- home
- Advanced Search
Filters
Year range
-chevron_right GOField of Science
SDG [Beta]
Country
Source
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2015 FinlandPublisher:Elsevier BV Authors: Launiainen, Samuli; Katul, Gabriel G.; Laurén, Ari; Kolari, Pasi;Abstract A 1-dimensional multi-layer, multi-species soil-vegetation-atmosphere transfer model APES (Atmosphere-Plant Exchange Simulator) with a separate moss layer at the forest floor was developed and evaluated for a boreal Scots pine forest situated in Hyytiala, Southern Finland. The APES is based on biophysical principles for up-scaling CO2, H2O, heat and momentum exchange from canopy element level to a stand scale. The functional descriptions of sub-models were parametrized by literature values, previous model approaches and leaf and moss gas exchange measurements, and stand structural characteristics derived from multi-scale measurements. The model was independently tested against eddy-covariance fluxes of CO2, H2O and sensible heat measured above and within the canopy, and against soil heat flux and temperature and moisture profiles. The model was shown to well reproduce fluxes and resulting scalar gradients at diurnal and seasonal timescales. Also predictions for moss moisture content and soil moisture and temperature dynamics were acceptable considering the heterogeneity in soil hydraulic and thermal properties and uncertainties in boundary conditions. The model framework allows for (1) coupling above-ground with the soil domains through the feedbacks between soil water and vegetation mediated by the moss layer, (2) several vascular plant species or cohorts in a multi-species canopy, and (3) explicit treatment of bryophyte layer energy and water balance and bottom layer – atmosphere exchange. These features make APES well-suited for exploring feedbacks between boreal forest structure, site conditions and vegetation processes controlling ecosystem-atmosphere exchange.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecolmodel.2015.06.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 74 citations 74 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecolmodel.2015.06.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Wiley Frank M. Schurr; Ran Nathan; Yanping He; Anna Kuparinen; Nir Horvitz; Gabriel G. Katul;pmid: 21251175
Despite ample research, understanding plant spread and predicting their ability to track projected climate changes remain a formidable challenge to be confronted. We modelled the spread of North American wind-dispersed trees in current and future (c. 2060) conditions, accounting for variation in 10 key dispersal, demographic and environmental factors affecting population spread. Predicted spread rates vary substantially among 12 study species, primarily due to inter-specific variation in maturation age, fecundity and seed terminal velocity. Future spread is predicted to be faster if atmospheric CO(2) enrichment would increase fecundity and advance maturation, irrespective of the projected changes in mean surface windspeed. Yet, for only a few species, predicted wind-driven spread will match future climate changes, conditioned on seed abscission occurring only in strong winds and environmental conditions favouring high survival of the farthest-dispersed seeds. Because such conditions are unlikely, North American wind-dispersed trees are expected to lag behind the projected climate range shift.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1461-0248.2010.01573.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 165 citations 165 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1461-0248.2010.01573.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Embargo end date: 01 Jan 2009 Brazil, SwitzerlandPublisher:Copernicus GmbH Funded by:EC | TSURFEC| TSURFAndrew D. Richardson; Paul C. Stoy; Paul C. Stoy; Matteo Detto; J. Stanovick; J. Campos; Miguel D. Mahecha; Georg Wohlfahrt; Sanna Sevanto; J. H. McCaughey; Markus Reichstein; Beverly E. Law; Nicola Arriga; Gabriel G. Katul; Mathew Williams; Leonardo Montagnani; Leonardo Montagnani; Dennis D. Baldocchi;Abstract. The biosphere-atmosphere flux of CO2 responds to climatic variability at time scales from seconds to years and longer. Quantifying the strength of the interaction between the flux and climate variables at multiple frequencies is necessary to begin understanding the climatic controls on the dynamics of the terrestrial carbon cycle. Orthonormal wavelet transformation (OWT) can quantify the interaction between flux and microclimate at multiple frequencies while expressing time series variance in few energetic wavelet coefficients, offering a low-dimensional view of the measured climate-flux interaction. The variability of the net ecosystem exchange of CO2 (NEE), gross ecosystem productivity (GEP) and ecosystem respiration (RE), and their co-variability with dominant climatic drivers, are explored with a global dataset consisting of 253 eddy covariance research sites. Results demonstrate that the NEE and GEP wavelet spectra are similar amongst plant functional types (PFT) at weekly and shorter time scales, but significant divergence appeared among PFT at the biweekly and longer time scales, at which NEE and GEP are relatively less variable than climate. The RE spectra rarely differ among PFT across time scales. On average, RE spectra had greater low frequency (monthly to interannual) variability than NEE, GEP and climate. The low frequency Fourier coefficients of eight sites with more than eight years of data were compared against CANOAK ecosystem model simulations. Both measurements and theory demonstrate that "multi-annual" spectral peaks in flux may emerge at low (4+ years) time scales. Biological responses to climate and other internal system dynamics provide the likely explanation for observed multi-annual variability, but data records must be lengthened and measurements of ecosystem state must be made, and made available, to disentangle the mechanisms responsible for these patterns.
Repositório do INPA arrow_drop_down Repositório do INPAArticle . 2009License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/bgd-6-...Article . 2009 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bgd-6-4095-2009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 132 citations 132 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Repositório do INPA arrow_drop_down Repositório do INPAArticle . 2009License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/bgd-6-...Article . 2009 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bgd-6-4095-2009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008 United States, Germany, United States, United StatesPublisher:Proceedings of the National Academy of Sciences Ollinger, S. V.; Richardson, A. D.; Martin, M. E.; Hollinger, D. Y.; Frolking, S. E.; Reich, P. B.; Plourde, L. C.; Katul, G. G.; Munger, J. W.; Oren, R.; Smith, M. L.; Paw U, K. T.; Bolstad, P. V.; Cook, B. D.; Day, M. C.; Martin, T. A.; Monson, R. K.; Schmid, H. P.;The availability of nitrogen represents a key constraint on carbon cycling in terrestrial ecosystems, and it is largely in this capacity that the role of N in the Earth's climate system has been considered. Despite this, few studies have included continuous variation in plant N status as a driver of broad-scale carbon cycle analyses. This is partly because of uncertainties in how leaf-level physiological relationships scale to whole ecosystems and because methods for regional to continental detection of plant N concentrations have yet to be developed. Here, we show that ecosystem CO 2 uptake capacity in temperate and boreal forests scales directly with whole-canopy N concentrations, mirroring a leaf-level trend that has been observed for woody plants worldwide. We further show that both CO 2 uptake capacity and canopy N concentration are strongly and positively correlated with shortwave surface albedo. These results suggest that N plays an additional, and overlooked, role in the climate system via its influence on vegetation reflectivity and shortwave surface energy exchange. We also demonstrate that much of the spatial variation in canopy N can be detected by using broad-band satellite sensors, offering a means through which these findings can be applied toward improved application of coupled carbon cycle–climate models.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2009Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2008 . Peer-reviewedData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.0810021105&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 332 citations 332 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2009Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2008 . Peer-reviewedData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.0810021105&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021Publisher:Wiley Donghai Wu; German Vargas G.; Jennifer S. Powers; Nate G. McDowell; Justin M. Becknell; Daniel Pérez‐Aviles; David Medvigy; Yanlan Liu; Gabriel G. Katul; Julio César Calvo‐Alvarado; Ana Calvo‐Obando; Arturo Sanchez‐Azofeifa; Xiangtao Xu;doi: 10.1111/gcb.16046
pmid: 34921474
AbstractSensitivity of forest mortality to drought in carbon‐dense tropical forests remains fraught with uncertainty, while extreme droughts are predicted to be more frequent and intense. Here, the potential of temporal autocorrelation of high‐frequency variability in Landsat Enhanced Vegetation Index (EVI), an indicator of ecosystem resilience, to predict spatial and temporal variations of forest biomass mortality is evaluated against in situ census observations for 64 site‐year combinations in Costa Rican tropical dry forests during the 2015 ENSO drought. Temporal autocorrelation, within the optimal moving window of 24 months, demonstrated robust predictive power for in situ mortality (leave‐one‐out cross‐validation R2 = 0.54), which allows for estimates of annual biomass mortality patterns at 30 m resolution. Subsequent spatial analysis showed substantial fine‐scale heterogeneity of forest mortality patterns, largely driven by drought intensity and ecosystem properties related to plant water use such as forest deciduousness and topography. Highly deciduous forest patches demonstrated much lower mortality sensitivity to drought stress than less deciduous forest patches after elevation was controlled. Our results highlight the potential of high‐resolution remote sensing to “fingerprint” forest mortality and the significant role of ecosystem heterogeneity in forest biomass resistance to drought.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United StatesPublisher:Proceedings of the National Academy of Sciences Yanlan Liu; Anthony J. Parolari; Mukesh Kumar; Cheng-Wei Huang; Gabriel G. Katul; Amilcare Porporato;Significance The significance of forest mortality on ecosystem services, and water, carbon, and nutrient cycling is indubitable. While there is a general agreement that climate change-induced heat and drought stress is expected to intensify forest mortality, the concurrent influence of changes in atmospheric humidity and CO 2 concentration remains unclear. Here, the response of mortality risk to projected climate change is evaluated in 13 biomes across the globe. Our results show that increasing specific humidity and CO 2 concentration partially offset the intensification of risk by changing precipitation and air temperature. The risk response is also mediated by plant hydraulic traits. The study provides a mechanistic foundation for estimating future responses of forest mortality risk, which can facilitate ecosystem management.
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2017 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1704811114&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 74 citations 74 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2017 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1704811114&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2001 United StatesPublisher:Springer Science and Business Media LLC Authors: Karina V. R. Schäfer; David S. Ellsworth; David S. Ellsworth; George R. Hendrey; +8 AuthorsKarina V. R. Schäfer; David S. Ellsworth; David S. Ellsworth; George R. Hendrey; Brent E. Ewers; Chris A. Maier; Kurt H. Johnsen; Heather R. McCarthy; Steven G. McNulty; Nathan C. Phillips; Ram Oren; Gabriel G. Katul;Northern mid-latitude forests are a large terrestrial carbon sink. Ignoring nutrient limitations, large increases in carbon sequestration from carbon dioxide (CO2) fertilization are expected in these forests. Yet, forests are usually relegated to sites of moderate to poor fertility, where tree growth is often limited by nutrient supply, in particular nitrogen. Here we present evidence that estimates of increases in carbon sequestration of forests, which is expected to partially compensate for increasing CO2 in the atmosphere, are unduly optimistic. In two forest experiments on maturing pines exposed to elevated atmospheric CO2, the CO2-induced biomass carbon increment without added nutrients was undetectable at a nutritionally poor site, and the stimulation at a nutritionally moderate site was transient, stabilizing at a marginal gain after three years. However, a large synergistic gain from higher CO2 and nutrients was detected with nutrients added. This gain was even larger at the poor site (threefold higher than the expected additive effect) than at the moderate site (twofold higher). Thus, fertility can restrain the response of wood carbon sequestration to increased atmospheric CO2. Assessment of future carbon sequestration should consider the limitations imposed by soil fertility, as well as interactions with nitrogen deposition.
Nature arrow_drop_down University of Michigan: Deep BlueArticle . 2001Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/35078064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 936 citations 936 popularity Top 0.1% influence Top 0.1% impulse Top 0.1% Powered by BIP!
more_vert Nature arrow_drop_down University of Michigan: Deep BlueArticle . 2001Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/35078064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Finland, FinlandPublisher:Wiley Funded by:AKA | Climate impacts of boreal..., AKA | Tracking isotopic signals..., AKA | Atmosphere and Climate Co... +1 projectsAKA| Climate impacts of boreal bryophytes: from functional traits to global models ,AKA| Tracking isotopic signals in trees using mechanistic modeling – unraveling the climatic response of boreal forests imprinted in decadal tree ring archives ,AKA| Atmosphere and Climate Competence Center (ACCC) ,AKA| Climate impacts of boreal bryophytes: from functional traits to global modelsSamuli Launiainen; Gabriel G. Katul; Kersti Leppä; Pasi Kolari; Toprak Aslan; Tiia Grönholm; Lauri Korhonen; Ivan Mammarella; Timo Vesala;AbstractThe terrestrial net ecosystem productivity (NEP) has increased during the past three decades, but the mechanisms responsible are still unclear. We analyzed 17 years (2001–2017) of eddy‐covariance measurements of NEP, evapotranspiration (ET) and light and water use efficiency from a boreal coniferous forest in Southern Finland for trends and inter‐annual variability (IAV). The forest was a mean annual carbon sink (252 [42] gC ), and NEP increased at rate +6.4–7.0 gC (or ca. +2.5% ) during the period. This was attributed to the increasing gross‐primary productivity GPP and occurred without detectable change in ET. The start of annual carbon uptake period was advanced by 0.7 d , and increase in GPP and NEP outside the main growing season contributed ca. one‐third and one‐fourth of the annual trend, respectively. Meteorological factors were responsible for the IAV of fluxes but did not explain the long‐term trends. The growing season GPP trend was strongest in ample light during the peak growing season. Using a multi‐layer ecosystem model, we showed that direct fertilization effect diminishes when moving from leaf to ecosystem, and only 30–40% of the observed ecosystem GPP increase could be attributed to . The increasing trend in leaf‐area index (LAI), stimulated by forest thinning in 2002, was the main driver of the enhanced GPP and NEP of the mid‐rotation managed forest. It also compensated for the decrease of mean leaf stomatal conductance with increasing and LAI, explaining the apparent proportionality between observed GPP and trends. The results emphasize that attributing trends to their physical and physiological drivers is challenged by strong IAV, and uncertainty of LAI and species composition changes due to the dynamic flux footprint. The results enlighten the underlying mechanisms responsible for the increasing terrestrial carbon uptake in the boreal zone.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 29 citations 29 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Embargo end date: 01 Jan 2016 United Kingdom, SwitzerlandPublisher:American Geophysical Union (AGU) Authors: Gabriele Manoli; Marco Marani; Marco Marani; Gabriel G. Katul;AbstractWhile climate science debates are focused on the attainment of peak anthropogenic CO2 emissions and policy tools to reduce peak temperatures, the human‐energy‐climate system can hold “rebound” surprises beyond this peak. Following the second industrial revolution, global per capita CO2 emissions (cc) experienced a punctuated growth of about 100% every 60 years, mainly attributable to technological development and its global spread. A model of the human‐energy‐climate system capable of reproducing past punctuated dynamics shows that rebounds in global CO2 emissions emerge due to delays intrinsic to the diffusion of innovations. Such intrinsic delays in the adoption and spread of low‐carbon emitting technologies, together with projected population growth, upset the warming target set by the Paris Agreement. To avoid rebounds and their negative climate effects, model calculations show that the diffusion of climate‐friendly technologies must occur with lags one‐order of magnitude shorter (i.e., ∼6 years) than the characteristic timescale of past punctuated growth in cc. Radically new strategies to globally implement the technological advances at unprecedented rates are needed if the current emission goals are to be achieved.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2016ef000431&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2016ef000431&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United StatesPublisher:IOP Publishing Anthony J Parolari; Dan Li; Elie Bou-Zeid; Gabriel G Katul; Shmuel Assouline;The recent dust storm in the Middle East (Sepember 2015) was publicized in the media as a sign of an impending ‘Dust Bowl.’ Its severity, demonstrated by extreme aerosol optical depth in the atmosphere in the 99th percentile compared to historical data, was attributed to the ongoing regional conflict. However, surface meteorological and remote sensing data, as well as regional climate model simulations, support an alternative hypothesis: the historically unprecedented aridity played a more prominent role, as evidenced by unusual climatic and meteorological conditions prior to and during the storm. Remotely sensed normalized difference vegetation index demonstrates that vegetation cover was high in 2015 relative to the prior drought and conflict periods, suggesting that agricultural activity was not diminished during that year, thus negating the media narrative. Instead, meteorological simulations using the Weather Research and Forecasting (WRF) model show that the storm was associated with a cyclone and ‘Shamal’ winds, typical for dust storm generation in this region, that were immediately followed by an unusual wind reversal at low levels that spread dust west to the Mediterranean Coast. These unusual meteorological conditions were aided by a significant reduction in the critical shear stress due to extreme dry and hot conditions, thereby enhancing dust availability for erosion during this storm. Concluding, unusual aridity, combined with unique synoptic weather patterns, enhanced dust emission and westward long-range transport across the region, thus generating the extreme storm.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/11/11/114013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 50 citations 50 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/11/11/114013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2015 FinlandPublisher:Elsevier BV Authors: Launiainen, Samuli; Katul, Gabriel G.; Laurén, Ari; Kolari, Pasi;Abstract A 1-dimensional multi-layer, multi-species soil-vegetation-atmosphere transfer model APES (Atmosphere-Plant Exchange Simulator) with a separate moss layer at the forest floor was developed and evaluated for a boreal Scots pine forest situated in Hyytiala, Southern Finland. The APES is based on biophysical principles for up-scaling CO2, H2O, heat and momentum exchange from canopy element level to a stand scale. The functional descriptions of sub-models were parametrized by literature values, previous model approaches and leaf and moss gas exchange measurements, and stand structural characteristics derived from multi-scale measurements. The model was independently tested against eddy-covariance fluxes of CO2, H2O and sensible heat measured above and within the canopy, and against soil heat flux and temperature and moisture profiles. The model was shown to well reproduce fluxes and resulting scalar gradients at diurnal and seasonal timescales. Also predictions for moss moisture content and soil moisture and temperature dynamics were acceptable considering the heterogeneity in soil hydraulic and thermal properties and uncertainties in boundary conditions. The model framework allows for (1) coupling above-ground with the soil domains through the feedbacks between soil water and vegetation mediated by the moss layer, (2) several vascular plant species or cohorts in a multi-species canopy, and (3) explicit treatment of bryophyte layer energy and water balance and bottom layer – atmosphere exchange. These features make APES well-suited for exploring feedbacks between boreal forest structure, site conditions and vegetation processes controlling ecosystem-atmosphere exchange.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecolmodel.2015.06.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 74 citations 74 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecolmodel.2015.06.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Wiley Frank M. Schurr; Ran Nathan; Yanping He; Anna Kuparinen; Nir Horvitz; Gabriel G. Katul;pmid: 21251175
Despite ample research, understanding plant spread and predicting their ability to track projected climate changes remain a formidable challenge to be confronted. We modelled the spread of North American wind-dispersed trees in current and future (c. 2060) conditions, accounting for variation in 10 key dispersal, demographic and environmental factors affecting population spread. Predicted spread rates vary substantially among 12 study species, primarily due to inter-specific variation in maturation age, fecundity and seed terminal velocity. Future spread is predicted to be faster if atmospheric CO(2) enrichment would increase fecundity and advance maturation, irrespective of the projected changes in mean surface windspeed. Yet, for only a few species, predicted wind-driven spread will match future climate changes, conditioned on seed abscission occurring only in strong winds and environmental conditions favouring high survival of the farthest-dispersed seeds. Because such conditions are unlikely, North American wind-dispersed trees are expected to lag behind the projected climate range shift.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1461-0248.2010.01573.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 165 citations 165 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1461-0248.2010.01573.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Embargo end date: 01 Jan 2009 Brazil, SwitzerlandPublisher:Copernicus GmbH Funded by:EC | TSURFEC| TSURFAndrew D. Richardson; Paul C. Stoy; Paul C. Stoy; Matteo Detto; J. Stanovick; J. Campos; Miguel D. Mahecha; Georg Wohlfahrt; Sanna Sevanto; J. H. McCaughey; Markus Reichstein; Beverly E. Law; Nicola Arriga; Gabriel G. Katul; Mathew Williams; Leonardo Montagnani; Leonardo Montagnani; Dennis D. Baldocchi;Abstract. The biosphere-atmosphere flux of CO2 responds to climatic variability at time scales from seconds to years and longer. Quantifying the strength of the interaction between the flux and climate variables at multiple frequencies is necessary to begin understanding the climatic controls on the dynamics of the terrestrial carbon cycle. Orthonormal wavelet transformation (OWT) can quantify the interaction between flux and microclimate at multiple frequencies while expressing time series variance in few energetic wavelet coefficients, offering a low-dimensional view of the measured climate-flux interaction. The variability of the net ecosystem exchange of CO2 (NEE), gross ecosystem productivity (GEP) and ecosystem respiration (RE), and their co-variability with dominant climatic drivers, are explored with a global dataset consisting of 253 eddy covariance research sites. Results demonstrate that the NEE and GEP wavelet spectra are similar amongst plant functional types (PFT) at weekly and shorter time scales, but significant divergence appeared among PFT at the biweekly and longer time scales, at which NEE and GEP are relatively less variable than climate. The RE spectra rarely differ among PFT across time scales. On average, RE spectra had greater low frequency (monthly to interannual) variability than NEE, GEP and climate. The low frequency Fourier coefficients of eight sites with more than eight years of data were compared against CANOAK ecosystem model simulations. Both measurements and theory demonstrate that "multi-annual" spectral peaks in flux may emerge at low (4+ years) time scales. Biological responses to climate and other internal system dynamics provide the likely explanation for observed multi-annual variability, but data records must be lengthened and measurements of ecosystem state must be made, and made available, to disentangle the mechanisms responsible for these patterns.
Repositório do INPA arrow_drop_down Repositório do INPAArticle . 2009License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/bgd-6-...Article . 2009 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bgd-6-4095-2009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 132 citations 132 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Repositório do INPA arrow_drop_down Repositório do INPAArticle . 2009License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/bgd-6-...Article . 2009 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bgd-6-4095-2009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008 United States, Germany, United States, United StatesPublisher:Proceedings of the National Academy of Sciences Ollinger, S. V.; Richardson, A. D.; Martin, M. E.; Hollinger, D. Y.; Frolking, S. E.; Reich, P. B.; Plourde, L. C.; Katul, G. G.; Munger, J. W.; Oren, R.; Smith, M. L.; Paw U, K. T.; Bolstad, P. V.; Cook, B. D.; Day, M. C.; Martin, T. A.; Monson, R. K.; Schmid, H. P.;The availability of nitrogen represents a key constraint on carbon cycling in terrestrial ecosystems, and it is largely in this capacity that the role of N in the Earth's climate system has been considered. Despite this, few studies have included continuous variation in plant N status as a driver of broad-scale carbon cycle analyses. This is partly because of uncertainties in how leaf-level physiological relationships scale to whole ecosystems and because methods for regional to continental detection of plant N concentrations have yet to be developed. Here, we show that ecosystem CO 2 uptake capacity in temperate and boreal forests scales directly with whole-canopy N concentrations, mirroring a leaf-level trend that has been observed for woody plants worldwide. We further show that both CO 2 uptake capacity and canopy N concentration are strongly and positively correlated with shortwave surface albedo. These results suggest that N plays an additional, and overlooked, role in the climate system via its influence on vegetation reflectivity and shortwave surface energy exchange. We also demonstrate that much of the spatial variation in canopy N can be detected by using broad-band satellite sensors, offering a means through which these findings can be applied toward improved application of coupled carbon cycle–climate models.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2009Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2008 . Peer-reviewedData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.0810021105&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 332 citations 332 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2009Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2008 . Peer-reviewedData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.0810021105&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021Publisher:Wiley Donghai Wu; German Vargas G.; Jennifer S. Powers; Nate G. McDowell; Justin M. Becknell; Daniel Pérez‐Aviles; David Medvigy; Yanlan Liu; Gabriel G. Katul; Julio César Calvo‐Alvarado; Ana Calvo‐Obando; Arturo Sanchez‐Azofeifa; Xiangtao Xu;doi: 10.1111/gcb.16046
pmid: 34921474
AbstractSensitivity of forest mortality to drought in carbon‐dense tropical forests remains fraught with uncertainty, while extreme droughts are predicted to be more frequent and intense. Here, the potential of temporal autocorrelation of high‐frequency variability in Landsat Enhanced Vegetation Index (EVI), an indicator of ecosystem resilience, to predict spatial and temporal variations of forest biomass mortality is evaluated against in situ census observations for 64 site‐year combinations in Costa Rican tropical dry forests during the 2015 ENSO drought. Temporal autocorrelation, within the optimal moving window of 24 months, demonstrated robust predictive power for in situ mortality (leave‐one‐out cross‐validation R2 = 0.54), which allows for estimates of annual biomass mortality patterns at 30 m resolution. Subsequent spatial analysis showed substantial fine‐scale heterogeneity of forest mortality patterns, largely driven by drought intensity and ecosystem properties related to plant water use such as forest deciduousness and topography. Highly deciduous forest patches demonstrated much lower mortality sensitivity to drought stress than less deciduous forest patches after elevation was controlled. Our results highlight the potential of high‐resolution remote sensing to “fingerprint” forest mortality and the significant role of ecosystem heterogeneity in forest biomass resistance to drought.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United StatesPublisher:Proceedings of the National Academy of Sciences Yanlan Liu; Anthony J. Parolari; Mukesh Kumar; Cheng-Wei Huang; Gabriel G. Katul; Amilcare Porporato;Significance The significance of forest mortality on ecosystem services, and water, carbon, and nutrient cycling is indubitable. While there is a general agreement that climate change-induced heat and drought stress is expected to intensify forest mortality, the concurrent influence of changes in atmospheric humidity and CO 2 concentration remains unclear. Here, the response of mortality risk to projected climate change is evaluated in 13 biomes across the globe. Our results show that increasing specific humidity and CO 2 concentration partially offset the intensification of risk by changing precipitation and air temperature. The risk response is also mediated by plant hydraulic traits. The study provides a mechanistic foundation for estimating future responses of forest mortality risk, which can facilitate ecosystem management.
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2017 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1704811114&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 74 citations 74 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2017 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1704811114&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2001 United StatesPublisher:Springer Science and Business Media LLC Authors: Karina V. R. Schäfer; David S. Ellsworth; David S. Ellsworth; George R. Hendrey; +8 AuthorsKarina V. R. Schäfer; David S. Ellsworth; David S. Ellsworth; George R. Hendrey; Brent E. Ewers; Chris A. Maier; Kurt H. Johnsen; Heather R. McCarthy; Steven G. McNulty; Nathan C. Phillips; Ram Oren; Gabriel G. Katul;Northern mid-latitude forests are a large terrestrial carbon sink. Ignoring nutrient limitations, large increases in carbon sequestration from carbon dioxide (CO2) fertilization are expected in these forests. Yet, forests are usually relegated to sites of moderate to poor fertility, where tree growth is often limited by nutrient supply, in particular nitrogen. Here we present evidence that estimates of increases in carbon sequestration of forests, which is expected to partially compensate for increasing CO2 in the atmosphere, are unduly optimistic. In two forest experiments on maturing pines exposed to elevated atmospheric CO2, the CO2-induced biomass carbon increment without added nutrients was undetectable at a nutritionally poor site, and the stimulation at a nutritionally moderate site was transient, stabilizing at a marginal gain after three years. However, a large synergistic gain from higher CO2 and nutrients was detected with nutrients added. This gain was even larger at the poor site (threefold higher than the expected additive effect) than at the moderate site (twofold higher). Thus, fertility can restrain the response of wood carbon sequestration to increased atmospheric CO2. Assessment of future carbon sequestration should consider the limitations imposed by soil fertility, as well as interactions with nitrogen deposition.
Nature arrow_drop_down University of Michigan: Deep BlueArticle . 2001Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/35078064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 936 citations 936 popularity Top 0.1% influence Top 0.1% impulse Top 0.1% Powered by BIP!
more_vert Nature arrow_drop_down University of Michigan: Deep BlueArticle . 2001Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/35078064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Finland, FinlandPublisher:Wiley Funded by:AKA | Climate impacts of boreal..., AKA | Tracking isotopic signals..., AKA | Atmosphere and Climate Co... +1 projectsAKA| Climate impacts of boreal bryophytes: from functional traits to global models ,AKA| Tracking isotopic signals in trees using mechanistic modeling – unraveling the climatic response of boreal forests imprinted in decadal tree ring archives ,AKA| Atmosphere and Climate Competence Center (ACCC) ,AKA| Climate impacts of boreal bryophytes: from functional traits to global modelsSamuli Launiainen; Gabriel G. Katul; Kersti Leppä; Pasi Kolari; Toprak Aslan; Tiia Grönholm; Lauri Korhonen; Ivan Mammarella; Timo Vesala;AbstractThe terrestrial net ecosystem productivity (NEP) has increased during the past three decades, but the mechanisms responsible are still unclear. We analyzed 17 years (2001–2017) of eddy‐covariance measurements of NEP, evapotranspiration (ET) and light and water use efficiency from a boreal coniferous forest in Southern Finland for trends and inter‐annual variability (IAV). The forest was a mean annual carbon sink (252 [42] gC ), and NEP increased at rate +6.4–7.0 gC (or ca. +2.5% ) during the period. This was attributed to the increasing gross‐primary productivity GPP and occurred without detectable change in ET. The start of annual carbon uptake period was advanced by 0.7 d , and increase in GPP and NEP outside the main growing season contributed ca. one‐third and one‐fourth of the annual trend, respectively. Meteorological factors were responsible for the IAV of fluxes but did not explain the long‐term trends. The growing season GPP trend was strongest in ample light during the peak growing season. Using a multi‐layer ecosystem model, we showed that direct fertilization effect diminishes when moving from leaf to ecosystem, and only 30–40% of the observed ecosystem GPP increase could be attributed to . The increasing trend in leaf‐area index (LAI), stimulated by forest thinning in 2002, was the main driver of the enhanced GPP and NEP of the mid‐rotation managed forest. It also compensated for the decrease of mean leaf stomatal conductance with increasing and LAI, explaining the apparent proportionality between observed GPP and trends. The results emphasize that attributing trends to their physical and physiological drivers is challenged by strong IAV, and uncertainty of LAI and species composition changes due to the dynamic flux footprint. The results enlighten the underlying mechanisms responsible for the increasing terrestrial carbon uptake in the boreal zone.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 29 citations 29 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Embargo end date: 01 Jan 2016 United Kingdom, SwitzerlandPublisher:American Geophysical Union (AGU) Authors: Gabriele Manoli; Marco Marani; Marco Marani; Gabriel G. Katul;AbstractWhile climate science debates are focused on the attainment of peak anthropogenic CO2 emissions and policy tools to reduce peak temperatures, the human‐energy‐climate system can hold “rebound” surprises beyond this peak. Following the second industrial revolution, global per capita CO2 emissions (cc) experienced a punctuated growth of about 100% every 60 years, mainly attributable to technological development and its global spread. A model of the human‐energy‐climate system capable of reproducing past punctuated dynamics shows that rebounds in global CO2 emissions emerge due to delays intrinsic to the diffusion of innovations. Such intrinsic delays in the adoption and spread of low‐carbon emitting technologies, together with projected population growth, upset the warming target set by the Paris Agreement. To avoid rebounds and their negative climate effects, model calculations show that the diffusion of climate‐friendly technologies must occur with lags one‐order of magnitude shorter (i.e., ∼6 years) than the characteristic timescale of past punctuated growth in cc. Radically new strategies to globally implement the technological advances at unprecedented rates are needed if the current emission goals are to be achieved.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2016ef000431&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2016ef000431&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United StatesPublisher:IOP Publishing Anthony J Parolari; Dan Li; Elie Bou-Zeid; Gabriel G Katul; Shmuel Assouline;The recent dust storm in the Middle East (Sepember 2015) was publicized in the media as a sign of an impending ‘Dust Bowl.’ Its severity, demonstrated by extreme aerosol optical depth in the atmosphere in the 99th percentile compared to historical data, was attributed to the ongoing regional conflict. However, surface meteorological and remote sensing data, as well as regional climate model simulations, support an alternative hypothesis: the historically unprecedented aridity played a more prominent role, as evidenced by unusual climatic and meteorological conditions prior to and during the storm. Remotely sensed normalized difference vegetation index demonstrates that vegetation cover was high in 2015 relative to the prior drought and conflict periods, suggesting that agricultural activity was not diminished during that year, thus negating the media narrative. Instead, meteorological simulations using the Weather Research and Forecasting (WRF) model show that the storm was associated with a cyclone and ‘Shamal’ winds, typical for dust storm generation in this region, that were immediately followed by an unusual wind reversal at low levels that spread dust west to the Mediterranean Coast. These unusual meteorological conditions were aided by a significant reduction in the critical shear stress due to extreme dry and hot conditions, thereby enhancing dust availability for erosion during this storm. Concluding, unusual aridity, combined with unique synoptic weather patterns, enhanced dust emission and westward long-range transport across the region, thus generating the extreme storm.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/11/11/114013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 50 citations 50 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/11/11/114013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu