- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
SDG [Beta]
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 ItalyPublisher:MDPI AG Authors: Di Nardo, Mario; Clericuzio, Mariano; Murino, Teresa; Sepe, Chiara;doi: 10.3390/su12104075
handle: 11588/890067
This paper proposes a stock dynamic sizing optimization under the Logistic 4.0 environment. The safety stock is conceived to fill up the demand variability, providing continuous stock availability. Logistic 4.0 and the smart factory topics are considered. It focuses on vertical integration to implement flexible and reconfigurable smart production systems using the information system integration in order to optimize material flow in a 4.0 full-service approach. The proposed methodology aims to reduce the occurring stock-out events through a link among the wear-out items rate and the downstream logistic demand. The failure rate items trend is obtained through life-cycle state detection by a curve fitting technique. Therefore, the optimal safety stock size is calculated and then validated by an auto-tuning iterative modified algorithm. In this study, the reorder time has been optimized. The case study refers to the material management of a very high-speed train.
Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/10/4075/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12104075&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/10/4075/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12104075&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 ItalyPublisher:MDPI AG Authors: Di Nardo, Mario; Clericuzio, Mariano; Murino, Teresa; Sepe, Chiara;doi: 10.3390/su12104075
handle: 11588/890067
This paper proposes a stock dynamic sizing optimization under the Logistic 4.0 environment. The safety stock is conceived to fill up the demand variability, providing continuous stock availability. Logistic 4.0 and the smart factory topics are considered. It focuses on vertical integration to implement flexible and reconfigurable smart production systems using the information system integration in order to optimize material flow in a 4.0 full-service approach. The proposed methodology aims to reduce the occurring stock-out events through a link among the wear-out items rate and the downstream logistic demand. The failure rate items trend is obtained through life-cycle state detection by a curve fitting technique. Therefore, the optimal safety stock size is calculated and then validated by an auto-tuning iterative modified algorithm. In this study, the reorder time has been optimized. The case study refers to the material management of a very high-speed train.
Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/10/4075/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12104075&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/10/4075/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12104075&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Nabila Zrira; Anwar Jimi; Mario Di Nardo; Issam Elafi; Maryam Gallab; Redouan Chahdi El Ouazzani;doi: 10.3390/asi7060128
Sun glare poses a significant challenge in Advanced Driver Assistance Systems (ADAS) due to its potential to obscure important visual information, reducing accuracy in detecting road signs, obstacles, and lane markings. Effective sun glare mitigation and segmentation are crucial for enhancing the reliability and safety of ADAS. In this paper, we propose a new approach called “GCBAM-UNet” for sun glare segmentation using deep learning. We employ a pre-trained U-Net model VGG19-UNet with weights initialized from an ImageNet. To further enhance the segmentation performance, we integrated a Convolutional Block Attention Module (CBAM), enabling the model to focus on important features in both spatial and channel dimensions. Experimental results show that GCBAM-UNet is considerably better than other state-of-the-art methods, which will undoubtedly guarantee the safety of ADAS.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/asi7060128&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/asi7060128&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Nabila Zrira; Anwar Jimi; Mario Di Nardo; Issam Elafi; Maryam Gallab; Redouan Chahdi El Ouazzani;doi: 10.3390/asi7060128
Sun glare poses a significant challenge in Advanced Driver Assistance Systems (ADAS) due to its potential to obscure important visual information, reducing accuracy in detecting road signs, obstacles, and lane markings. Effective sun glare mitigation and segmentation are crucial for enhancing the reliability and safety of ADAS. In this paper, we propose a new approach called “GCBAM-UNet” for sun glare segmentation using deep learning. We employ a pre-trained U-Net model VGG19-UNet with weights initialized from an ImageNet. To further enhance the segmentation performance, we integrated a Convolutional Block Attention Module (CBAM), enabling the model to focus on important features in both spatial and channel dimensions. Experimental results show that GCBAM-UNet is considerably better than other state-of-the-art methods, which will undoubtedly guarantee the safety of ADAS.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/asi7060128&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/asi7060128&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 ItalyPublisher:MDPI AG Authors: Di Nardo, Mario; Clericuzio, Mariano; Murino, Teresa; Sepe, Chiara;doi: 10.3390/su12104075
handle: 11588/890067
This paper proposes a stock dynamic sizing optimization under the Logistic 4.0 environment. The safety stock is conceived to fill up the demand variability, providing continuous stock availability. Logistic 4.0 and the smart factory topics are considered. It focuses on vertical integration to implement flexible and reconfigurable smart production systems using the information system integration in order to optimize material flow in a 4.0 full-service approach. The proposed methodology aims to reduce the occurring stock-out events through a link among the wear-out items rate and the downstream logistic demand. The failure rate items trend is obtained through life-cycle state detection by a curve fitting technique. Therefore, the optimal safety stock size is calculated and then validated by an auto-tuning iterative modified algorithm. In this study, the reorder time has been optimized. The case study refers to the material management of a very high-speed train.
Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/10/4075/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12104075&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/10/4075/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12104075&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 ItalyPublisher:MDPI AG Authors: Di Nardo, Mario; Clericuzio, Mariano; Murino, Teresa; Sepe, Chiara;doi: 10.3390/su12104075
handle: 11588/890067
This paper proposes a stock dynamic sizing optimization under the Logistic 4.0 environment. The safety stock is conceived to fill up the demand variability, providing continuous stock availability. Logistic 4.0 and the smart factory topics are considered. It focuses on vertical integration to implement flexible and reconfigurable smart production systems using the information system integration in order to optimize material flow in a 4.0 full-service approach. The proposed methodology aims to reduce the occurring stock-out events through a link among the wear-out items rate and the downstream logistic demand. The failure rate items trend is obtained through life-cycle state detection by a curve fitting technique. Therefore, the optimal safety stock size is calculated and then validated by an auto-tuning iterative modified algorithm. In this study, the reorder time has been optimized. The case study refers to the material management of a very high-speed train.
Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/10/4075/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12104075&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/10/4075/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12104075&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Nabila Zrira; Anwar Jimi; Mario Di Nardo; Issam Elafi; Maryam Gallab; Redouan Chahdi El Ouazzani;doi: 10.3390/asi7060128
Sun glare poses a significant challenge in Advanced Driver Assistance Systems (ADAS) due to its potential to obscure important visual information, reducing accuracy in detecting road signs, obstacles, and lane markings. Effective sun glare mitigation and segmentation are crucial for enhancing the reliability and safety of ADAS. In this paper, we propose a new approach called “GCBAM-UNet” for sun glare segmentation using deep learning. We employ a pre-trained U-Net model VGG19-UNet with weights initialized from an ImageNet. To further enhance the segmentation performance, we integrated a Convolutional Block Attention Module (CBAM), enabling the model to focus on important features in both spatial and channel dimensions. Experimental results show that GCBAM-UNet is considerably better than other state-of-the-art methods, which will undoubtedly guarantee the safety of ADAS.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/asi7060128&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/asi7060128&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Nabila Zrira; Anwar Jimi; Mario Di Nardo; Issam Elafi; Maryam Gallab; Redouan Chahdi El Ouazzani;doi: 10.3390/asi7060128
Sun glare poses a significant challenge in Advanced Driver Assistance Systems (ADAS) due to its potential to obscure important visual information, reducing accuracy in detecting road signs, obstacles, and lane markings. Effective sun glare mitigation and segmentation are crucial for enhancing the reliability and safety of ADAS. In this paper, we propose a new approach called “GCBAM-UNet” for sun glare segmentation using deep learning. We employ a pre-trained U-Net model VGG19-UNet with weights initialized from an ImageNet. To further enhance the segmentation performance, we integrated a Convolutional Block Attention Module (CBAM), enabling the model to focus on important features in both spatial and channel dimensions. Experimental results show that GCBAM-UNet is considerably better than other state-of-the-art methods, which will undoubtedly guarantee the safety of ADAS.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/asi7060128&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/asi7060128&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu