- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2017 NetherlandsPublisher:SPOOL Authors: de Witte, D. (author); de Klijn-Chevalerias, M.L. (author); Loonen, R.C.G.M. (author); Hensen, J.L.M. (author); +2 Authorsde Witte, D. (author); de Klijn-Chevalerias, M.L. (author); Loonen, R.C.G.M. (author); Hensen, J.L.M. (author); Knaack, U. (author); Zimmermann, G. (author);Convective Concrete is about a research-driven design process of an innovative thermal mass concept. The goal is to improve building energy efficiency and comfort levels by addressing some of the shortcomings of conventional building slabs with high thermal storage capacity. Such heavyweight constructions tend to have a slow response time and do not make use of the available thermal mass effectively. Convective Concrete explores new ways of using thermal mass in buildings more intelligently. To accomplish this ondemand charging of thermal mass, a network of ducts and fans is embedded in the concrete wall element. This is done by developing customized formwork elements in combination with advanced concrete mixtures. To achieve an efficient airflow rate, the embedded lost formwork and the concrete itself function like a lung. SPOOL, Vol. 4 No. 2: Energy Innovation #4
https://dx.doi.org/1... arrow_drop_down DANS (Data Archiving and Networked Services)Conference object . 2017Data sources: DANS (Data Archiving and Networked Services)Journal of Facade Design and EngineeringArticle . 2017Data sources: DANS (Data Archiving and Networked Services)Journal of Facade Design and EngineeringArticle . 2017Data sources: DANS (Data Archiving and Networked Services)Journal of Facade Design and EngineeringArticle . 2017Data sources: Eindhoven University of Technology Research PortalEindhoven University of Technology Research PortalConference object . 2017Data sources: Eindhoven University of Technology Research PortalDelft University of Technology: Institutional RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7480/spool.2017.2.1919&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
visibility 7visibility views 7 download downloads 5 Powered bymore_vert https://dx.doi.org/1... arrow_drop_down DANS (Data Archiving and Networked Services)Conference object . 2017Data sources: DANS (Data Archiving and Networked Services)Journal of Facade Design and EngineeringArticle . 2017Data sources: DANS (Data Archiving and Networked Services)Journal of Facade Design and EngineeringArticle . 2017Data sources: DANS (Data Archiving and Networked Services)Journal of Facade Design and EngineeringArticle . 2017Data sources: Eindhoven University of Technology Research PortalEindhoven University of Technology Research PortalConference object . 2017Data sources: Eindhoven University of Technology Research PortalDelft University of Technology: Institutional RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7480/spool.2017.2.1919&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 NetherlandsPublisher:MDPI AG Giulia Procaccini; Alejandro Prieto; Ulrich Knaack; Carol Monticelli; Thaleia Konstantinou;The European building stock demands urgent renovation due to the age of the buildings, their expected lifetime, and their excessive energy consumption, which accounts for more than a third of the EU’s total emissions. However, the complexities involved, such as time, costs, and structural modifications, often discourage clients, tenants, and occupants from undergoing a building renovation process. Textile membranes, despite their long history in various architectural applications, have only been employed in façades in the last decades. Their intrinsic properties, such as lightness and flexibility, together with rapid assembly and low maintenance make these materials particularly suitable for façade retrofitting. Therefore, they are worth exploring as a way to promote the development of lightweight and easy-to-assemble façade products that could help overcome the current limitations of building retrofitting efforts. This paper aims to establish relationships between textile membranes and potential building retrofit applications. To this end, this study builds on the categorization of traditional façade retrofit strategies and proposes a new classification for textile façade retrofit products. The methodology includes a comprehensive literature review of textile properties and characteristics, along with a thorough assessment through case studies, of membrane use in façade applications. A sequential investigation leads to the main outcome of identifying three clear pathways for the development of new textile-based façade products for building retrofit.
Buildings arrow_drop_down Delft University of Technology: Institutional RepositoryArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/buildings14010086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 29visibility views 29 download downloads 14 Powered bymore_vert Buildings arrow_drop_down Delft University of Technology: Institutional RepositoryArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/buildings14010086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 NetherlandsPublisher:MDPI AG Authors: Ahmed Felimban; Ulrich Knaack; Thaleia Konstantinou;Residential buildings in the Kingdom of Saudi Arabia (KSA) contribute to nearly half of the overall electricity consumption in the building stock, highlighting their significant role in energy consumption. While an upgraded energy code has been established and enforced for new buildings, existing buildings continue to operate at the same level of energy consumption. Therefore, there is a need for further energy upgrades in existing buildings. This study evaluates the energy savings potential of various energy retrofitting measures for a case study in Jeddah, KSA. Data from previous studies and current practices were collected and analyzed. Different energy upgrade measures, such as windows replacement, wall insulation upgrade, roof insulation upgrade, and air conditioning unit replacement, were selected and evaluated using a digital simulation tool called Design-Builder. The simulation results were compared to understand the potential percentage of energy savings. The average annual energy consumption (AAEC) was used as the primary performance indicator to compare the energy savings among the scenarios. The results demonstrate significant reductions in energy consumption for the proposed scenarios. Furthermore, the study examined the significant impact of uncertainties, specifically, the infiltration rate and AC setback temperature, on AAEC. In conclusion, the proposed scenarios have the potential to achieve substantial energy savings, ranging from 25% to 66%, depending on the number of energy retrofitting interventions employed. The findings of this study can serve as a useful reference for similar energy retrofitting projects.
Buildings arrow_drop_down BuildingsOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2075-5309/13/7/1645/pdfData sources: Multidisciplinary Digital Publishing InstituteDelft University of Technology: Institutional RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/buildings13071645&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Average influence Average impulse Top 10% Powered by BIP!
visibility 6visibility views 6 download downloads 3 Powered bymore_vert Buildings arrow_drop_down BuildingsOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2075-5309/13/7/1645/pdfData sources: Multidisciplinary Digital Publishing InstituteDelft University of Technology: Institutional RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/buildings13071645&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Hamza Hamida; Alejandro Prieto; Lourdes Beneito; Thaleia Konstantinou; Ulrich Knaack;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jobe.2025.112440&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jobe.2025.112440&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: A.I. Prieto Hoces; Tillmann Klein; Thomas Auer; Ulrich Knaack;Abstract Increasing cooling demands in the built environment call for innovative technical solutions and systems for application in buildings. Cooling loads represent an important share of the total energy consumption in warm climates, especially in commercial and office buildings. Moreover, mechanical systems will still be needed in most cases to cope with cooling loads, even after considering passive cooling strategies in the design of the building and its facade. Solar cooling technologies present interesting assets, being based on environmentally friendly cooling processes, driven by solar and thus renewable energy. However, their application in the built environment remains greatly limited. This paper assesses several solar cooling technologies in terms of their potential for facade integration; aiming to promote widespread application in buildings throughout the development of integrated architectural facade products. The assessment is based on a state-of-the-art review and discussion of key attributes for facade integration of selected technologies; and a qualitative evaluation of their suitability to respond to main product related barriers for the integration of building services identified in an earlier work by the authors. The cooling principles behind the operation of the assessed technologies have been extensively presented in the literature, so this paper focuses exclusively on key aspects to overcome barriers related to the technical feasibility, physical integration, durability, performance, and aesthetics of future integrated concepts. Results show that the suitability of the assessed technologies varies according to each particular barrier. Hence, no technology currently fits all required aspects. Nonetheless, the use of thermoelectric modules and compact units based on absorption technologies are regarded as the most promising for the development of either integral building components, or modular plug & play systems for facade integration. In any case, this is heavily conditioned to further efforts and explorations in the field to overcome identified challenges and knowledge gaps.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2018.11.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 46 citations 46 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2018.11.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2017 NetherlandsPublisher:Journal of Facade Design and Engineering Authors: Prieto Hoces, A.I. (author); Knaack, U. (author); Auer, T. (author); Klein, T. (author);Solar energy has been actively promoted as a clean energy source since 1973���s oil crisis, evidenced by the emergence of initiatives such as the Solar Heating & Cooling Programme of the International Energy Agency or the US Department of Energy. Nonetheless, solar technologies have not been widely used in the built environment, limiting their operation to industrial and macroscale applications. Commercially available products such as building integrated PV panels (BIPV) or building integrated solar thermal collectors (BIST); and novel prototypes and concepts for solar cooling integrated facades are seen as interesting alternatives for the development of new performance based fa��ade components for high-performing commercial buildings. However, there are barriers to overcome in order to promote widespread application of architecturally integrated solar components. The present paper seeks to discuss perceived barriers for widespread fa��ade integration of solar technologies, in order to define the current scenario and generate guidelines for future developments. In order to achieve this, the paper presents the results of a survey addressed to professionals with practical experience in the development of fa��ade systems for office buildings, situated at any stage of the design and construction process. Hence, architects, fa��ade consultants, system suppliers and fa��ade builders were considered. The outcome of this study is the definition of the main perceived barriers for fa��ade integration of solar technologies, discussing the results from the survey along with other related experiences found in the literature. This study is part of the ongoing PhD research project titled COOLFACADE: Architectural integration of solar cooling strategies into the curtain-wall, developed within the Fa��ade Research Group (FRG) in the Green Building Innovation programme (GBI) of the Faculty of Architecture and the Built Environment, TU Delft. Journal of Facade Design and Engineering, Vol. 5 No. 1 (2017): Special Issue Powerskin
https://dx.doi.org/1... arrow_drop_down Journal of Facade Design and EngineeringArticle . 2017Data sources: DANS (Data Archiving and Networked Services)Delft University of Technology: Institutional RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7480/jfde.2017.1.1398&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 17visibility views 17 download downloads 7 Powered bymore_vert https://dx.doi.org/1... arrow_drop_down Journal of Facade Design and EngineeringArticle . 2017Data sources: DANS (Data Archiving and Networked Services)Delft University of Technology: Institutional RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7480/jfde.2017.1.1398&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2018 NetherlandsPublisher:Journal of Facade Design and Engineering Authors: Sarakinioti, M.V. (author); Konstantinou, T. (author); Turrin, M. (author); Tenpierik, M.J. (author); +3 AuthorsSarakinioti, M.V. (author); Konstantinou, T. (author); Turrin, M. (author); Tenpierik, M.J. (author); Loonen, R.C.G.M. (author); de Klijn-Chevalerias, M.L. (author); Knaack, U. (author);Currently, several research projects investigate Additive Manufacturing (AM) technology as possible construction method for future buildings. AM methods have some advantages over other production processes, such as great freedom of form, shape complexity, scale and material use. These characteristics are relevant for façade applications, which demand the integration of several functions. Given the established capacity of AM to generate complex geometries, most existing research focuses on mechanical material properties and mainly in relation to the load-bearing capacity and the construction system. The integration of additional aspects is often achieved with post processing and the use of multiple materials. Research is needed to investigate properties for insulation, thermal storage and energy harvesting, combined in one component and one production technology.To this end, the research project “SPONG3D” aimed at developing a 3D-printed façade panel that integrates insulating properties with heat storage in a complex, mono-material geometry. The present paper gives an overview of the panel development process, including aspects of material selection, printing process, structural properties, energy performance, and thermal heat storage. The development process was guided by experiments and simulations and resulted in the design and manufacturing of a full-scale façade element prototype using FDM printing with PETG. The project proved the possibility of functions integration in 3D-printed façades, but also highlighted the limitations and the need for further developments. Design of Constrution Design Informatics Building Physics
https://dx.doi.org/1... arrow_drop_down Journal of Facade Design and EngineeringArticle . 2018Data sources: DANS (Data Archiving and Networked Services)Journal of Facade Design and EngineeringArticle . 2018Data sources: DANS (Data Archiving and Networked Services)Journal of Facade Design and EngineeringArticle . 2018License: CC BY NCData sources: Eindhoven University of Technology Research PortalDelft University of Technology: Institutional RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7480/jfde.2018.2.2081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 20visibility views 20 download downloads 17 Powered bymore_vert https://dx.doi.org/1... arrow_drop_down Journal of Facade Design and EngineeringArticle . 2018Data sources: DANS (Data Archiving and Networked Services)Journal of Facade Design and EngineeringArticle . 2018Data sources: DANS (Data Archiving and Networked Services)Journal of Facade Design and EngineeringArticle . 2018License: CC BY NCData sources: Eindhoven University of Technology Research PortalDelft University of Technology: Institutional RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7480/jfde.2018.2.2081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 NetherlandsPublisher:Elsevier BV Authors: Prieto Hoces, A.I. (author); Knaack, U. (author); Klein, T. (author); Auer, T (author);This paper seeks to present a panorama of cooling related research in office buildings, categorising reported research experiences from the past 25 years in order to identify knowledge gaps and define current paths and trends for further exploration. The general goal behind this research is to support the design of sustainable office buildings in warm climates through examination of past experiences, thus the paper focuses on strategies at building level and specially related with façade design. Peer reviewed journal articles were selected as the source for the study, given the reliability of the information published under peer-review processes. Several queries were carried out throughout three online journal article databases (Web of Science, SCOPUS and ScienceDirect), considering published papers from 1990 onwards. The resulting article database was then explored trough descriptive analysis and in-depth review of some articles to expand on specific topics in order to thoroughly visualise scientific interest and tendencies within the field of study for the last 25 years. As results of the review it is possible to state the high current relevance of cooling research, having experienced an increase of publications under different climate contexts and varied topics ranging from passive to solar cooling, which is seen as a research field on its own. Also, in terms of research methods, software simulations seem to be the primary tool for cooling research, which makes sense for performance driven developments. On the other hand, the main knowledge gaps identified are the need for specific research regarding possibilities for application and architectural integration of cooling systems; the lack of articles addressing some specific cooling strategies, such as the use of evaporative and ground cooling; and the need for more information about the operation of cooling systems, especially taking users’ perception and their behaviour into account.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefRenewable and Sustainable Energy ReviewsArticle . 2017Data sources: DANS (Data Archiving and Networked Services)Renewable and Sustainable Energy ReviewsArticle . 2017License: CC BYData sources: BASE (Open Access Aggregator)Delft University of Technology: Institutional RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2017.01.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 50 citations 50 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 5visibility views 5 download downloads 10 Powered bymore_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefRenewable and Sustainable Energy ReviewsArticle . 2017Data sources: DANS (Data Archiving and Networked Services)Renewable and Sustainable Energy ReviewsArticle . 2017License: CC BYData sources: BASE (Open Access Aggregator)Delft University of Technology: Institutional RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2017.01.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2025Publisher:4TU.ResearchData Hamida, Hamza; Prieto, Alejandro; Beneito, Lourdes; Konstantinou, Thaleia; Knaack, Ulrich;This study is part of an ongoing Ph.D. research in the Department of Architectural Engineering + Technology, Faculty of Architecture and the Built Environment, Delft University of Technology (TU Delft), the Netherlands. The study aimed to develop strategies for design teams to facilitate the early-stage design and evaluationof building façades integrating solar cooling technologies. The strategies were developed using a research-through-design methodology, considering the Spanishcontext and a proposed evaluation set-up to assess techno-economic feasibility. The development of strategies involved mapping the design and evaluation of solar cooling integrated façades by identifying and relating key processes, inputs, outputs, design decisions, and tools within key design stages. The data are organized based on the following main phase followed in this case study:• Phase A: Energy simulation using DesignBuilder (DB) software.• Phase B: Solar Fraction (SF) Calculations• Phase C: Life-Cycle Cost (LCC) and Levelized Cost of Cooling (LCOC) Calculations• Phase D: Summarization of Scores
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4121/ce64c708-8347-4eb3-9d9c-91a2d5e0c96d.v2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4121/ce64c708-8347-4eb3-9d9c-91a2d5e0c96d.v2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 NetherlandsPublisher:Elsevier BV Authors: Alejandro Prieto; Ulrich Knaack; Thomas Auer; Tillmann Klein;Cooling demands of commercial buildings present a relevant challenge for a sustainable future. They account for over half of the overall energy needs for the operation of an average office building in warm climates, and this situation is expected to become more pressing due to increasing temperatures in cities worldwide. To tackle this issue, it is widely agreed that the application of passive strategies should be the first step in the design of energy efficient buildings, only using active equipment if it is truly necessary. Nonetheless, there is still further need for information regarding the potential limits derived from their application.This paper explores the effectiveness of selected passive cooling strategies in commercial buildings from warm climates, defining performance ranges based on the assessment of multiple scenarios and climate contexts. This task was conducted through the statistical analysis of results from documented research experiences, to define overall ranges and boundary conditions; and through software simulation of selected parameters to isolate their impact under a controlled experimental setup. General findings showed that the mere application of passive strategies is not enough to guarantee relevant savings. Their effectiveness was conditioned to both the harshness of a given climate and different building parameters. Specific recommendations were also discussed for the selected passive strategies considered in the evaluation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2018.06.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 68 citations 68 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
visibility 12visibility views 12 download downloads 18 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2018.06.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2017 NetherlandsPublisher:SPOOL Authors: de Witte, D. (author); de Klijn-Chevalerias, M.L. (author); Loonen, R.C.G.M. (author); Hensen, J.L.M. (author); +2 Authorsde Witte, D. (author); de Klijn-Chevalerias, M.L. (author); Loonen, R.C.G.M. (author); Hensen, J.L.M. (author); Knaack, U. (author); Zimmermann, G. (author);Convective Concrete is about a research-driven design process of an innovative thermal mass concept. The goal is to improve building energy efficiency and comfort levels by addressing some of the shortcomings of conventional building slabs with high thermal storage capacity. Such heavyweight constructions tend to have a slow response time and do not make use of the available thermal mass effectively. Convective Concrete explores new ways of using thermal mass in buildings more intelligently. To accomplish this ondemand charging of thermal mass, a network of ducts and fans is embedded in the concrete wall element. This is done by developing customized formwork elements in combination with advanced concrete mixtures. To achieve an efficient airflow rate, the embedded lost formwork and the concrete itself function like a lung. SPOOL, Vol. 4 No. 2: Energy Innovation #4
https://dx.doi.org/1... arrow_drop_down DANS (Data Archiving and Networked Services)Conference object . 2017Data sources: DANS (Data Archiving and Networked Services)Journal of Facade Design and EngineeringArticle . 2017Data sources: DANS (Data Archiving and Networked Services)Journal of Facade Design and EngineeringArticle . 2017Data sources: DANS (Data Archiving and Networked Services)Journal of Facade Design and EngineeringArticle . 2017Data sources: Eindhoven University of Technology Research PortalEindhoven University of Technology Research PortalConference object . 2017Data sources: Eindhoven University of Technology Research PortalDelft University of Technology: Institutional RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7480/spool.2017.2.1919&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
visibility 7visibility views 7 download downloads 5 Powered bymore_vert https://dx.doi.org/1... arrow_drop_down DANS (Data Archiving and Networked Services)Conference object . 2017Data sources: DANS (Data Archiving and Networked Services)Journal of Facade Design and EngineeringArticle . 2017Data sources: DANS (Data Archiving and Networked Services)Journal of Facade Design and EngineeringArticle . 2017Data sources: DANS (Data Archiving and Networked Services)Journal of Facade Design and EngineeringArticle . 2017Data sources: Eindhoven University of Technology Research PortalEindhoven University of Technology Research PortalConference object . 2017Data sources: Eindhoven University of Technology Research PortalDelft University of Technology: Institutional RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7480/spool.2017.2.1919&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 NetherlandsPublisher:MDPI AG Giulia Procaccini; Alejandro Prieto; Ulrich Knaack; Carol Monticelli; Thaleia Konstantinou;The European building stock demands urgent renovation due to the age of the buildings, their expected lifetime, and their excessive energy consumption, which accounts for more than a third of the EU’s total emissions. However, the complexities involved, such as time, costs, and structural modifications, often discourage clients, tenants, and occupants from undergoing a building renovation process. Textile membranes, despite their long history in various architectural applications, have only been employed in façades in the last decades. Their intrinsic properties, such as lightness and flexibility, together with rapid assembly and low maintenance make these materials particularly suitable for façade retrofitting. Therefore, they are worth exploring as a way to promote the development of lightweight and easy-to-assemble façade products that could help overcome the current limitations of building retrofitting efforts. This paper aims to establish relationships between textile membranes and potential building retrofit applications. To this end, this study builds on the categorization of traditional façade retrofit strategies and proposes a new classification for textile façade retrofit products. The methodology includes a comprehensive literature review of textile properties and characteristics, along with a thorough assessment through case studies, of membrane use in façade applications. A sequential investigation leads to the main outcome of identifying three clear pathways for the development of new textile-based façade products for building retrofit.
Buildings arrow_drop_down Delft University of Technology: Institutional RepositoryArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/buildings14010086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 29visibility views 29 download downloads 14 Powered bymore_vert Buildings arrow_drop_down Delft University of Technology: Institutional RepositoryArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/buildings14010086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 NetherlandsPublisher:MDPI AG Authors: Ahmed Felimban; Ulrich Knaack; Thaleia Konstantinou;Residential buildings in the Kingdom of Saudi Arabia (KSA) contribute to nearly half of the overall electricity consumption in the building stock, highlighting their significant role in energy consumption. While an upgraded energy code has been established and enforced for new buildings, existing buildings continue to operate at the same level of energy consumption. Therefore, there is a need for further energy upgrades in existing buildings. This study evaluates the energy savings potential of various energy retrofitting measures for a case study in Jeddah, KSA. Data from previous studies and current practices were collected and analyzed. Different energy upgrade measures, such as windows replacement, wall insulation upgrade, roof insulation upgrade, and air conditioning unit replacement, were selected and evaluated using a digital simulation tool called Design-Builder. The simulation results were compared to understand the potential percentage of energy savings. The average annual energy consumption (AAEC) was used as the primary performance indicator to compare the energy savings among the scenarios. The results demonstrate significant reductions in energy consumption for the proposed scenarios. Furthermore, the study examined the significant impact of uncertainties, specifically, the infiltration rate and AC setback temperature, on AAEC. In conclusion, the proposed scenarios have the potential to achieve substantial energy savings, ranging from 25% to 66%, depending on the number of energy retrofitting interventions employed. The findings of this study can serve as a useful reference for similar energy retrofitting projects.
Buildings arrow_drop_down BuildingsOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2075-5309/13/7/1645/pdfData sources: Multidisciplinary Digital Publishing InstituteDelft University of Technology: Institutional RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/buildings13071645&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Average influence Average impulse Top 10% Powered by BIP!
visibility 6visibility views 6 download downloads 3 Powered bymore_vert Buildings arrow_drop_down BuildingsOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2075-5309/13/7/1645/pdfData sources: Multidisciplinary Digital Publishing InstituteDelft University of Technology: Institutional RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/buildings13071645&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Hamza Hamida; Alejandro Prieto; Lourdes Beneito; Thaleia Konstantinou; Ulrich Knaack;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jobe.2025.112440&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jobe.2025.112440&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: A.I. Prieto Hoces; Tillmann Klein; Thomas Auer; Ulrich Knaack;Abstract Increasing cooling demands in the built environment call for innovative technical solutions and systems for application in buildings. Cooling loads represent an important share of the total energy consumption in warm climates, especially in commercial and office buildings. Moreover, mechanical systems will still be needed in most cases to cope with cooling loads, even after considering passive cooling strategies in the design of the building and its facade. Solar cooling technologies present interesting assets, being based on environmentally friendly cooling processes, driven by solar and thus renewable energy. However, their application in the built environment remains greatly limited. This paper assesses several solar cooling technologies in terms of their potential for facade integration; aiming to promote widespread application in buildings throughout the development of integrated architectural facade products. The assessment is based on a state-of-the-art review and discussion of key attributes for facade integration of selected technologies; and a qualitative evaluation of their suitability to respond to main product related barriers for the integration of building services identified in an earlier work by the authors. The cooling principles behind the operation of the assessed technologies have been extensively presented in the literature, so this paper focuses exclusively on key aspects to overcome barriers related to the technical feasibility, physical integration, durability, performance, and aesthetics of future integrated concepts. Results show that the suitability of the assessed technologies varies according to each particular barrier. Hence, no technology currently fits all required aspects. Nonetheless, the use of thermoelectric modules and compact units based on absorption technologies are regarded as the most promising for the development of either integral building components, or modular plug & play systems for facade integration. In any case, this is heavily conditioned to further efforts and explorations in the field to overcome identified challenges and knowledge gaps.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2018.11.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 46 citations 46 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2018.11.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2017 NetherlandsPublisher:Journal of Facade Design and Engineering Authors: Prieto Hoces, A.I. (author); Knaack, U. (author); Auer, T. (author); Klein, T. (author);Solar energy has been actively promoted as a clean energy source since 1973���s oil crisis, evidenced by the emergence of initiatives such as the Solar Heating & Cooling Programme of the International Energy Agency or the US Department of Energy. Nonetheless, solar technologies have not been widely used in the built environment, limiting their operation to industrial and macroscale applications. Commercially available products such as building integrated PV panels (BIPV) or building integrated solar thermal collectors (BIST); and novel prototypes and concepts for solar cooling integrated facades are seen as interesting alternatives for the development of new performance based fa��ade components for high-performing commercial buildings. However, there are barriers to overcome in order to promote widespread application of architecturally integrated solar components. The present paper seeks to discuss perceived barriers for widespread fa��ade integration of solar technologies, in order to define the current scenario and generate guidelines for future developments. In order to achieve this, the paper presents the results of a survey addressed to professionals with practical experience in the development of fa��ade systems for office buildings, situated at any stage of the design and construction process. Hence, architects, fa��ade consultants, system suppliers and fa��ade builders were considered. The outcome of this study is the definition of the main perceived barriers for fa��ade integration of solar technologies, discussing the results from the survey along with other related experiences found in the literature. This study is part of the ongoing PhD research project titled COOLFACADE: Architectural integration of solar cooling strategies into the curtain-wall, developed within the Fa��ade Research Group (FRG) in the Green Building Innovation programme (GBI) of the Faculty of Architecture and the Built Environment, TU Delft. Journal of Facade Design and Engineering, Vol. 5 No. 1 (2017): Special Issue Powerskin
https://dx.doi.org/1... arrow_drop_down Journal of Facade Design and EngineeringArticle . 2017Data sources: DANS (Data Archiving and Networked Services)Delft University of Technology: Institutional RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7480/jfde.2017.1.1398&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 17visibility views 17 download downloads 7 Powered bymore_vert https://dx.doi.org/1... arrow_drop_down Journal of Facade Design and EngineeringArticle . 2017Data sources: DANS (Data Archiving and Networked Services)Delft University of Technology: Institutional RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7480/jfde.2017.1.1398&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2018 NetherlandsPublisher:Journal of Facade Design and Engineering Authors: Sarakinioti, M.V. (author); Konstantinou, T. (author); Turrin, M. (author); Tenpierik, M.J. (author); +3 AuthorsSarakinioti, M.V. (author); Konstantinou, T. (author); Turrin, M. (author); Tenpierik, M.J. (author); Loonen, R.C.G.M. (author); de Klijn-Chevalerias, M.L. (author); Knaack, U. (author);Currently, several research projects investigate Additive Manufacturing (AM) technology as possible construction method for future buildings. AM methods have some advantages over other production processes, such as great freedom of form, shape complexity, scale and material use. These characteristics are relevant for façade applications, which demand the integration of several functions. Given the established capacity of AM to generate complex geometries, most existing research focuses on mechanical material properties and mainly in relation to the load-bearing capacity and the construction system. The integration of additional aspects is often achieved with post processing and the use of multiple materials. Research is needed to investigate properties for insulation, thermal storage and energy harvesting, combined in one component and one production technology.To this end, the research project “SPONG3D” aimed at developing a 3D-printed façade panel that integrates insulating properties with heat storage in a complex, mono-material geometry. The present paper gives an overview of the panel development process, including aspects of material selection, printing process, structural properties, energy performance, and thermal heat storage. The development process was guided by experiments and simulations and resulted in the design and manufacturing of a full-scale façade element prototype using FDM printing with PETG. The project proved the possibility of functions integration in 3D-printed façades, but also highlighted the limitations and the need for further developments. Design of Constrution Design Informatics Building Physics
https://dx.doi.org/1... arrow_drop_down Journal of Facade Design and EngineeringArticle . 2018Data sources: DANS (Data Archiving and Networked Services)Journal of Facade Design and EngineeringArticle . 2018Data sources: DANS (Data Archiving and Networked Services)Journal of Facade Design and EngineeringArticle . 2018License: CC BY NCData sources: Eindhoven University of Technology Research PortalDelft University of Technology: Institutional RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7480/jfde.2018.2.2081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 20visibility views 20 download downloads 17 Powered bymore_vert https://dx.doi.org/1... arrow_drop_down Journal of Facade Design and EngineeringArticle . 2018Data sources: DANS (Data Archiving and Networked Services)Journal of Facade Design and EngineeringArticle . 2018Data sources: DANS (Data Archiving and Networked Services)Journal of Facade Design and EngineeringArticle . 2018License: CC BY NCData sources: Eindhoven University of Technology Research PortalDelft University of Technology: Institutional RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7480/jfde.2018.2.2081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 NetherlandsPublisher:Elsevier BV Authors: Prieto Hoces, A.I. (author); Knaack, U. (author); Klein, T. (author); Auer, T (author);This paper seeks to present a panorama of cooling related research in office buildings, categorising reported research experiences from the past 25 years in order to identify knowledge gaps and define current paths and trends for further exploration. The general goal behind this research is to support the design of sustainable office buildings in warm climates through examination of past experiences, thus the paper focuses on strategies at building level and specially related with façade design. Peer reviewed journal articles were selected as the source for the study, given the reliability of the information published under peer-review processes. Several queries were carried out throughout three online journal article databases (Web of Science, SCOPUS and ScienceDirect), considering published papers from 1990 onwards. The resulting article database was then explored trough descriptive analysis and in-depth review of some articles to expand on specific topics in order to thoroughly visualise scientific interest and tendencies within the field of study for the last 25 years. As results of the review it is possible to state the high current relevance of cooling research, having experienced an increase of publications under different climate contexts and varied topics ranging from passive to solar cooling, which is seen as a research field on its own. Also, in terms of research methods, software simulations seem to be the primary tool for cooling research, which makes sense for performance driven developments. On the other hand, the main knowledge gaps identified are the need for specific research regarding possibilities for application and architectural integration of cooling systems; the lack of articles addressing some specific cooling strategies, such as the use of evaporative and ground cooling; and the need for more information about the operation of cooling systems, especially taking users’ perception and their behaviour into account.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefRenewable and Sustainable Energy ReviewsArticle . 2017Data sources: DANS (Data Archiving and Networked Services)Renewable and Sustainable Energy ReviewsArticle . 2017License: CC BYData sources: BASE (Open Access Aggregator)Delft University of Technology: Institutional RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2017.01.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 50 citations 50 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 5visibility views 5 download downloads 10 Powered bymore_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefRenewable and Sustainable Energy ReviewsArticle . 2017Data sources: DANS (Data Archiving and Networked Services)Renewable and Sustainable Energy ReviewsArticle . 2017License: CC BYData sources: BASE (Open Access Aggregator)Delft University of Technology: Institutional RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2017.01.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2025Publisher:4TU.ResearchData Hamida, Hamza; Prieto, Alejandro; Beneito, Lourdes; Konstantinou, Thaleia; Knaack, Ulrich;This study is part of an ongoing Ph.D. research in the Department of Architectural Engineering + Technology, Faculty of Architecture and the Built Environment, Delft University of Technology (TU Delft), the Netherlands. The study aimed to develop strategies for design teams to facilitate the early-stage design and evaluationof building façades integrating solar cooling technologies. The strategies were developed using a research-through-design methodology, considering the Spanishcontext and a proposed evaluation set-up to assess techno-economic feasibility. The development of strategies involved mapping the design and evaluation of solar cooling integrated façades by identifying and relating key processes, inputs, outputs, design decisions, and tools within key design stages. The data are organized based on the following main phase followed in this case study:• Phase A: Energy simulation using DesignBuilder (DB) software.• Phase B: Solar Fraction (SF) Calculations• Phase C: Life-Cycle Cost (LCC) and Levelized Cost of Cooling (LCOC) Calculations• Phase D: Summarization of Scores
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4121/ce64c708-8347-4eb3-9d9c-91a2d5e0c96d.v2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4121/ce64c708-8347-4eb3-9d9c-91a2d5e0c96d.v2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 NetherlandsPublisher:Elsevier BV Authors: Alejandro Prieto; Ulrich Knaack; Thomas Auer; Tillmann Klein;Cooling demands of commercial buildings present a relevant challenge for a sustainable future. They account for over half of the overall energy needs for the operation of an average office building in warm climates, and this situation is expected to become more pressing due to increasing temperatures in cities worldwide. To tackle this issue, it is widely agreed that the application of passive strategies should be the first step in the design of energy efficient buildings, only using active equipment if it is truly necessary. Nonetheless, there is still further need for information regarding the potential limits derived from their application.This paper explores the effectiveness of selected passive cooling strategies in commercial buildings from warm climates, defining performance ranges based on the assessment of multiple scenarios and climate contexts. This task was conducted through the statistical analysis of results from documented research experiences, to define overall ranges and boundary conditions; and through software simulation of selected parameters to isolate their impact under a controlled experimental setup. General findings showed that the mere application of passive strategies is not enough to guarantee relevant savings. Their effectiveness was conditioned to both the harshness of a given climate and different building parameters. Specific recommendations were also discussed for the selected passive strategies considered in the evaluation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2018.06.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 68 citations 68 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
visibility 12visibility views 12 download downloads 18 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2018.06.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu