- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2021 Finland, Finland, Sweden, Germany, China (People's Republic of), Norway, Finland, China (People's Republic of), Denmark, Finland, Netherlands, France, Netherlands, Denmark, Germany, China (People's Republic of), FinlandPublisher:Wiley Funded by:NSERC, EC | INTAROS, AKA | Atmosphere and Climate Co... +19 projectsNSERC ,EC| INTAROS ,AKA| Atmosphere and Climate Competence Center (ACCC) ,NSF| Methane loss from Arctic: towards an annual budget of CH4 emissions from tundra ecosystems across a latitudinal gradient ,NSF| IPY: Collaborative Research on Carbon, Water, and Energy Balance of the Arctic Landscape at Flagship Observatories and in a Pan-Arctic Network ,AKA| Methane uptake by permafrost-affected soils – an underestimated carbon sink in Arctic ecosystems? (MUFFIN) ,NSF| AON: Development of Sustainable Observations of Thermal State of Permafrost in North America and Russia: The U.S. Contribution to the Global Terrestrial Network for Permafrost ,AKA| Geomorphic sensitivity of the Arctic region: geohazards and infrastructure (INFRAHAZARD) / Consortium: INFRAHAZARD ,EC| FluxWIN ,NSF| Collaborative Research: Multi-Regional Scale Aircraft Observations of Methane and Carbon Dioxide Isotopic Fluxes in the Arctic ,AKA| Atmosphere and Climate Competence Center (ACCC) ,NSF| Collaborative Research: Using the ITEX-AON network to document and understand terrestrial ecosystem change in the Arctic ,AKA| When ancient meets modern effect of plant-derived carbon on anaerobic decomposition in arctic permafrost soils (PANDA) ,AKA| Novel soil management practices - key for sustainable bioeconomy and climate change mitigation -SOMPA / Consortium: SOMPA ,NSF| METHANE AT THE ZERO CURTAIN ,NSF| Collaborative Research: Permafrost Carbon Network: Synthesizing flux observations for benchmarking model projections of permafrost carbon exchange ,AKA| Towards constraining the circumarctic nitrous oxide budget (NOCA) ,EC| PAGE21 ,NSF| Collaborative Research on Carbon, Water, and Energy Balance of the Arctic Landscape at Flagship Observatories in Alaska and Siberia ,AKA| Biogeochemical and biophysical feedbacks from forest harvesting to climate change / Consortium: NNNN ,RCN| Winter-proofing land surface models - quantifying the critical role of cold season processes in vegetation-permafrost feedbacks ,NSF| Collaborative Research: Research, Synthesis, and Knowledge Transfer in a Changing Arctic: Science Support for the Study of Environmental Arctic Change (SEARCH)Edward A. G. Schuur; Järvi Järveoja; S. Potter; Stef Bokhorst; Marguerite Mauritz; Mats Nilsson; Steven F. Oberbauer; Elyn Humphreys; M. Goeckede; Pertti J. Martikainen; John Kochendorfer; Jinshu Chi; Juha Aalto; Juha Aalto; Jennifer D. Watts; Torben R. Christensen; Matthias Peichl; Oliver Sonnentag; Vincent L. St. Louis; Craig A. Emmerton; Miska Luoto; David Holl; Eugénie S. Euskirchen; Torbern Tagesson; Torbern Tagesson; Sang Jong Park; Gerardo Celis; Margaret S. Torn; Frans-Jan W. Parmentier; Frans-Jan W. Parmentier; Maija E. Marushchak; Maija E. Marushchak; Namyi Chae; Walter C. Oechel; Walter C. Oechel; Masahito Ueyama; Peter M. Lafleur; Christina Biasi; Bo Elberling; Brendan M. Rogers; Han Dolman; Ivan Mammarella; Aleksi Lehtonen; Claire C. Treat; Min Jung Kwon; Carolina Voigt; Carolina Voigt; Hideki Kobayashi; Rafael Poyatos; Susan M. Natali; Hiroki Iwata; Donatella Zona; Donatella Zona; Anna-Maria Virkkala; Efrén López-Blanco; Torsten Sachs;doi: 10.1111/gcb.15659
pmid: 33913236
AbstractThe regional variability in tundra and boreal carbon dioxide (CO2) fluxes can be high, complicating efforts to quantify sink‐source patterns across the entire region. Statistical models are increasingly used to predict (i.e., upscale) CO2 fluxes across large spatial domains, but the reliability of different modeling techniques, each with different specifications and assumptions, has not been assessed in detail. Here, we compile eddy covariance and chamber measurements of annual and growing season CO2 fluxes of gross primary productivity (GPP), ecosystem respiration (ER), and net ecosystem exchange (NEE) during 1990–2015 from 148 terrestrial high‐latitude (i.e., tundra and boreal) sites to analyze the spatial patterns and drivers of CO2 fluxes and test the accuracy and uncertainty of different statistical models. CO2 fluxes were upscaled at relatively high spatial resolution (1 km2) across the high‐latitude region using five commonly used statistical models and their ensemble, that is, the median of all five models, using climatic, vegetation, and soil predictors. We found the performance of machine learning and ensemble predictions to outperform traditional regression methods. We also found the predictive performance of NEE‐focused models to be low, relative to models predicting GPP and ER. Our data compilation and ensemble predictions showed that CO2 sink strength was larger in the boreal biome (observed and predicted average annual NEE −46 and −29 g C m−2 yr−1, respectively) compared to tundra (average annual NEE +10 and −2 g C m−2 yr−1). This pattern was associated with large spatial variability, reflecting local heterogeneity in soil organic carbon stocks, climate, and vegetation productivity. The terrestrial ecosystem CO2 budget, estimated using the annual NEE ensemble prediction, suggests the high‐latitude region was on average an annual CO2 sink during 1990–2015, although uncertainty remains high.
SLU publication data... arrow_drop_down Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2021License: CC BYFull-Text: http://hdl.handle.net/10852/91720Data sources: Bielefeld Academic Search Engine (BASE)GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03260396Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03260396Data sources: Bielefeld Academic Search Engine (BASE)Jyväskylä University Digital ArchiveArticle . 2021 . Peer-reviewedData sources: Jyväskylä University Digital ArchiveHELDA - Digital Repository of the University of HelsinkiArticle . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiCopenhagen University Research Information SystemArticle . 2021Data sources: Copenhagen University Research Information SystemGFZ German Research Centre for GeosciencesArticle . 2021License: CC BYData sources: GFZ German Research Centre for GeosciencesElectronic Publication Information CenterArticle . 2021Data sources: Electronic Publication Information CenterUniversity of Copenhagen: ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2021Natural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15659&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 123 citations 123 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert SLU publication data... arrow_drop_down Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2021License: CC BYFull-Text: http://hdl.handle.net/10852/91720Data sources: Bielefeld Academic Search Engine (BASE)GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03260396Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03260396Data sources: Bielefeld Academic Search Engine (BASE)Jyväskylä University Digital ArchiveArticle . 2021 . Peer-reviewedData sources: Jyväskylä University Digital ArchiveHELDA - Digital Repository of the University of HelsinkiArticle . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiCopenhagen University Research Information SystemArticle . 2021Data sources: Copenhagen University Research Information SystemGFZ German Research Centre for GeosciencesArticle . 2021License: CC BYData sources: GFZ German Research Centre for GeosciencesElectronic Publication Information CenterArticle . 2021Data sources: Electronic Publication Information CenterUniversity of Copenhagen: ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2021Natural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15659&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Finland, France, France, Finland, SwedenPublisher:Wiley Funded by:AKA | Modelling the vegetation ...AKA| Modelling the vegetation dynamics of northern peatlands with implications for carbon biogeochemistry under changing climateLaine, Anna M.; Lindholm, Tapio; Nilsson, Mats; Kutznetsov, Oleg; Jassey, Vincent E. J.; Tuittila; Eeva‐Stiina;handle: 10138/334784
Abstract Most of the carbon accumulated into peatlands is derived from Sphagnum mosses. During peatland development, the relative share of vascular plants and Sphagnum mosses in the plant community changes, which impacts ecosystem functions. Little is known on the successional development of functional plant traits or functional diversity in peatlands, although this could be a key for understanding the mechanisms behind peatland resistance to climate change. Here we aim to assess how functionality of successive plant communities change along the autogenic peatland development and the associated environmental gradients, namely peat thickness and pH, and to determine whether trait trade‐offs during peatland succession are analogous between vascular plant and moss communities. We collected plant community and trait data on successional peatland gradients from post‐glacial rebound areas in coastal Finland, Sweden and Russia, altogether from 47 peatlands. This allowed us to analyse the changes in community‐weighted mean trait values and functional diversity (diversity of traits) during peatland development. Our results show comparative trait trade‐offs from acquisitive species to conservative species in both vascular plant and Sphagnum moss communities during peatland development. However, mosses had higher resistance to environmental change than vascular plant communities. This was seen in the larger proportion of intraspecific trait variation than species turnover in moss traits, while the proportions were opposite for vascular plants. Similarly, the functional diversity of Sphagnum communities increased during the peatland development, while the opposite occurred for vascular plants. Most of the measured traits showed a phylogenetic signal. More so, the species common to old successional stages, namely Ericacae and Sphagna from subgroup Acutifolia were detected as most similar to their phylogenetic neighbours. Synthesis. During peatland development, vegetation succession leads to the dominance of conservative plant species accustomed to high stress. At the same time, the autogenic succession and ecological engineering of Sphagna leads to higher functional diversity and intraspecific variability, which together indicate higher resistance towards environmental perturbations.
SLU publication data... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03373862Data sources: Bielefeld Academic Search Engine (BASE)HELDA - Digital Repository of the University of HelsinkiArticle . 2021Data sources: HELDA - Digital Repository of the University of HelsinkiUniversity of Oulu Repository - JultikaArticle . 2021Data sources: University of Oulu Repository - Jultikaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2745.13601&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 41 citations 41 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert SLU publication data... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03373862Data sources: Bielefeld Academic Search Engine (BASE)HELDA - Digital Repository of the University of HelsinkiArticle . 2021Data sources: HELDA - Digital Repository of the University of HelsinkiUniversity of Oulu Repository - JultikaArticle . 2021Data sources: University of Oulu Repository - Jultikaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2745.13601&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Embargo end date: 26 Oct 2020 Germany, Germany, Sweden, Netherlands, China (People's Republic of), France, Switzerland, China (People's Republic of), China (People's Republic of), Italy, Germany, Germany, Italy, Belgium, Netherlands, Italy, Denmark, Germany, ItalyPublisher:The Royal Society Publicly fundedFunded by:EC | ERA-GAS, EC | SUMFOREST, DFG +9 projectsEC| ERA-GAS ,EC| SUMFOREST ,DFG ,SNSF| ICOS-CH Phase 2 ,DFG| Agricultural Landscapes under Global Climate Change - Processes and Feedbacks on a Regional Scale - ,SNSF| Reconciling innovative farming practices and networks to enable sustainable development of smart Swiss farming systems ,ANR| ARBRE ,EC| ICOS ,AKA| Centre of Excellence in Atmospheric Science From Molecular and Biolocigal processes to The Global Climate ,EC| SUPER-G ,ANR| ForRISK ,SNSF| Systemanalyse der RaumkonstanzChristian Brümmer; Janina Klatt; Mats Nilsson; Jan Konopka; Christian Wille; Alexander Graf; Nadia Vendrame; Matthias Cuntz; Harry Vereecken; Gerald Jurasinski; Heye Bogena; Nina Buchmann; Marilyn Roland; Natalia Kowalska; Bert Gielen; Anne Klosterhalfen; Anne Klosterhalfen; Arne Poyda; Arne Poyda; Mirco Migliavacca; Matthias Peichl; Christophe Chipeaux; Andrej Varlagin; Günther Heinemann; Corinna Rebmann; Caroline Vincke; Franziska Koebsch; Sébastien Lafont; Ladislav Šigut; Bart Kruijt; Jan Holst; Jinshu Chi; Mika Korkiakoski; Silvano Fares; Bernard Heinesch; Alexander Knohl; Pia Gottschalk; Marius Schmidt; Thomas Grünwald; Matthias Zeeman; Shiva Ghiasi; Frédéric Bornet; Frederik Schrader; Lenka Foltýnová; Hans-Dieter Wizemann; Bernard Longdoz; Pascal Kremer; Andreas Ibrom; Vincenzo Magliulo; Edoardo Cremonese; Giovanni Manca; Michal Heliasz; Milan Fischer; Christian Bernhofer; Nicola Arriga; Joachim Ingwersen; Andrea Pitacco; Johan Neirynck; Denis Loustau; Anne De Ligne; Jiří Dušek; Joël Léonard; Ivan Mammarella; Patrizia Ney; Eugénie Paul-Limoges; Matthias Mauder; Stephan Weber; Tarek S. El-Madany; Torsten Sachs; Nicolas Brüggemann; Lukas Hörtnagl; Mana Gharun; Ingo Völksch; Meelis Mölder; Eeva-Stiina Tuittila; Lukas Siebicke;pmid: 32892732
pmc: PMC7485107
handle: 20.500.14243/394097 , 10067/1719180151162165141 , 11572/278174
pmid: 32892732
pmc: PMC7485107
handle: 20.500.14243/394097 , 10067/1719180151162165141 , 11572/278174
Drought and heat events, such as the 2018 European drought, interact with the exchange of energy between the land surface and the atmosphere, potentially affecting albedo, sensible and latent heat fluxes, as well as CO 2 exchange. Each of these quantities may aggravate or mitigate the drought, heat, their side effects on productivity, water scarcity and global warming. We used measurements of 56 eddy covariance sites across Europe to examine the response of fluxes to extreme drought prevailing most of the year 2018 and how the response differed across various ecosystem types (forests, grasslands, croplands and peatlands). Each component of the surface radiation and energy balance observed in 2018 was compared to available data per site during a reference period 2004–2017. Based on anomalies in precipitation and reference evapotranspiration, we classified 46 sites as drought affected. These received on average 9% more solar radiation and released 32% more sensible heat to the atmosphere compared to the mean of the reference period. In general, drought decreased net CO 2 uptake by 17.8%, but did not significantly change net evapotranspiration. The response of these fluxes differed characteristically between ecosystems; in particular, the general increase in the evaporative index was strongest in peatlands and weakest in croplands. This article is part of the theme issue ‘Impacts of the 2018 severe drought and heatwave in Europe: from site to continental scale’.
SLU publication data... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Philosophical Transactions of the Royal Society B Biological SciencesArticleData sources: UnpayWallPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2020Data sources: DANS (Data Archiving and Networked Services)Online Research Database In TechnologyArticle . 2020Data sources: Online Research Database In TechnologyPublikationenserver der Georg-August-Universität GöttingenArticle . 2021GFZ German Research Centre for GeosciencesArticle . 2020Data sources: GFZ German Research Centre for GeosciencesPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2020 . Peer-reviewedData sources: CrossrefInstitutional Repository Universiteit AntwerpenArticle . 2020Data sources: Institutional Repository Universiteit AntwerpenPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2021Data sources: Europe PubMed CentralPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2020 . Peer-reviewedData sources: European Union Open Data PortalInstitut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rstb.2019.0524&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert SLU publication data... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Philosophical Transactions of the Royal Society B Biological SciencesArticleData sources: UnpayWallPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2020Data sources: DANS (Data Archiving and Networked Services)Online Research Database In TechnologyArticle . 2020Data sources: Online Research Database In TechnologyPublikationenserver der Georg-August-Universität GöttingenArticle . 2021GFZ German Research Centre for GeosciencesArticle . 2020Data sources: GFZ German Research Centre for GeosciencesPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2020 . Peer-reviewedData sources: CrossrefInstitutional Repository Universiteit AntwerpenArticle . 2020Data sources: Institutional Repository Universiteit AntwerpenPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2021Data sources: Europe PubMed CentralPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2020 . Peer-reviewedData sources: European Union Open Data PortalInstitut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rstb.2019.0524&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021 Finland, Finland, Sweden, Germany, China (People's Republic of), Norway, Finland, China (People's Republic of), Denmark, Finland, Netherlands, France, Netherlands, Denmark, Germany, China (People's Republic of), FinlandPublisher:Wiley Funded by:NSERC, EC | INTAROS, AKA | Atmosphere and Climate Co... +19 projectsNSERC ,EC| INTAROS ,AKA| Atmosphere and Climate Competence Center (ACCC) ,NSF| Methane loss from Arctic: towards an annual budget of CH4 emissions from tundra ecosystems across a latitudinal gradient ,NSF| IPY: Collaborative Research on Carbon, Water, and Energy Balance of the Arctic Landscape at Flagship Observatories and in a Pan-Arctic Network ,AKA| Methane uptake by permafrost-affected soils – an underestimated carbon sink in Arctic ecosystems? (MUFFIN) ,NSF| AON: Development of Sustainable Observations of Thermal State of Permafrost in North America and Russia: The U.S. Contribution to the Global Terrestrial Network for Permafrost ,AKA| Geomorphic sensitivity of the Arctic region: geohazards and infrastructure (INFRAHAZARD) / Consortium: INFRAHAZARD ,EC| FluxWIN ,NSF| Collaborative Research: Multi-Regional Scale Aircraft Observations of Methane and Carbon Dioxide Isotopic Fluxes in the Arctic ,AKA| Atmosphere and Climate Competence Center (ACCC) ,NSF| Collaborative Research: Using the ITEX-AON network to document and understand terrestrial ecosystem change in the Arctic ,AKA| When ancient meets modern effect of plant-derived carbon on anaerobic decomposition in arctic permafrost soils (PANDA) ,AKA| Novel soil management practices - key for sustainable bioeconomy and climate change mitigation -SOMPA / Consortium: SOMPA ,NSF| METHANE AT THE ZERO CURTAIN ,NSF| Collaborative Research: Permafrost Carbon Network: Synthesizing flux observations for benchmarking model projections of permafrost carbon exchange ,AKA| Towards constraining the circumarctic nitrous oxide budget (NOCA) ,EC| PAGE21 ,NSF| Collaborative Research on Carbon, Water, and Energy Balance of the Arctic Landscape at Flagship Observatories in Alaska and Siberia ,AKA| Biogeochemical and biophysical feedbacks from forest harvesting to climate change / Consortium: NNNN ,RCN| Winter-proofing land surface models - quantifying the critical role of cold season processes in vegetation-permafrost feedbacks ,NSF| Collaborative Research: Research, Synthesis, and Knowledge Transfer in a Changing Arctic: Science Support for the Study of Environmental Arctic Change (SEARCH)Edward A. G. Schuur; Järvi Järveoja; S. Potter; Stef Bokhorst; Marguerite Mauritz; Mats Nilsson; Steven F. Oberbauer; Elyn Humphreys; M. Goeckede; Pertti J. Martikainen; John Kochendorfer; Jinshu Chi; Juha Aalto; Juha Aalto; Jennifer D. Watts; Torben R. Christensen; Matthias Peichl; Oliver Sonnentag; Vincent L. St. Louis; Craig A. Emmerton; Miska Luoto; David Holl; Eugénie S. Euskirchen; Torbern Tagesson; Torbern Tagesson; Sang Jong Park; Gerardo Celis; Margaret S. Torn; Frans-Jan W. Parmentier; Frans-Jan W. Parmentier; Maija E. Marushchak; Maija E. Marushchak; Namyi Chae; Walter C. Oechel; Walter C. Oechel; Masahito Ueyama; Peter M. Lafleur; Christina Biasi; Bo Elberling; Brendan M. Rogers; Han Dolman; Ivan Mammarella; Aleksi Lehtonen; Claire C. Treat; Min Jung Kwon; Carolina Voigt; Carolina Voigt; Hideki Kobayashi; Rafael Poyatos; Susan M. Natali; Hiroki Iwata; Donatella Zona; Donatella Zona; Anna-Maria Virkkala; Efrén López-Blanco; Torsten Sachs;doi: 10.1111/gcb.15659
pmid: 33913236
AbstractThe regional variability in tundra and boreal carbon dioxide (CO2) fluxes can be high, complicating efforts to quantify sink‐source patterns across the entire region. Statistical models are increasingly used to predict (i.e., upscale) CO2 fluxes across large spatial domains, but the reliability of different modeling techniques, each with different specifications and assumptions, has not been assessed in detail. Here, we compile eddy covariance and chamber measurements of annual and growing season CO2 fluxes of gross primary productivity (GPP), ecosystem respiration (ER), and net ecosystem exchange (NEE) during 1990–2015 from 148 terrestrial high‐latitude (i.e., tundra and boreal) sites to analyze the spatial patterns and drivers of CO2 fluxes and test the accuracy and uncertainty of different statistical models. CO2 fluxes were upscaled at relatively high spatial resolution (1 km2) across the high‐latitude region using five commonly used statistical models and their ensemble, that is, the median of all five models, using climatic, vegetation, and soil predictors. We found the performance of machine learning and ensemble predictions to outperform traditional regression methods. We also found the predictive performance of NEE‐focused models to be low, relative to models predicting GPP and ER. Our data compilation and ensemble predictions showed that CO2 sink strength was larger in the boreal biome (observed and predicted average annual NEE −46 and −29 g C m−2 yr−1, respectively) compared to tundra (average annual NEE +10 and −2 g C m−2 yr−1). This pattern was associated with large spatial variability, reflecting local heterogeneity in soil organic carbon stocks, climate, and vegetation productivity. The terrestrial ecosystem CO2 budget, estimated using the annual NEE ensemble prediction, suggests the high‐latitude region was on average an annual CO2 sink during 1990–2015, although uncertainty remains high.
SLU publication data... arrow_drop_down Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2021License: CC BYFull-Text: http://hdl.handle.net/10852/91720Data sources: Bielefeld Academic Search Engine (BASE)GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03260396Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03260396Data sources: Bielefeld Academic Search Engine (BASE)Jyväskylä University Digital ArchiveArticle . 2021 . Peer-reviewedData sources: Jyväskylä University Digital ArchiveHELDA - Digital Repository of the University of HelsinkiArticle . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiCopenhagen University Research Information SystemArticle . 2021Data sources: Copenhagen University Research Information SystemGFZ German Research Centre for GeosciencesArticle . 2021License: CC BYData sources: GFZ German Research Centre for GeosciencesElectronic Publication Information CenterArticle . 2021Data sources: Electronic Publication Information CenterUniversity of Copenhagen: ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2021Natural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15659&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 123 citations 123 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert SLU publication data... arrow_drop_down Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2021License: CC BYFull-Text: http://hdl.handle.net/10852/91720Data sources: Bielefeld Academic Search Engine (BASE)GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03260396Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03260396Data sources: Bielefeld Academic Search Engine (BASE)Jyväskylä University Digital ArchiveArticle . 2021 . Peer-reviewedData sources: Jyväskylä University Digital ArchiveHELDA - Digital Repository of the University of HelsinkiArticle . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiCopenhagen University Research Information SystemArticle . 2021Data sources: Copenhagen University Research Information SystemGFZ German Research Centre for GeosciencesArticle . 2021License: CC BYData sources: GFZ German Research Centre for GeosciencesElectronic Publication Information CenterArticle . 2021Data sources: Electronic Publication Information CenterUniversity of Copenhagen: ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2021Natural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15659&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Finland, France, France, Finland, SwedenPublisher:Wiley Funded by:AKA | Modelling the vegetation ...AKA| Modelling the vegetation dynamics of northern peatlands with implications for carbon biogeochemistry under changing climateLaine, Anna M.; Lindholm, Tapio; Nilsson, Mats; Kutznetsov, Oleg; Jassey, Vincent E. J.; Tuittila; Eeva‐Stiina;handle: 10138/334784
Abstract Most of the carbon accumulated into peatlands is derived from Sphagnum mosses. During peatland development, the relative share of vascular plants and Sphagnum mosses in the plant community changes, which impacts ecosystem functions. Little is known on the successional development of functional plant traits or functional diversity in peatlands, although this could be a key for understanding the mechanisms behind peatland resistance to climate change. Here we aim to assess how functionality of successive plant communities change along the autogenic peatland development and the associated environmental gradients, namely peat thickness and pH, and to determine whether trait trade‐offs during peatland succession are analogous between vascular plant and moss communities. We collected plant community and trait data on successional peatland gradients from post‐glacial rebound areas in coastal Finland, Sweden and Russia, altogether from 47 peatlands. This allowed us to analyse the changes in community‐weighted mean trait values and functional diversity (diversity of traits) during peatland development. Our results show comparative trait trade‐offs from acquisitive species to conservative species in both vascular plant and Sphagnum moss communities during peatland development. However, mosses had higher resistance to environmental change than vascular plant communities. This was seen in the larger proportion of intraspecific trait variation than species turnover in moss traits, while the proportions were opposite for vascular plants. Similarly, the functional diversity of Sphagnum communities increased during the peatland development, while the opposite occurred for vascular plants. Most of the measured traits showed a phylogenetic signal. More so, the species common to old successional stages, namely Ericacae and Sphagna from subgroup Acutifolia were detected as most similar to their phylogenetic neighbours. Synthesis. During peatland development, vegetation succession leads to the dominance of conservative plant species accustomed to high stress. At the same time, the autogenic succession and ecological engineering of Sphagna leads to higher functional diversity and intraspecific variability, which together indicate higher resistance towards environmental perturbations.
SLU publication data... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03373862Data sources: Bielefeld Academic Search Engine (BASE)HELDA - Digital Repository of the University of HelsinkiArticle . 2021Data sources: HELDA - Digital Repository of the University of HelsinkiUniversity of Oulu Repository - JultikaArticle . 2021Data sources: University of Oulu Repository - Jultikaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2745.13601&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 41 citations 41 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert SLU publication data... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03373862Data sources: Bielefeld Academic Search Engine (BASE)HELDA - Digital Repository of the University of HelsinkiArticle . 2021Data sources: HELDA - Digital Repository of the University of HelsinkiUniversity of Oulu Repository - JultikaArticle . 2021Data sources: University of Oulu Repository - Jultikaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2745.13601&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Embargo end date: 26 Oct 2020 Germany, Germany, Sweden, Netherlands, China (People's Republic of), France, Switzerland, China (People's Republic of), China (People's Republic of), Italy, Germany, Germany, Italy, Belgium, Netherlands, Italy, Denmark, Germany, ItalyPublisher:The Royal Society Publicly fundedFunded by:EC | ERA-GAS, EC | SUMFOREST, DFG +9 projectsEC| ERA-GAS ,EC| SUMFOREST ,DFG ,SNSF| ICOS-CH Phase 2 ,DFG| Agricultural Landscapes under Global Climate Change - Processes and Feedbacks on a Regional Scale - ,SNSF| Reconciling innovative farming practices and networks to enable sustainable development of smart Swiss farming systems ,ANR| ARBRE ,EC| ICOS ,AKA| Centre of Excellence in Atmospheric Science From Molecular and Biolocigal processes to The Global Climate ,EC| SUPER-G ,ANR| ForRISK ,SNSF| Systemanalyse der RaumkonstanzChristian Brümmer; Janina Klatt; Mats Nilsson; Jan Konopka; Christian Wille; Alexander Graf; Nadia Vendrame; Matthias Cuntz; Harry Vereecken; Gerald Jurasinski; Heye Bogena; Nina Buchmann; Marilyn Roland; Natalia Kowalska; Bert Gielen; Anne Klosterhalfen; Anne Klosterhalfen; Arne Poyda; Arne Poyda; Mirco Migliavacca; Matthias Peichl; Christophe Chipeaux; Andrej Varlagin; Günther Heinemann; Corinna Rebmann; Caroline Vincke; Franziska Koebsch; Sébastien Lafont; Ladislav Šigut; Bart Kruijt; Jan Holst; Jinshu Chi; Mika Korkiakoski; Silvano Fares; Bernard Heinesch; Alexander Knohl; Pia Gottschalk; Marius Schmidt; Thomas Grünwald; Matthias Zeeman; Shiva Ghiasi; Frédéric Bornet; Frederik Schrader; Lenka Foltýnová; Hans-Dieter Wizemann; Bernard Longdoz; Pascal Kremer; Andreas Ibrom; Vincenzo Magliulo; Edoardo Cremonese; Giovanni Manca; Michal Heliasz; Milan Fischer; Christian Bernhofer; Nicola Arriga; Joachim Ingwersen; Andrea Pitacco; Johan Neirynck; Denis Loustau; Anne De Ligne; Jiří Dušek; Joël Léonard; Ivan Mammarella; Patrizia Ney; Eugénie Paul-Limoges; Matthias Mauder; Stephan Weber; Tarek S. El-Madany; Torsten Sachs; Nicolas Brüggemann; Lukas Hörtnagl; Mana Gharun; Ingo Völksch; Meelis Mölder; Eeva-Stiina Tuittila; Lukas Siebicke;pmid: 32892732
pmc: PMC7485107
handle: 20.500.14243/394097 , 10067/1719180151162165141 , 11572/278174
pmid: 32892732
pmc: PMC7485107
handle: 20.500.14243/394097 , 10067/1719180151162165141 , 11572/278174
Drought and heat events, such as the 2018 European drought, interact with the exchange of energy between the land surface and the atmosphere, potentially affecting albedo, sensible and latent heat fluxes, as well as CO 2 exchange. Each of these quantities may aggravate or mitigate the drought, heat, their side effects on productivity, water scarcity and global warming. We used measurements of 56 eddy covariance sites across Europe to examine the response of fluxes to extreme drought prevailing most of the year 2018 and how the response differed across various ecosystem types (forests, grasslands, croplands and peatlands). Each component of the surface radiation and energy balance observed in 2018 was compared to available data per site during a reference period 2004–2017. Based on anomalies in precipitation and reference evapotranspiration, we classified 46 sites as drought affected. These received on average 9% more solar radiation and released 32% more sensible heat to the atmosphere compared to the mean of the reference period. In general, drought decreased net CO 2 uptake by 17.8%, but did not significantly change net evapotranspiration. The response of these fluxes differed characteristically between ecosystems; in particular, the general increase in the evaporative index was strongest in peatlands and weakest in croplands. This article is part of the theme issue ‘Impacts of the 2018 severe drought and heatwave in Europe: from site to continental scale’.
SLU publication data... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Philosophical Transactions of the Royal Society B Biological SciencesArticleData sources: UnpayWallPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2020Data sources: DANS (Data Archiving and Networked Services)Online Research Database In TechnologyArticle . 2020Data sources: Online Research Database In TechnologyPublikationenserver der Georg-August-Universität GöttingenArticle . 2021GFZ German Research Centre for GeosciencesArticle . 2020Data sources: GFZ German Research Centre for GeosciencesPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2020 . Peer-reviewedData sources: CrossrefInstitutional Repository Universiteit AntwerpenArticle . 2020Data sources: Institutional Repository Universiteit AntwerpenPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2021Data sources: Europe PubMed CentralPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2020 . Peer-reviewedData sources: European Union Open Data PortalInstitut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rstb.2019.0524&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert SLU publication data... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Philosophical Transactions of the Royal Society B Biological SciencesArticleData sources: UnpayWallPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2020Data sources: DANS (Data Archiving and Networked Services)Online Research Database In TechnologyArticle . 2020Data sources: Online Research Database In TechnologyPublikationenserver der Georg-August-Universität GöttingenArticle . 2021GFZ German Research Centre for GeosciencesArticle . 2020Data sources: GFZ German Research Centre for GeosciencesPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2020 . Peer-reviewedData sources: CrossrefInstitutional Repository Universiteit AntwerpenArticle . 2020Data sources: Institutional Repository Universiteit AntwerpenPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2021Data sources: Europe PubMed CentralPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2020 . Peer-reviewedData sources: European Union Open Data PortalInstitut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rstb.2019.0524&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu