- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Mohammad Hassan Saidi; Madjid Abbaspour; Hassan Biglarian;Abstract A numerical model is developed to simulate the borehole heat exchanger both in the short and long time. In this regard, the computational domain is divided into the inside and outside borehole regions. A two-dimensional finite volume method is implemented in a cylindrical coordinate system for modeling of the outside borehole. Also, a thermal resistance-capacity model is presented for the borehole cross section. This model is extended to take into account the fluid transport through the U-tube and the temperature variation of the borehole components with depth. The governing equations of the two regions are solved iteratively in each time step. The proposed model is verified with the previously reported numerical, experimental and analytical results. Furthermore, the ability of the model in predicting the short-time response is evaluated in comparison with a three-dimensional computational fluid dynamics (CFD) model with a fine grid. The results show that the proposed model has a good performance in the prediction of the thermal response of the borehole in a wide time interval from 1 min to over 10 years. Moreover, the effects of time step size and number of capacity nodes on the results are investigated.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2016.12.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu52 citations 52 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2016.12.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Mohammad Hassan Saidi; Madjid Abbaspour; Hassan Biglarian;Abstract A numerical model is developed to simulate the borehole heat exchanger both in the short and long time. In this regard, the computational domain is divided into the inside and outside borehole regions. A two-dimensional finite volume method is implemented in a cylindrical coordinate system for modeling of the outside borehole. Also, a thermal resistance-capacity model is presented for the borehole cross section. This model is extended to take into account the fluid transport through the U-tube and the temperature variation of the borehole components with depth. The governing equations of the two regions are solved iteratively in each time step. The proposed model is verified with the previously reported numerical, experimental and analytical results. Furthermore, the ability of the model in predicting the short-time response is evaluated in comparison with a three-dimensional computational fluid dynamics (CFD) model with a fine grid. The results show that the proposed model has a good performance in the prediction of the thermal response of the borehole in a wide time interval from 1 min to over 10 years. Moreover, the effects of time step size and number of capacity nodes on the results are investigated.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2016.12.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu52 citations 52 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2016.12.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu