- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type , Review , Journal 2018Embargo end date: 01 Feb 2018 Switzerland, United States, Australia, Netherlands, Switzerland, AustraliaPublisher:Elsevier BV Authors:G. F. (Ciska) Veen;
G. F. (Ciska) Veen
G. F. (Ciska) Veen in OpenAIREAndrew Kulmatiski;
Pierre Mariotte; Pierre Mariotte; +7 AuthorsAndrew Kulmatiski
Andrew Kulmatiski in OpenAIREG. F. (Ciska) Veen;
G. F. (Ciska) Veen
G. F. (Ciska) Veen in OpenAIREAndrew Kulmatiski;
Pierre Mariotte; Pierre Mariotte;Andrew Kulmatiski
Andrew Kulmatiski in OpenAIRET. Martijn Bezemer;
T. Martijn Bezemer
T. Martijn Bezemer in OpenAIREGerlinde B. De Deyn;
Gerlinde B. De Deyn
Gerlinde B. De Deyn in OpenAIREBarbara Drigo;
Paul Kardol; Zia Mehrabi;Barbara Drigo
Barbara Drigo in OpenAIREMarcel G. A. van der Heijden;
Marcel G. A. van der Heijden;Marcel G. A. van der Heijden
Marcel G. A. van der Heijden in OpenAIREpmid: 29241940
In agricultural and natural systems researchers have demonstrated large effects of plant-soil feedback (PSF) on plant growth. However, the concepts and approaches used in these two types of systems have developed, for the most part, independently. Here, we present a conceptual framework that integrates knowledge and approaches from these two contrasting systems. We use this integrated framework to demonstrate (i) how knowledge from complex natural systems can be used to increase agricultural resource-use efficiency and productivity and (ii) how research in agricultural systems can be used to test hypotheses and approaches developed in natural systems. Using this framework, we discuss avenues for new research toward an ecologically sustainable and climate-smart future.
Trends in Ecology & ... arrow_drop_down Trends in Ecology & EvolutionArticle . 2018Data sources: DANS (Data Archiving and Networked Services)Utah State University: DigitalCommons@USUArticle . 2017License: PDMData sources: Bielefeld Academic Search Engine (BASE)DANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Leiden University Scholarly Publications RepositoryArticle . 2017Data sources: Leiden University Scholarly Publications RepositoryZurich Open Repository and ArchiveArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: Zurich Open Repository and ArchiveTrends in Ecology & EvolutionArticle . 2018Data sources: DANS (Data Archiving and Networked Services)Trends in Ecology & EvolutionArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniSA Research Outputs RepositoryArticle . 2018 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tree.2017.11.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 284 citations 284 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Trends in Ecology & ... arrow_drop_down Trends in Ecology & EvolutionArticle . 2018Data sources: DANS (Data Archiving and Networked Services)Utah State University: DigitalCommons@USUArticle . 2017License: PDMData sources: Bielefeld Academic Search Engine (BASE)DANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Leiden University Scholarly Publications RepositoryArticle . 2017Data sources: Leiden University Scholarly Publications RepositoryZurich Open Repository and ArchiveArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: Zurich Open Repository and ArchiveTrends in Ecology & EvolutionArticle . 2018Data sources: DANS (Data Archiving and Networked Services)Trends in Ecology & EvolutionArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniSA Research Outputs RepositoryArticle . 2018 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tree.2017.11.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 United StatesPublisher:Springer Science and Business Media LLC Funded by:NSF | Quantifying plant-soil fe..., NSF | Biodiversity, Environment..., NSF | LTER: Biodiversity, Multi...NSF| Quantifying plant-soil feedback effects in classic diversity-productivity experiments ,NSF| Biodiversity, Environmental Change and Ecosystem Functioning at the Prairie-Forest Boarder ,NSF| LTER: Biodiversity, Multiple Drivers of Environmental Change and Ecosystem Functioning at the Prairie Forest BorderAuthors:Leslie E. Forero;
Leslie E. Forero
Leslie E. Forero in OpenAIREAndrew Kulmatiski;
Andrew Kulmatiski
Andrew Kulmatiski in OpenAIREJosephine Grenzer;
Josephine Grenzer
Josephine Grenzer in OpenAIREJeanette M. Norton;
Jeanette M. Norton
Jeanette M. Norton in OpenAIREAbstractSpecies-rich plant communities can produce twice as much aboveground biomass as monocultures, but the mechanisms remain unresolved. We tested whether plant-soil feedbacks (PSFs) can help explain these biodiversity-productivity relationships. Using a 16-species, factorial field experiment we found that plants created soils that changed subsequent plant growth by 27% and that this effect increased over time. When incorporated into simulation models, these PSFs improved predictions of plant community growth and explained 14% of overyielding. Here we show quantitative, field-based evidence that diversity maintains productivity by suppressing plant disease. Though this effect alone was modest, it helps constrain the role of factors, such as niche partitioning, that have been difficult to quantify. This improved understanding of biodiversity-productivity relationships has implications for agriculture, biofuel production and conservation.
Utah State Universit... arrow_drop_down Utah State University: DigitalCommons@USUArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s42003-021-02329-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Utah State Universit... arrow_drop_down Utah State University: DigitalCommons@USUArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s42003-021-02329-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 United StatesPublisher:Wiley Authors:Johannes Heinze;
Johannes Heinze
Johannes Heinze in OpenAIREAlexander Wacker;
Alexander Wacker
Alexander Wacker in OpenAIREAndrew Kulmatiski;
Andrew Kulmatiski
Andrew Kulmatiski in OpenAIREdoi: 10.1002/ecy.3023
pmid: 32083736
AbstractRelatively little is known about how plant–soil feedbacks (PSFs) may affect plant growth in field conditions where factors such as herbivory may be important. Using a potted experiment in a grassland, we measured PSFs with and without aboveground insect herbivory for 20 plant species. We then compared PSF values to plant landscape abundance. Aboveground herbivory had a large negative effect on PSF values. For 15 of 20 species, PSFs were more negative with herbivory than without. This occurred because plant biomass on “home” soils was smaller with herbivory than without. PSF values with herbivory were correlated with plant landscape abundance, whereas PSF values without herbivory were not. Shoot nitrogen concentrations suggested that plants create soils that increase nitrogen uptake, but that greater shoot nitrogen values increase herbivory and that the net effect of positive PSF and greater aboveground herbivory is less aboveground biomass. Results provided clear evidence that PSFs alone have limited power in explaining species abundances and that herbivory has stronger effects on plant biomass and growth on the landscape. Our results provide a potential explanation for observed differences between greenhouse and field PSF experiments and suggest that PSF experiments need to consider important biotic interactions, like aboveground herbivory, particularly when the goal of PSF research is to understand plant growth in field conditions.
Utah State Universit... arrow_drop_down Utah State University: DigitalCommons@USUArticle . 2020License: PDMFull-Text: https://digitalcommons.usu.edu/eco_pubs/116Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.3023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 33 citations 33 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Utah State Universit... arrow_drop_down Utah State University: DigitalCommons@USUArticle . 2020License: PDMFull-Text: https://digitalcommons.usu.edu/eco_pubs/116Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.3023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Wiley Authors:Andrew Kulmatiski;
Richard J. T. Verweij;Andrew Kulmatiski
Andrew Kulmatiski in OpenAIREKaren H. Beard;
Karen H. Beard
Karen H. Beard in OpenAIREEdmund C. February;
Edmund C. February
Edmund C. February in OpenAIREpmid: 20561202
• As described in the two-layer hypothesis, woody plants are often assumed to use deep soils to avoid competition with grasses. Yet the direct measurements of root activity needed to test this hypothesis are rare. • Here, we injected deuterated water into four soil depths, at four times of year, to measure the vertical and horizontal location of water uptake by trees and grasses in a mesic savanna in Kruger National Park, South Africa. • Trees absorbed 24, 59, 14 and 4% of tracer from the 5, 20, 50, and 120 cm depths, respectively, while grasses absorbed 61, 29, 9 and 0.3% of tracer from the same depths. Only 44% of root mass was in the top 20 cm. Trees absorbed tracer under and beyond their crowns, while 98% of tracer absorbed by grasses came from directly under the stem. • Trees and grasses partitioned soil resources (20 vs 5 cm), but this partitioning did not reflect, as suggested by the two-layer hypothesis, the ability of trees to access deep soil water that was unavailable to grasses. Because root mass was a poor indicator of root activity, our results highlight the importance of precise root activity measurements.
New Phytologist arrow_drop_down New PhytologistArticle . 2010 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1469-8137.2010.03338.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 122 citations 122 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert New Phytologist arrow_drop_down New PhytologistArticle . 2010 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1469-8137.2010.03338.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 FrancePublisher:Wiley Authors:Kailiang Yu;
Kailiang Yu;Kailiang Yu
Kailiang Yu in OpenAIRESabiha Majumder;
Sabiha Majumder
Sabiha Majumder in OpenAIRED. Scott Mackay;
+6 AuthorsD. Scott Mackay
D. Scott Mackay in OpenAIREKailiang Yu;
Kailiang Yu;Kailiang Yu
Kailiang Yu in OpenAIRESabiha Majumder;
Sabiha Majumder
Sabiha Majumder in OpenAIRED. Scott Mackay;
D. Scott Mackay
D. Scott Mackay in OpenAIREMartin C. Holdrege;
Martin C. Holdrege
Martin C. Holdrege in OpenAIREYanlan Liu;
Yanlan Liu
Yanlan Liu in OpenAIREAndrew Kulmatiski;
Andrew Kulmatiski
Andrew Kulmatiski in OpenAIREAnna T. Trugman;
Anna T. Trugman
Anna T. Trugman in OpenAIREAnthony J. Parolari;
Anthony J. Parolari
Anthony J. Parolari in OpenAIREAnn Carla Staver;
Ann Carla Staver
Ann Carla Staver in OpenAIREdoi: 10.1111/nph.16381
pmid: 31853979
SummaryShrub encroachment, forest decline and wildfires have caused large‐scale changes in semi‐arid vegetation over the past 50 years. Climate is a primary determinant of plant growth in semi‐arid ecosystems, yet it remains difficult to forecast large‐scale vegetation shifts (i.e. biome shifts) in response to climate change. We highlight recent advances from four conceptual perspectives that are improving forecasts of semi‐arid biome shifts. Moving from small to large scales, first, tree‐level models that simulate the carbon costs of drought‐induced plant hydraulic failure are improving predictions of delayed‐mortality responses to drought. Second, tracer‐informed water flow models are improving predictions of species coexistence as a function of climate. Third, new applications of ecohydrological models are beginning to simulate small‐scale water movement processes at large scales. Fourth, remotely‐sensed measurements of plant traits such as relative canopy moisture are providing early‐warning signals that predict forest mortality more than a year in advance. We suggest that a community of researchers using modeling approaches (e.g. machine learning) that can integrate these perspectives will rapidly improve forecasts of semi‐arid biome shifts. Better forecasts can be expected to help prevent catastrophic changes in vegetation states by identifying improved monitoring approaches and by prioritizing high‐risk areas for management.
New Phytologist arrow_drop_down New PhytologistArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.16381&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert New Phytologist arrow_drop_down New PhytologistArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.16381&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 United StatesPublisher:Wiley Funded by:DFG | Exploring mechanisms unde..., NSF | Quantifying plant-soil fe..., DFG | German Centre for Integra...DFG| Exploring mechanisms underlying the relationship between biodiversity and ecosystem functioning (Jena Experiment) ,NSF| Quantifying plant-soil feedback effects in classic diversity-productivity experiments ,DFG| German Centre for Integrative Biodiversity Research - iDivAuthors: Josephine Grenzer;Andrew Kulmatiski;
Andrew Kulmatiski
Andrew Kulmatiski in OpenAIRELeslie Forero;
Leslie Forero
Leslie Forero in OpenAIREAnne Ebeling;
+2 AuthorsAnne Ebeling
Anne Ebeling in OpenAIREJosephine Grenzer;Andrew Kulmatiski;
Andrew Kulmatiski
Andrew Kulmatiski in OpenAIRELeslie Forero;
Leslie Forero
Leslie Forero in OpenAIREAnne Ebeling;
Anne Ebeling
Anne Ebeling in OpenAIRENico Eisenhauer;
Jeanette Norton;Nico Eisenhauer
Nico Eisenhauer in OpenAIREAbstractPlant–soil feedback (PSF) has gained attention as a mechanism promoting plant growth and coexistence. However, most PSF research has measured monoculture growth in greenhouse conditions. Translating PSFs into effects on plant growth in field communities remains an important frontier for PSF research. Using a 4‐year, factorial field experiment in Jena, Germany, we measured the growth of nine grassland species on soils conditioned by each of the target species (i.e., 72 PSFs). Plant community models were parameterized with or without these PSF effects, and model predictions were compared to plant biomass production in diversity–productivity experiments. Plants created soils that changed subsequent plant biomass by 40%. However, because they were both positive and negative, the average PSF effect was 14% less growth on “home” than on “away” soils. Nine‐species plant communities produced 29 to 37% more biomass for polycultures than for monocultures due primarily to selection effects. With or without PSF, plant community models predicted 28%–29% more biomass for polycultures than for monocultures, again due primarily to selection effects. Synthesis: Despite causing 40% changes in plant biomass, PSFs had little effect on model predictions of plant community biomass across a range of species richness. While somewhat surprising, a lack of a PSF effect was appropriate in this site because species richness effects in this study were caused by selection effects and not complementarity effects (PSFs are a complementarity mechanism). Our plant community models helped us describe several reasons that even large PSF may not affect plant productivity. Notably, we found that dominant species demonstrated small PSF, suggesting there may be selective pressure for plants to create neutral PSF. Broadly, testing PSFs in plant communities in field conditions provided a more realistic understanding of how PSFs affect plant growth in communities in the context of other species traits.
Utah State Universit... arrow_drop_down Utah State University: DigitalCommons@USUArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ece3.7819&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Utah State Universit... arrow_drop_down Utah State University: DigitalCommons@USUArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ece3.7819&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2017Publisher:Public Library of Science (PLoS) As the atmosphere warms, precipitation events are becoming less frequent but more intense. A three-year experiment in Kruger National Park, South Africa, found that fewer, more intense precipitation events encouraged woody plant encroachment. To test whether or not these treatment responses persisted over time, here, we report results from all five years of that experiment. Grass growth, woody plant growth, total fine root number and area and hydrologic tracer uptake by grasses and woody plants were measured in six treated plots (8 m by 8 m) and six control plots. Treatment effects on soil moisture were measured continuously in one treated and one control plot. During the fourth year, increased precipitation intensity treatments continued to decrease water flux in surface soils (0-10 cm), increase water flux in deeper soils (20+ cm), decrease grass growth and increase woody plant growth. Greater root numbers at 20-40 cm and greater woody plant uptake of a hydrological tracer from 45-60 cm suggested that woody plants increased growth by increasing root number and activity (but not root area) in deeper soils. During the fifth year, natural precipitation events were large and intense so treatments had little effect on precipitation intensity or plant available water. Consistent with this effective treatment removal, there was no difference in grass or woody growth rates between control and treated plots, although woody plant biomass remained higher in treated than control plots due to treatment effects in the previous four years. Across the five years of this experiment, we found that 1) small increases in precipitation intensity can result in large increases in deep (20-130 cm) soil water availability, 2) plant growth responses to precipitation intensity are rapid and disappear quickly, and 3) because woody plants accumulate biomass, occasional increases in precipitation intensity can result in long-term increases in woody plant biomass (i.e., shrub encroachment). While results are likely to be site-specific, they provide experimental evidence of large ecohydrological responses to small changes in precipitation intensity.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0175402&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0175402&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 United StatesPublisher:Wiley Funded by:NSF | Quantifying plant-soil fe...NSF| Quantifying plant-soil feedback effects in classic diversity-productivity experimentsAuthors:Leslie E. Forero;
Leslie E. Forero
Leslie E. Forero in OpenAIREAndrew Kulmatiski;
Andrew Kulmatiski
Andrew Kulmatiski in OpenAIREJosephine Grenzer;
Josephine Grenzer
Josephine Grenzer in OpenAIREJeanette Norton;
Jeanette Norton
Jeanette Norton in OpenAIREdoi: 10.1002/ecy.3736
pmid: 35462418
AbstractPlant productivity often increases with species richness, but the mechanisms explaining this diversity–productivity relationship are not fully understood. We tested if plant–soil feedbacks (PSF) can help to explain how biomass production changes with species richness. Using a greenhouse experiment, we measured all 240 possible PSFs for 16 plant species. At the same time, 49 plant communities with diversities ranging from one to 16 species were grown in replicated pots. A suite of plant community growth models, parameterized with (PSF) or without PSF (Null) effects, was used to predict plant growth observed in the communities. Selection effects and complementarity effects in modeled and observed data were separated. Plants created soils that increased or decreased subsequent plant growth by 25% ± 10%, but because PSFs were negative for C3 and C4 grasses, neutral for forbs, and positive for legumes, the net effect of all PSFs was a 2% ± 17% decrease in plant growth. Experimental plant communities with 16 species produced 37% more biomass than monocultures due to complementarity. Null models incorrectly predicted that 16‐species communities would overyield due to selection effects. Adding PSF effects to Null models decreased selection effects, increased complementarity effects, and improved correlations between observed and predicted community biomass. PSF models predicted 26% of overyielding caused by complementarity observed in experimental communities. Relative to Null models, PSF models improved the predictions of the magnitude and mechanism of the diversity–productivity relationship. Results provide clear support for PSFs as one of several mechanisms that determine diversity–productivity relationships and help close the gap in understanding how biodiversity enhances ecosystem services such as biomass production.
Utah State Universit... arrow_drop_down Utah State University: DigitalCommons@USUArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.3736&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Utah State Universit... arrow_drop_down Utah State University: DigitalCommons@USUArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.3736&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2012 United StatesPublisher:Springer Science and Business Media LLC Funded by:NSF | Resilience and Vulnerabil...NSF| Resilience and Vulnerability in a Rapidly Changing North: The Integration of Physical, Biological and Social ProcessesAuthors:Karen H. Beard;
Karen H. Beard
Karen H. Beard in OpenAIREAndrew Kulmatiski;
Andrew Kulmatiski;Andrew Kulmatiski
Andrew Kulmatiski in OpenAIREpmid: 22752210
Niche partitioning of resources by plants is believed to be a fundamental aspect of plant coexistence and biogeochemical cycles; however, measurements of the timing and location of resource use are often lacking because of the difficulties of belowground research. To measure niche partitioning of soil water by grasses, planted saplings, and trees in a mesic savanna (Kruger National Park, South Africa), we injected deuterium oxide into 102,000 points in 15, 154-m(2) plots randomly assigned to one of five depths (0-120 cm) and one of three time periods during the 2008/2009 growing season. Grasses, saplings and trees all demonstrated an exponential decline in water uptake early in the season when resources were abundant. Later in the season, when resources were scarce, grasses continued to extract the most water from the shallowest soil depths (5 cm), but saplings and trees shifted water uptake to deeper depths (30-60 cm). Saplings, in particular, rapidly established roots to at least 1 m and used these deep roots to a greater extent than grasses or trees. Helping to resolve contradictory observations of the relative importance of deep and shallow roots, our results showed that grasses, saplings and trees all extract the most water from shallow soils when it is available but that woody plants can rapidly shift water uptake to deeper soils when resources are scarce. Results highlight the importance of temporal changes in water uptake and the problems with inferring spatial and temporal partitioning of soil water uptake from root biomass measurements alone.
Utah State Universit... arrow_drop_down Utah State University: DigitalCommons@USUArticle . 2012License: PDMData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-012-2390-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 123 citations 123 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Utah State Universit... arrow_drop_down Utah State University: DigitalCommons@USUArticle . 2012License: PDMData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-012-2390-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015 United StatesPublisher:Public Library of Science (PLoS) Funded by:NSF | Resilience and Vulnerabil...NSF| Resilience and Vulnerability in a Rapidly Changing North: The Integration of Physical, Biological and Social ProcessesAuthors: Mazzacavallo, Michael G.;Kulmatiski, Andrew;
Kulmatiski, Andrew
Kulmatiski, Andrew in OpenAIRERoot biomass distributions have long been used to infer patterns of resource uptake. These patterns are used to understand plant growth, plant coexistence and water budgets. Root biomass, however, may be a poor indicator of resource uptake because large roots typically do not absorb water, fine roots do not absorb water from dry soils and roots of different species can be difficult to differentiate. In a sub-tropical savanna, Kruger Park, South Africa, we used a hydrologic tracer experiment to describe the abundance of active grass and tree roots across the soil profile. We then used this tracer data to parameterize a water movement model (Hydrus 1D). The model accounted for water availability and estimated grass and tree water uptake by depth over a growing season. Most root biomass was found in shallow soils (0-20 cm) and tracer data revealed that, within these shallow depths, half of active grass roots were in the top 12 cm while half of active tree roots were in the top 21 cm. However, because shallow soils provided roots with less water than deep soils (20-90 cm), the water movement model indicated that grass and tree water uptake was twice as deep as would be predicted from root biomass or tracer data alone: half of grass and tree water uptake occurred in the top 23 and 43 cm, respectively. Niche partitioning was also greater when estimated from water uptake rather than tracer uptake. Contrary to long-standing assumptions, shallow grass root distributions absorbed 32% less water than slightly deeper tree root distributions when grasses and trees were assumed to have equal water demands. Quantifying water uptake revealed deeper soil water uptake, greater niche partitioning and greater benefits of deep roots than would be estimated from root biomass or tracer uptake data alone.
Utah State Universit... arrow_drop_down Utah State University: DigitalCommons@USUArticle . 2015License: PDMData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0144300&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Utah State Universit... arrow_drop_down Utah State University: DigitalCommons@USUArticle . 2015License: PDMData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0144300&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu