. Fish and squid make up a significant portion of the biomass within the Southern Ocean, filling key roles in food webs from forage to mid-trophic species and top predators. They comprise a diverse array of species uniquely adapted to the extreme habitats of the region. Adaptations such as antifreeze glycoproteins, lipid-retention, extended larval phases, delayed senescence, and energy-conserving life strategies equip Antarctic fish and squid to withstand the dark winters and yearlong subzero temperatures experienced in much of the Southern Ocean. In addition to krill exploitation, the comparatively high commercial value of Antarctic fish, particularly the lucrative toothfish, drives fisheries interests, which has included illegal fishing. Uncertainty about the population dynamics of target species and ecosystem structure and function more broadly has necessitated a precautionary, ecosystem approach to managing these stocks and enabling the recovery of depleted species. Fisheries currently remain the major local driver of change in Southern Ocean fish productivity, but global climate change presents an even greater challenge to assessing future changes. Parts of the Southern Ocean are experiencing ocean-warming, such as the West Antarctic Peninsula, while other areas, such as the Ross Sea shelf, have undergone cooling in recent years. These trends are expected to result in a redistribution of species based on their tolerances to different temperature regimes. Climate variability may impair the migratory response of these species to environmental change, while imposing increased pressures on recruitment. Fisheries and climate change, coupled with related local and global drivers such as pollution and sea ice change, have the potential to produce synergistic impacts that compound the risks to Antarctic fish and squid species. The uncertainty surrounding how different species will respond to these challenges, given their varying life histories, environmental dependencies, and resiliencies, necessitates regular assessment to inform conservation and management decisions. Urgent attention is needed to determine whether the current management strategies are suitably precautionary to achieve conservation objectives in light of the impending changes to the ecosystem.
IRIS Cnr arrow_drop_down École Polytechnique, Université Paris-Saclay: HALArticle . 2021Full-Text: https://hal.science/hal-03336075Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03336075Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03336075Data sources: Bielefeld Academic Search Engine (BASE)Frontiers in Ecology and EvolutionArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefFachrepositorium LebenswissenschaftenArticle . 2021Data sources: Fachrepositorium LebenswissenschaftenArchiMer - Institutional Archive of IfremerOther literature type . 2021Data sources: ArchiMer - Institutional Archive of IfremerUniversity of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fevo.2021.624918&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down École Polytechnique, Université Paris-Saclay: HALArticle . 2021Full-Text: https://hal.science/hal-03336075Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03336075Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03336075Data sources: Bielefeld Academic Search Engine (BASE)Frontiers in Ecology and EvolutionArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefFachrepositorium LebenswissenschaftenArticle . 2021Data sources: Fachrepositorium LebenswissenschaftenArchiMer - Institutional Archive of IfremerOther literature type . 2021Data sources: ArchiMer - Institutional Archive of IfremerUniversity of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fevo.2021.624918&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 Australia, Italy, Belgium, France, Australia, United Kingdom, PortugalPublisher:Frontiers Media SA Funded by:UKRI | GW4+ - a consortium of ex..., NSF | EAGER: Origin and Physiol...UKRI| GW4+ - a consortium of excellence in innovative research training ,NSF| EAGER: Origin and Physiological Consequences of a Neoplasm Outbreak in Antarctic FishAuthors: Jilda Alicia Caccavo; Jilda Alicia Caccavo; Jilda Alicia Caccavo; Henrik Christiansen; +23 AuthorsJilda Alicia Caccavo; Jilda Alicia Caccavo; Jilda Alicia Caccavo; Henrik Christiansen; Andrew J. Constable; Andrew J. Constable; Laura Ghigliotti; Rowan Trebilco; Rowan Trebilco; Cassandra M. Brooks; Cédric Cotte; Thomas Desvignes; Tracey Dornan; Tracey Dornan; Christopher D. Jones; Philippe Koubbi; Philippe Koubbi; Ryan A. Saunders; Anneli Strobel; Marino Vacchi; Anton P. van de Putte; Anton P. van de Putte; Andrea Walters; Claire M. Waluda; Briannyn L. Woods; José C. Xavier; José C. Xavier;Southern Ocean ecosystems are globally important and vulnerable to global drivers of change, yet they remain challenging to study. Fish and squid make up a significant portion of the biomass within the Southern Ocean, filling key roles in food webs from forage to mid-trophic species and top predators. They comprise a diverse array of species uniquely adapted to the extreme habitats of the region. Adaptations such as antifreeze glycoproteins, lipid-retention, extended larval phases, delayed senescence, and energy-conserving life strategies equip Antarctic fish and squid to withstand the dark winters and yearlong subzero temperatures experienced in much of the Southern Ocean. In addition to krill exploitation, the comparatively high commercial value of Antarctic fish, particularly the lucrative toothfish, drives fisheries interests, which has included illegal fishing. Uncertainty about the population dynamics of target species and ecosystem structure and function more broadly has necessitated a precautionary, ecosystem approach to managing these stocks and enabling the recovery of depleted species. Fisheries currently remain the major local driver of change in Southern Ocean fish productivity, but global climate change presents an even greater challenge to assessing future changes. Parts of the Southern Ocean are experiencing ocean-warming, such as the West Antarctic Peninsula, while other areas, such as the Ross Sea shelf, have undergone cooling in recent years. These trends are expected to result in a redistribution of species based on their tolerances to different temperature regimes. Climate variability may impair the migratory response of these species to environmental change, while imposing increased pressures on recruitment. Fisheries and climate change, coupled with related local and global drivers such as pollution and sea ice change, have the potential to produce synergistic impacts that compound the risks to Antarctic fish and squid species. The uncertainty surrounding how different species will respond to these challenges, given their varying life histories, environmental dependencies, and resiliencies, necessitates regular assessment to inform conservation and management decisions. Urgent attention is needed to determine whether the current management strategies are suitably precautionary to achieve conservation objectives in light of the impending changes to the ecosystem.
IRIS Cnr arrow_drop_down École Polytechnique, Université Paris-Saclay: HALArticle . 2021Full-Text: https://hal.science/hal-03336075Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03336075Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03336075Data sources: Bielefeld Academic Search Engine (BASE)Frontiers in Ecology and EvolutionArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefFachrepositorium LebenswissenschaftenArticle . 2021Data sources: Fachrepositorium LebenswissenschaftenArchiMer - Institutional Archive of IfremerOther literature type . 2021Data sources: ArchiMer - Institutional Archive of IfremerUniversity of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fevo.2021.624918&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down École Polytechnique, Université Paris-Saclay: HALArticle . 2021Full-Text: https://hal.science/hal-03336075Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03336075Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03336075Data sources: Bielefeld Academic Search Engine (BASE)Frontiers in Ecology and EvolutionArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefFachrepositorium LebenswissenschaftenArticle . 2021Data sources: Fachrepositorium LebenswissenschaftenArchiMer - Institutional Archive of IfremerOther literature type . 2021Data sources: ArchiMer - Institutional Archive of IfremerUniversity of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fevo.2021.624918&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 United States, United Kingdom, United States, Australia, United States, AustraliaPublisher:Frontiers Media SA Louise Newman; Petra Heil; Petra Heil; Rowan Trebilco; Rowan Trebilco; Katsuro Katsumata; Andrew Constable; Andrew Constable; Esmee van Wijk; Esmee van Wijk; Karen Assmann; Joana Beja; Phillippa Bricher; Richard Coleman; Richard Coleman; Daniel Costa; Steve Diggs; Riccardo Farneti; Sarah Fawcett; Sarah T. Gille; Katharine R. Hendry; Sian Henley; Eileen Hofmann; Ted Maksym; Matthew Mazloff; Andrew Meijers; Michael M. Meredith; Sebastien Moreau; Burcu Ozsoy; Robin Robertson; Irene Schloss; Irene Schloss; Irene Schloss; Oscar Schofield; Jiuxin Shi; Elisabeth Sikes; Inga J. Smith; Sebastiaan Swart; Sebastiaan Swart; Anna Wahlin; Guy Williams; Guy Williams; Michael J. M. Williams; Laura Herraiz-Borreguero; Laura Herraiz-Borreguero; Stefan Kern; Jan Lieser; Jan Lieser; Robert A. Massom; Robert A. Massom; Jessica Melbourne-Thomas; Jessica Melbourne-Thomas; Jessica Melbourne-Thomas; Patricia Miloslavich; Patricia Miloslavich; Gunnar Spreen;L'océan Austral est d'une importance disproportionnée dans son effet sur le système terrestre, ayant un impact sur les systèmes climatiques, biogéochimiques et écologiques, ce qui rend les changements observés récemment dans ce système préoccupants à l'échelle mondiale. L'amélioration de la compréhension et des compétences prédictives nécessaires pour comprendre et projeter les états futurs de l'océan Austral nécessite des observations soutenues. Au cours de la dernière décennie, le Système d'observation de l'océan Austral (SOOS) a établi des réseaux pour améliorer la coordination régionale et les groupes communautaires de recherche afin de faire progresser le développement des capacités du système d'observation. Ces réseaux soutiennent la réalisation de la vision à 20 ans de SOOS, qui consiste à développer un système circumpolaire qui assure des séries chronologiques de variables clés et offre le plus grand impact des données à tous les utilisateurs finaux clés. Bien que l'océan Austral reste l'une des régions océaniques les moins observées, une coordination internationale accrue et des progrès dans les plates-formes autonomes ont permis de progresser vers la satisfaction du besoin d'observations durables de cette région. Depuis 2009, la communauté de l'océan Austral a déployé plus de 5700 plateformes d'observation au sud du 40°S. Des efforts multidisciplinaires à grande échelle, pluriannuels ou soutenus ont été soutenus et fournissent maintenant des observations de variables essentielles à des échelles spatiales et temporelles qui permettent d'évaluer les changements observés dans les systèmes de l'océan Austral. La couverture d'observation améliorée, cependant, est principalement pour l'océan ouvert, englobe l'été, se compose principalement de variables océanographiques physiques et couvre la surface jusqu'à 2000 m. Des lacunes importantes subsistent dans les observations de l'océan impacté par la glace, de la glace de mer, des profondeurs de plus de 2000 m, de l'interface air-glace, des variables biogéochimiques et biologiques, et pour les saisons autres que l'été. Pour combler durablement ces lacunes en matière de données, il faut des avancées parallèles dans les réseaux de coordination, la cyberinfrastructure et les outils de gestion des données, la technologie des plateformes d'observation et des capteurs, les technologies d'interrogation des plateformes et de transmission des données, les cadres de modélisation et les exigences d'échantillonnage des variables clés convenues au niveau international. Cet article présente une déclaration de la communauté sur les principaux progrès scientifiques et observationnels de la dernière décennie et, surtout, une évaluation des principales priorités pour la décennie à venir, en vue de réaliser la vision de SOOS et de fournir des données essentielles à tous les utilisateurs finaux. El Océano Austral es desproporcionadamente importante en su efecto sobre el sistema de la Tierra, impactando en los sistemas climáticos, biogeoquímicos y ecológicos, lo que hace que los cambios observados recientemente en este sistema sean motivo de preocupación mundial. La mayor comprensión y las mejoras en la habilidad predictiva necesarias para comprender y proyectar los estados futuros del Océano Austral requieren observar de forma sostenida. Durante la última década, el Sistema de Observación del Océano Austral (SOOS) ha establecido redes para mejorar la coordinación regional y los grupos comunitarios de investigación para avanzar en el desarrollo de las capacidades del sistema de observación. Estas redes respaldan la entrega de la visión de 20 años de SOOS, que es desarrollar un sistema circumpolar que garantice series temporales de variables clave y brinde el mayor impacto de los datos a todos los usuarios finales clave. Aunque el Océano Austral sigue siendo una de las regiones oceánicas menos observadas, la mejora de la coordinación internacional y los avances en las plataformas autónomas han dado lugar a avances para abordar la necesidad de observar de forma sostenida esta región. Desde 2009, la comunidad del Océano Austral ha desplegado más de 5700 plataformas de observación al sur de 40°S. Se han apoyado esfuerzos multidisciplinarios a gran escala, plurianuales o sostenidos, y ahora se están observando variables esenciales a escalas espaciales y temporales que permiten evaluar los cambios observados en los sistemas del Océano Austral. Sin embargo, la cobertura observacional mejorada es predominantemente para el océano abierto, abarca el verano, consiste principalmente en variables oceanográficas físicas y cubre la superficie hasta 2000 m. Siguen existiendo lagunas significativas en las observaciones del océano afectado por el hielo, el hielo marino, las profundidades de más de 2000 m, la interfaz aire-mar-hielo, las variables biogeoquímicas y biológicas, y para estaciones distintas del verano. Abordar estas brechas de datos de manera sostenida requiere avances paralelos en las redes de coordinación, la ciberinfraestructura y las herramientas de gestión de datos, la plataforma de observación y la tecnología de sensores, las tecnologías de interrogación y transmisión de datos de la plataforma, los marcos de modelado y los requisitos de muestreo acordados internacionalmente de variables clave. Este documento presenta una declaración de la comunidad sobre el principal progreso científico y observacional de la última década y, lo que es más importante, una evaluación de las prioridades clave para la próxima década, hacia el logro de la visión de SOOS y la entrega de datos esenciales a todos los usuarios finales. The Southern Ocean is disproportionately important in its effect on the Earth system, impacting climatic, biogeochemical and ecological systems, which makes recent observed changes to this system cause for global concern. The enhanced understanding and improvements in predictive skill needed for understanding and projecting future states of the Southern Ocean require sustained observations. Over the last decade, the Southern Ocean Observing System (SOOS) has established networks for enhancing regional coordination and research community groups to advance development of observing system capabilities. These networks support delivery of the SOOS 20-year vision, which is to develop a circumpolar system that ensures time series of key variables, and deliver the greatest impact from data to all key end-users. Although the Southern Ocean remains one of the least-observed ocean regions, enhanced international coordination and advances in autonomous platforms have resulted in progress towards addressing the need for sustained observations of this region. Since 2009, the Southern Ocean community has deployed over 5700 observational platforms south of 40°S. Large-scale, multi-year or sustained, multidisciplinary efforts have been supported and are now delivering observations of essential variables at space and time scales that enable assessment of changes being observed in Southern Ocean systems. The improved observational coverage, however, is predominantly for the open ocean, encompasses the summer, consists of primarily physical oceanographic variables and covers surface to 2000 m. Significant gaps remain in observations of the ice-impacted ocean, the sea ice, depths more than 2000 m, the air-sea-ice interface, biogeochemical and biological variables, and for seasons other than summer. Addressing these data gaps in a sustained way requires parallel advances in coordination networks, cyberinfrastructure and data management tools, observational platform and sensor technology, platform interrogation and data-transmission technologies, modeling frameworks, and internationally agreed sampling requirements of key variables. This paper presents a community statement on the major scientific and observational progress of the last decade, and importantly, an assessment of key priorities for the coming decade, towards achieving the SOOS vision and delivering essential data to all end users. المحيط الجنوبي مهم بشكل غير متناسب في تأثيره على نظام الأرض، مما يؤثر على النظم المناخية والكيميائية الحيوية والإيكولوجية، مما يجعل التغييرات التي لوحظت مؤخرًا في هذا النظام مصدر قلق عالمي. يتطلب الفهم المعزز والتحسينات في المهارات التنبؤية اللازمة لفهم وإسقاط الحالات المستقبلية للمحيط الجنوبي ملاحظات مستمرة. على مدى العقد الماضي، أنشأ نظام مراقبة المحيط الجنوبي (SOOS) شبكات لتعزيز التنسيق الإقليمي ومجموعات مجتمع البحث لتعزيز تطوير قدرات نظام المراقبة. تدعم هذه الشبكات تقديم رؤية SOOS لمدة 20 عامًا، وهي تطوير نظام قطبي يضمن سلسلة زمنية من المتغيرات الرئيسية، وتحقيق أكبر تأثير من البيانات لجميع المستخدمين النهائيين الرئيسيين. على الرغم من أن المحيط الجنوبي لا يزال أحد مناطق المحيطات الأقل رصدًا، إلا أن التنسيق الدولي المعزز والتقدم في المنصات المستقلة أدى إلى إحراز تقدم نحو تلبية الحاجة إلى عمليات مراقبة مستدامة لهذه المنطقة. منذ عام 2009، نشر مجتمع المحيط الجنوبي أكثر من 5700 منصة مراقبة جنوب 40درجةجنوباً. تم دعم الجهود متعددة التخصصات واسعة النطاق أو متعددة السنوات أو المستمرة، وهي تقدم الآن ملاحظات للمتغيرات الأساسية في نطاقات المكان والزمان التي تمكن من تقييم التغييرات التي يتم ملاحظتها في أنظمة المحيط الجنوبي. ومع ذلك، فإن التغطية الرصدية المحسنة هي في الغالب للمحيط المفتوح، وتشمل الصيف، وتتكون في المقام الأول من المتغيرات الأوقيانوغرافية الفيزيائية وتغطي السطح حتى 2000 متر. لا تزال هناك فجوات كبيرة في ملاحظات المحيط المتأثر بالجليد، والجليد البحري، والأعماق التي تزيد عن 2000 متر، والواجهة بين الهواء والبحر والجليد، والمتغيرات البيوكيميائية والبيولوجية، ولمواسم أخرى غير الصيف. تتطلب معالجة فجوات البيانات هذه بطريقة مستدامة تقدمًا موازيًا في شبكات التنسيق والبنية التحتية السيبرانية وأدوات إدارة البيانات ومنصة المراقبة وتكنولوجيا الاستشعار واستجواب المنصة وتقنيات نقل البيانات وأطر النمذجة ومتطلبات أخذ العينات المتفق عليها دوليًا للمتغيرات الرئيسية. تقدم هذه الورقة بيانًا مجتمعيًا حول التقدم العلمي والرصدي الرئيسي في العقد الماضي، والأهم من ذلك، تقييم الأولويات الرئيسية للعقد المقبل، نحو تحقيق رؤية SOOS وتقديم البيانات الأساسية لجميع المستخدمين النهائيين.
Frontiers in Marine ... arrow_drop_down University of California: eScholarshipArticle . 2019Full-Text: https://escholarship.org/uc/item/68h2n79kData sources: Bielefeld Academic Search Engine (BASE)Woods Hole Open Access ServerArticle . 2019License: CC BYFull-Text: https://doi.org/10.3389/fmars.2019.00433Data sources: Bielefeld Academic Search Engine (BASE)Old Dominion University: ODU Digital CommonsArticle . 2019License: CC BYFull-Text: https://digitalcommons.odu.edu/ccpo_pubs/398Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2019Data sources: eScholarship - University of CaliforniaUniversity of Tasmania: UTas ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2019.00433&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 74 citations 74 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Frontiers in Marine ... arrow_drop_down University of California: eScholarshipArticle . 2019Full-Text: https://escholarship.org/uc/item/68h2n79kData sources: Bielefeld Academic Search Engine (BASE)Woods Hole Open Access ServerArticle . 2019License: CC BYFull-Text: https://doi.org/10.3389/fmars.2019.00433Data sources: Bielefeld Academic Search Engine (BASE)Old Dominion University: ODU Digital CommonsArticle . 2019License: CC BYFull-Text: https://digitalcommons.odu.edu/ccpo_pubs/398Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2019Data sources: eScholarship - University of CaliforniaUniversity of Tasmania: UTas ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2019.00433&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 United States, United Kingdom, United States, Australia, United States, AustraliaPublisher:Frontiers Media SA Louise Newman; Petra Heil; Petra Heil; Rowan Trebilco; Rowan Trebilco; Katsuro Katsumata; Andrew Constable; Andrew Constable; Esmee van Wijk; Esmee van Wijk; Karen Assmann; Joana Beja; Phillippa Bricher; Richard Coleman; Richard Coleman; Daniel Costa; Steve Diggs; Riccardo Farneti; Sarah Fawcett; Sarah T. Gille; Katharine R. Hendry; Sian Henley; Eileen Hofmann; Ted Maksym; Matthew Mazloff; Andrew Meijers; Michael M. Meredith; Sebastien Moreau; Burcu Ozsoy; Robin Robertson; Irene Schloss; Irene Schloss; Irene Schloss; Oscar Schofield; Jiuxin Shi; Elisabeth Sikes; Inga J. Smith; Sebastiaan Swart; Sebastiaan Swart; Anna Wahlin; Guy Williams; Guy Williams; Michael J. M. Williams; Laura Herraiz-Borreguero; Laura Herraiz-Borreguero; Stefan Kern; Jan Lieser; Jan Lieser; Robert A. Massom; Robert A. Massom; Jessica Melbourne-Thomas; Jessica Melbourne-Thomas; Jessica Melbourne-Thomas; Patricia Miloslavich; Patricia Miloslavich; Gunnar Spreen;L'océan Austral est d'une importance disproportionnée dans son effet sur le système terrestre, ayant un impact sur les systèmes climatiques, biogéochimiques et écologiques, ce qui rend les changements observés récemment dans ce système préoccupants à l'échelle mondiale. L'amélioration de la compréhension et des compétences prédictives nécessaires pour comprendre et projeter les états futurs de l'océan Austral nécessite des observations soutenues. Au cours de la dernière décennie, le Système d'observation de l'océan Austral (SOOS) a établi des réseaux pour améliorer la coordination régionale et les groupes communautaires de recherche afin de faire progresser le développement des capacités du système d'observation. Ces réseaux soutiennent la réalisation de la vision à 20 ans de SOOS, qui consiste à développer un système circumpolaire qui assure des séries chronologiques de variables clés et offre le plus grand impact des données à tous les utilisateurs finaux clés. Bien que l'océan Austral reste l'une des régions océaniques les moins observées, une coordination internationale accrue et des progrès dans les plates-formes autonomes ont permis de progresser vers la satisfaction du besoin d'observations durables de cette région. Depuis 2009, la communauté de l'océan Austral a déployé plus de 5700 plateformes d'observation au sud du 40°S. Des efforts multidisciplinaires à grande échelle, pluriannuels ou soutenus ont été soutenus et fournissent maintenant des observations de variables essentielles à des échelles spatiales et temporelles qui permettent d'évaluer les changements observés dans les systèmes de l'océan Austral. La couverture d'observation améliorée, cependant, est principalement pour l'océan ouvert, englobe l'été, se compose principalement de variables océanographiques physiques et couvre la surface jusqu'à 2000 m. Des lacunes importantes subsistent dans les observations de l'océan impacté par la glace, de la glace de mer, des profondeurs de plus de 2000 m, de l'interface air-glace, des variables biogéochimiques et biologiques, et pour les saisons autres que l'été. Pour combler durablement ces lacunes en matière de données, il faut des avancées parallèles dans les réseaux de coordination, la cyberinfrastructure et les outils de gestion des données, la technologie des plateformes d'observation et des capteurs, les technologies d'interrogation des plateformes et de transmission des données, les cadres de modélisation et les exigences d'échantillonnage des variables clés convenues au niveau international. Cet article présente une déclaration de la communauté sur les principaux progrès scientifiques et observationnels de la dernière décennie et, surtout, une évaluation des principales priorités pour la décennie à venir, en vue de réaliser la vision de SOOS et de fournir des données essentielles à tous les utilisateurs finaux. El Océano Austral es desproporcionadamente importante en su efecto sobre el sistema de la Tierra, impactando en los sistemas climáticos, biogeoquímicos y ecológicos, lo que hace que los cambios observados recientemente en este sistema sean motivo de preocupación mundial. La mayor comprensión y las mejoras en la habilidad predictiva necesarias para comprender y proyectar los estados futuros del Océano Austral requieren observar de forma sostenida. Durante la última década, el Sistema de Observación del Océano Austral (SOOS) ha establecido redes para mejorar la coordinación regional y los grupos comunitarios de investigación para avanzar en el desarrollo de las capacidades del sistema de observación. Estas redes respaldan la entrega de la visión de 20 años de SOOS, que es desarrollar un sistema circumpolar que garantice series temporales de variables clave y brinde el mayor impacto de los datos a todos los usuarios finales clave. Aunque el Océano Austral sigue siendo una de las regiones oceánicas menos observadas, la mejora de la coordinación internacional y los avances en las plataformas autónomas han dado lugar a avances para abordar la necesidad de observar de forma sostenida esta región. Desde 2009, la comunidad del Océano Austral ha desplegado más de 5700 plataformas de observación al sur de 40°S. Se han apoyado esfuerzos multidisciplinarios a gran escala, plurianuales o sostenidos, y ahora se están observando variables esenciales a escalas espaciales y temporales que permiten evaluar los cambios observados en los sistemas del Océano Austral. Sin embargo, la cobertura observacional mejorada es predominantemente para el océano abierto, abarca el verano, consiste principalmente en variables oceanográficas físicas y cubre la superficie hasta 2000 m. Siguen existiendo lagunas significativas en las observaciones del océano afectado por el hielo, el hielo marino, las profundidades de más de 2000 m, la interfaz aire-mar-hielo, las variables biogeoquímicas y biológicas, y para estaciones distintas del verano. Abordar estas brechas de datos de manera sostenida requiere avances paralelos en las redes de coordinación, la ciberinfraestructura y las herramientas de gestión de datos, la plataforma de observación y la tecnología de sensores, las tecnologías de interrogación y transmisión de datos de la plataforma, los marcos de modelado y los requisitos de muestreo acordados internacionalmente de variables clave. Este documento presenta una declaración de la comunidad sobre el principal progreso científico y observacional de la última década y, lo que es más importante, una evaluación de las prioridades clave para la próxima década, hacia el logro de la visión de SOOS y la entrega de datos esenciales a todos los usuarios finales. The Southern Ocean is disproportionately important in its effect on the Earth system, impacting climatic, biogeochemical and ecological systems, which makes recent observed changes to this system cause for global concern. The enhanced understanding and improvements in predictive skill needed for understanding and projecting future states of the Southern Ocean require sustained observations. Over the last decade, the Southern Ocean Observing System (SOOS) has established networks for enhancing regional coordination and research community groups to advance development of observing system capabilities. These networks support delivery of the SOOS 20-year vision, which is to develop a circumpolar system that ensures time series of key variables, and deliver the greatest impact from data to all key end-users. Although the Southern Ocean remains one of the least-observed ocean regions, enhanced international coordination and advances in autonomous platforms have resulted in progress towards addressing the need for sustained observations of this region. Since 2009, the Southern Ocean community has deployed over 5700 observational platforms south of 40°S. Large-scale, multi-year or sustained, multidisciplinary efforts have been supported and are now delivering observations of essential variables at space and time scales that enable assessment of changes being observed in Southern Ocean systems. The improved observational coverage, however, is predominantly for the open ocean, encompasses the summer, consists of primarily physical oceanographic variables and covers surface to 2000 m. Significant gaps remain in observations of the ice-impacted ocean, the sea ice, depths more than 2000 m, the air-sea-ice interface, biogeochemical and biological variables, and for seasons other than summer. Addressing these data gaps in a sustained way requires parallel advances in coordination networks, cyberinfrastructure and data management tools, observational platform and sensor technology, platform interrogation and data-transmission technologies, modeling frameworks, and internationally agreed sampling requirements of key variables. This paper presents a community statement on the major scientific and observational progress of the last decade, and importantly, an assessment of key priorities for the coming decade, towards achieving the SOOS vision and delivering essential data to all end users. المحيط الجنوبي مهم بشكل غير متناسب في تأثيره على نظام الأرض، مما يؤثر على النظم المناخية والكيميائية الحيوية والإيكولوجية، مما يجعل التغييرات التي لوحظت مؤخرًا في هذا النظام مصدر قلق عالمي. يتطلب الفهم المعزز والتحسينات في المهارات التنبؤية اللازمة لفهم وإسقاط الحالات المستقبلية للمحيط الجنوبي ملاحظات مستمرة. على مدى العقد الماضي، أنشأ نظام مراقبة المحيط الجنوبي (SOOS) شبكات لتعزيز التنسيق الإقليمي ومجموعات مجتمع البحث لتعزيز تطوير قدرات نظام المراقبة. تدعم هذه الشبكات تقديم رؤية SOOS لمدة 20 عامًا، وهي تطوير نظام قطبي يضمن سلسلة زمنية من المتغيرات الرئيسية، وتحقيق أكبر تأثير من البيانات لجميع المستخدمين النهائيين الرئيسيين. على الرغم من أن المحيط الجنوبي لا يزال أحد مناطق المحيطات الأقل رصدًا، إلا أن التنسيق الدولي المعزز والتقدم في المنصات المستقلة أدى إلى إحراز تقدم نحو تلبية الحاجة إلى عمليات مراقبة مستدامة لهذه المنطقة. منذ عام 2009، نشر مجتمع المحيط الجنوبي أكثر من 5700 منصة مراقبة جنوب 40درجةجنوباً. تم دعم الجهود متعددة التخصصات واسعة النطاق أو متعددة السنوات أو المستمرة، وهي تقدم الآن ملاحظات للمتغيرات الأساسية في نطاقات المكان والزمان التي تمكن من تقييم التغييرات التي يتم ملاحظتها في أنظمة المحيط الجنوبي. ومع ذلك، فإن التغطية الرصدية المحسنة هي في الغالب للمحيط المفتوح، وتشمل الصيف، وتتكون في المقام الأول من المتغيرات الأوقيانوغرافية الفيزيائية وتغطي السطح حتى 2000 متر. لا تزال هناك فجوات كبيرة في ملاحظات المحيط المتأثر بالجليد، والجليد البحري، والأعماق التي تزيد عن 2000 متر، والواجهة بين الهواء والبحر والجليد، والمتغيرات البيوكيميائية والبيولوجية، ولمواسم أخرى غير الصيف. تتطلب معالجة فجوات البيانات هذه بطريقة مستدامة تقدمًا موازيًا في شبكات التنسيق والبنية التحتية السيبرانية وأدوات إدارة البيانات ومنصة المراقبة وتكنولوجيا الاستشعار واستجواب المنصة وتقنيات نقل البيانات وأطر النمذجة ومتطلبات أخذ العينات المتفق عليها دوليًا للمتغيرات الرئيسية. تقدم هذه الورقة بيانًا مجتمعيًا حول التقدم العلمي والرصدي الرئيسي في العقد الماضي، والأهم من ذلك، تقييم الأولويات الرئيسية للعقد المقبل، نحو تحقيق رؤية SOOS وتقديم البيانات الأساسية لجميع المستخدمين النهائيين.
Frontiers in Marine ... arrow_drop_down University of California: eScholarshipArticle . 2019Full-Text: https://escholarship.org/uc/item/68h2n79kData sources: Bielefeld Academic Search Engine (BASE)Woods Hole Open Access ServerArticle . 2019License: CC BYFull-Text: https://doi.org/10.3389/fmars.2019.00433Data sources: Bielefeld Academic Search Engine (BASE)Old Dominion University: ODU Digital CommonsArticle . 2019License: CC BYFull-Text: https://digitalcommons.odu.edu/ccpo_pubs/398Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2019Data sources: eScholarship - University of CaliforniaUniversity of Tasmania: UTas ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2019.00433&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 74 citations 74 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Frontiers in Marine ... arrow_drop_down University of California: eScholarshipArticle . 2019Full-Text: https://escholarship.org/uc/item/68h2n79kData sources: Bielefeld Academic Search Engine (BASE)Woods Hole Open Access ServerArticle . 2019License: CC BYFull-Text: https://doi.org/10.3389/fmars.2019.00433Data sources: Bielefeld Academic Search Engine (BASE)Old Dominion University: ODU Digital CommonsArticle . 2019License: CC BYFull-Text: https://digitalcommons.odu.edu/ccpo_pubs/398Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2019Data sources: eScholarship - University of CaliforniaUniversity of Tasmania: UTas ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2019.00433&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Australia, Australia, United KingdomPublisher:Frontiers Media SA Funded by:ARC | Australian Laureate Fello...ARC| Australian Laureate Fellowships - Grant ID: FL160100131Simeon L. Hill; Eugene J. Murphy; Rowan Trebilco; Rowan Trebilco; Kevin A. Hughes; Svenja Halfter; David K. A. Barnes; Jess Melbourne-Thomas; Jess Melbourne-Thomas; Susie M. Grant; Michael P. Meredith; Rachel D. Cavanagh;The Southern Ocean supports ecosystem services that are important on a global scale. Climate change and human activities (tourism, fishing, and research) will affect both the demand for, and the provision of, these services into the future. Here we synthesize recent assessments of the current status and expected future climate-driven changes in Southern Ocean ecosystems and evaluate the potential consequences of these changes for the provision of ecosystem services. We explore in detail three key services (the ‘blue carbon’ pathway, the Antarctic krill fishery, and Antarctic tourism), tracing the consequences of climate change from physical drivers through biological impacts to the benefits to humans. We consider potential non-climatic drivers of change, current and future demands for the services, and the main global and regional policy frameworks that could be used to manage risks to the provision of these services in a changing climate. We also develop a formal representation of the network of interactions between the suite of potential drivers and the suite of services, providing a framework to capture the complexity of this network and its embedded feedback loops. Increased consideration of the linkages and feedbacks between drivers and ecosystem services will be required to underpin robust management responses into the future.
NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2020.615214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 82 citations 82 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2020.615214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Australia, Australia, United KingdomPublisher:Frontiers Media SA Funded by:ARC | Australian Laureate Fello...ARC| Australian Laureate Fellowships - Grant ID: FL160100131Simeon L. Hill; Eugene J. Murphy; Rowan Trebilco; Rowan Trebilco; Kevin A. Hughes; Svenja Halfter; David K. A. Barnes; Jess Melbourne-Thomas; Jess Melbourne-Thomas; Susie M. Grant; Michael P. Meredith; Rachel D. Cavanagh;The Southern Ocean supports ecosystem services that are important on a global scale. Climate change and human activities (tourism, fishing, and research) will affect both the demand for, and the provision of, these services into the future. Here we synthesize recent assessments of the current status and expected future climate-driven changes in Southern Ocean ecosystems and evaluate the potential consequences of these changes for the provision of ecosystem services. We explore in detail three key services (the ‘blue carbon’ pathway, the Antarctic krill fishery, and Antarctic tourism), tracing the consequences of climate change from physical drivers through biological impacts to the benefits to humans. We consider potential non-climatic drivers of change, current and future demands for the services, and the main global and regional policy frameworks that could be used to manage risks to the provision of these services in a changing climate. We also develop a formal representation of the network of interactions between the suite of potential drivers and the suite of services, providing a framework to capture the complexity of this network and its embedded feedback loops. Increased consideration of the linkages and feedbacks between drivers and ecosystem services will be required to underpin robust management responses into the future.
NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2020.615214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 82 citations 82 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2020.615214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United States, United Kingdom, United Kingdom, Australia, Portugal, AustraliaPublisher:Frontiers Media SA Funded by:UKRI | Isotopic characterisation...UKRI| Isotopic characterisation of nutrient dynamics and UCDW behaviour in the west Antarctic Peninsula sea ice environmentEugene J. Murphy; Nadine M. Johnston; Eileen E. Hofmann; Richard A. Phillips; Jennifer A. Jackson; Andrew J. Constable; Andrew J. Constable; Sian F. Henley; Jessica Melbourne-Thomas; Rowan Trebilco; Rachel D. Cavanagh; Geraint A. Tarling; Ryan A. Saunders; David K. A. Barnes; Daniel P. Costa; Stuart P. Corney; Stuart P. Corney; Ceridwen I. Fraser; Juan Höfer; Juan Höfer; Kevin A. Hughes; Chester J. Sands; Sally E. Thorpe; Philip N. Trathan; José C. Xavier; José C. Xavier;Southern Ocean ecosystems are globally important. Processes in the Antarctic atmosphere, cryosphere, and the Southern Ocean directly influence global atmospheric and oceanic systems. Southern Ocean biogeochemistry has also been shown to have global importance. In contrast, ocean ecological processes are often seen as largely separate from the rest of the global system. In this paper, we consider the degree of ecological connectivity at different trophic levels, linking Southern Ocean ecosystems with the global ocean, and their importance not only for the regional ecosystem but also the wider Earth system. We also consider the human system connections, including the role of Southern Ocean ecosystems in supporting society, culture, and economy in many nations, influencing public and political views and hence policy. Rather than Southern Ocean ecosystems being defined by barriers at particular oceanic fronts, ecological changes are gradual due to cross-front exchanges involving oceanographic processes and organism movement. Millions of seabirds and hundreds of thousands of cetaceans move north out of polar waters in the austral autumn interacting in food webs across the Southern Hemisphere, and a few species cross the equator. A number of species migrate into the east and west ocean-basin boundary current and continental shelf regions of the major southern continents. Human travel in and out of the Southern Ocean region includes fisheries, tourism, and scientific vessels in all ocean sectors. These operations arise from many nations, particularly in the Northern Hemisphere, and are important in local communities as well as national economic, scientific, and political activities. As a result of the extensive connectivity, future changes in Southern Ocean ecosystems will have consequences throughout the Earth system, affecting ecosystem services with socio-economic impacts throughout the world. The high level of connectivity also means that changes and policy decisions in marine ecosystems outside the Southern Ocean have consequences for ecosystems south of the Antarctic Polar Front. Knowledge of Southern Ocean ecosystems and their global connectivity is critical for interpreting current change, projecting future change impacts, and identifying integrated strategies for conserving and managing both the Southern Ocean and the broader Earth system.
NERC Open Research A... arrow_drop_down Old Dominion University: ODU Digital CommonsArticle . 2021License: CC BYFull-Text: https://digitalcommons.odu.edu/ccpo_pubs/360Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Frontiers in Ecology and EvolutionArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefUniversity of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fevo.2021.624451&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 48 citations 48 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Old Dominion University: ODU Digital CommonsArticle . 2021License: CC BYFull-Text: https://digitalcommons.odu.edu/ccpo_pubs/360Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Frontiers in Ecology and EvolutionArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefUniversity of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fevo.2021.624451&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United States, United Kingdom, United Kingdom, Australia, Portugal, AustraliaPublisher:Frontiers Media SA Funded by:UKRI | Isotopic characterisation...UKRI| Isotopic characterisation of nutrient dynamics and UCDW behaviour in the west Antarctic Peninsula sea ice environmentEugene J. Murphy; Nadine M. Johnston; Eileen E. Hofmann; Richard A. Phillips; Jennifer A. Jackson; Andrew J. Constable; Andrew J. Constable; Sian F. Henley; Jessica Melbourne-Thomas; Rowan Trebilco; Rachel D. Cavanagh; Geraint A. Tarling; Ryan A. Saunders; David K. A. Barnes; Daniel P. Costa; Stuart P. Corney; Stuart P. Corney; Ceridwen I. Fraser; Juan Höfer; Juan Höfer; Kevin A. Hughes; Chester J. Sands; Sally E. Thorpe; Philip N. Trathan; José C. Xavier; José C. Xavier;Southern Ocean ecosystems are globally important. Processes in the Antarctic atmosphere, cryosphere, and the Southern Ocean directly influence global atmospheric and oceanic systems. Southern Ocean biogeochemistry has also been shown to have global importance. In contrast, ocean ecological processes are often seen as largely separate from the rest of the global system. In this paper, we consider the degree of ecological connectivity at different trophic levels, linking Southern Ocean ecosystems with the global ocean, and their importance not only for the regional ecosystem but also the wider Earth system. We also consider the human system connections, including the role of Southern Ocean ecosystems in supporting society, culture, and economy in many nations, influencing public and political views and hence policy. Rather than Southern Ocean ecosystems being defined by barriers at particular oceanic fronts, ecological changes are gradual due to cross-front exchanges involving oceanographic processes and organism movement. Millions of seabirds and hundreds of thousands of cetaceans move north out of polar waters in the austral autumn interacting in food webs across the Southern Hemisphere, and a few species cross the equator. A number of species migrate into the east and west ocean-basin boundary current and continental shelf regions of the major southern continents. Human travel in and out of the Southern Ocean region includes fisheries, tourism, and scientific vessels in all ocean sectors. These operations arise from many nations, particularly in the Northern Hemisphere, and are important in local communities as well as national economic, scientific, and political activities. As a result of the extensive connectivity, future changes in Southern Ocean ecosystems will have consequences throughout the Earth system, affecting ecosystem services with socio-economic impacts throughout the world. The high level of connectivity also means that changes and policy decisions in marine ecosystems outside the Southern Ocean have consequences for ecosystems south of the Antarctic Polar Front. Knowledge of Southern Ocean ecosystems and their global connectivity is critical for interpreting current change, projecting future change impacts, and identifying integrated strategies for conserving and managing both the Southern Ocean and the broader Earth system.
NERC Open Research A... arrow_drop_down Old Dominion University: ODU Digital CommonsArticle . 2021License: CC BYFull-Text: https://digitalcommons.odu.edu/ccpo_pubs/360Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Frontiers in Ecology and EvolutionArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefUniversity of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fevo.2021.624451&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 48 citations 48 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Old Dominion University: ODU Digital CommonsArticle . 2021License: CC BYFull-Text: https://digitalcommons.odu.edu/ccpo_pubs/360Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Frontiers in Ecology and EvolutionArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefUniversity of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fevo.2021.624451&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu