- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2017 Spain, United Kingdom, Spain, SpainPublisher:Springer Science and Business Media LLC Funded by:EC | EUPORIAS, EC | SPECSEC| EUPORIAS ,EC| SPECSJosé M. Gutiérrez; A. Lucero; Antje Weisheimer; Antje Weisheimer; Rodrigo Manzanas;handle: 10261/170441
Les méthodes de réduction d'échelle statistiques sont des outils de post-traitement populaires qui sont largement utilisés dans de nombreux secteurs pour adapter les résultats biaisés à résolution grossière des simulations climatiques mondiales à l'échelle régionale à locale généralement requise par les utilisateurs. Ils vont de méthodes simples et pragmatiques de correction de biais (BC), qui ajustent directement les sorties du modèle d'intérêt (par exemple les précipitations) en fonction des observations locales disponibles, à des méthodes plus complexes de pronostic parfait (PP), qui dérivent indirectement des prédictions locales (par exemple les précipitations) à partir de variables appropriées du modèle à grande échelle de l'air supérieur (prédicteurs). Les méthodes de réduction d'échelle statistiques ont été largement utilisées et évaluées de manière critique dans les applications du changement climatique ; cependant, leurs avantages et leurs limites dans les prévisions saisonnières ne sont pas encore bien compris. En particulier, un problème clé dans ce contexte est de savoir s'ils servent à améliorer la qualité/compétence prévisionnelle des résultats des modèles bruts au-delà de l'ajustement de leurs biais systématiques. Dans cet article, nous analysons ce problème en appliquant deux méthodes BC et deux méthodes PP à la pointe de la technologie pour réduire les précipitations à partir d'un rétroprojecteur saisonnier multimodèle dans une région tropicale difficile, les Philippines. Pour évaluer correctement la valeur ajoutée potentielle au-delà de la réduction des biais du modèle, nous considérons deux scores de validation qui ne sont pas sensibles aux changements de la moyenne (catégories de corrélation et de fiabilité). Nos résultats montrent que, alors que les méthodes BC maintiennent ou aggravent la compétence des prévisions du modèle brut, les méthodes PP peuvent apporter une amélioration significative des compétences (aggravation) dans les cas où les variables prédictives à grande échelle considérées sont meilleures (pires) prédites par le modèle que les précipitations. Par exemple, les méthodes PP augmentent (diminuent) la fiabilité du modèle dans près de 40 % des stations considérées en été boréal (automne). Par conséquent, le choix d'une approche pratique de réduction d'échelle (BC ou PP) dépend de la région et de la saison. Los métodos de reducción de escala estadística son herramientas populares de posprocesamiento que se utilizan ampliamente en muchos sectores para adaptar los resultados sesgados de resolución gruesa de las simulaciones climáticas globales a la escala regional a local que generalmente requieren los usuarios. Van desde métodos de corrección de sesgo (BC) simples y pragmáticos, que ajustan directamente los resultados del modelo de interés (por ejemplo, precipitación) de acuerdo con las observaciones locales disponibles, hasta métodos de pronóstico perfecto (PP) más complejos, que derivan indirectamente predicciones locales (por ejemplo, precipitación) de variables apropiadas del modelo a gran escala del aire superior (predictores). Los métodos estadísticos de reducción de escala se han utilizado ampliamente y se han evaluado críticamente en aplicaciones de cambio climático; sin embargo, sus ventajas y limitaciones en el pronóstico estacional aún no se comprenden bien. En particular, un problema clave en este contexto es si sirven para mejorar la calidad/habilidad de pronóstico de los resultados del modelo bruto más allá del ajuste de sus sesgos sistemáticos. En este documento analizamos este problema aplicando dos métodos BC y dos PP de última generación para reducir la precipitación de un retroceso estacional multimodelo en una región tropical desafiante, Filipinas. Para evaluar adecuadamente el valor añadido potencial más allá de la reducción de los sesgos del modelo, consideramos dos puntuaciones de validación que no son sensibles a los cambios en la media (categorías de correlación y fiabilidad). Nuestros resultados muestran que, mientras que los métodos BC mantienen o empeoran la habilidad de los pronósticos del modelo en bruto, los métodos PP pueden producir una mejora significativa de la habilidad (empeoramiento) en los casos en que las variables predictoras a gran escala consideradas son mejores (peores) predichas por el modelo que la precipitación. Por ejemplo, se encuentra que los métodos PP aumentan (disminuyen) la confiabilidad del modelo en casi el 40% de las estaciones consideradas en el verano boreal (otoño). Por lo tanto, la elección de un enfoque de reducción de escala conveniente (ya sea BC o PP) depende de la región y la temporada. Statistical downscaling methods are popular post-processing tools which are widely used in many sectors to adapt the coarse-resolution biased outputs from global climate simulations to the regional-to-local scale typically required by users. They range from simple and pragmatic Bias Correction (BC) methods, which directly adjust the model outputs of interest (e.g. precipitation) according to the available local observations, to more complex Perfect Prognosis (PP) ones, which indirectly derive local predictions (e.g. precipitation) from appropriate upper-air large-scale model variables (predictors). Statistical downscaling methods have been extensively used and critically assessed in climate change applications; however, their advantages and limitations in seasonal forecasting are not well understood yet. In particular, a key problem in this context is whether they serve to improve the forecast quality/skill of raw model outputs beyond the adjustment of their systematic biases. In this paper we analyze this issue by applying two state-of-the-art BC and two PP methods to downscale precipitation from a multimodel seasonal hindcast in a challenging tropical region, the Philippines. To properly assess the potential added value beyond the reduction of model biases, we consider two validation scores which are not sensitive to changes in the mean (correlation and reliability categories). Our results show that, whereas BC methods maintain or worsen the skill of the raw model forecasts, PP methods can yield significant skill improvement (worsening) in cases for which the large-scale predictor variables considered are better (worse) predicted by the model than precipitation. For instance, PP methods are found to increase (decrease) model reliability in nearly 40% of the stations considered in boreal summer (autumn). Therefore, the choice of a convenient downscaling approach (either BC or PP) depends on the region and the season. طرق تقليص النطاق الإحصائي هي أدوات شائعة لما بعد المعالجة تستخدم على نطاق واسع في العديد من القطاعات لتكييف المخرجات المتحيزة ذات الدقة الخشنة من محاكاة المناخ العالمي إلى النطاق الإقليمي إلى المحلي المطلوب عادةً من قبل المستخدمين. وهي تتراوح من طرق بسيطة وعملية لتصحيح التحيز (BC)، والتي تعدل بشكل مباشر مخرجات النموذج محل الاهتمام (مثل هطول الأمطار) وفقًا للملاحظات المحلية المتاحة، إلى طرق التكهن المثالي (PP) الأكثر تعقيدًا، والتي تستمد بشكل غير مباشر التنبؤات المحلية (مثل هطول الأمطار) من متغيرات النموذج المناسبة واسعة النطاق في الهواء العلوي (التنبؤات). تم استخدام طرق تقليص النطاق الإحصائي على نطاق واسع وتقييمها بشكل نقدي في تطبيقات تغير المناخ ؛ ومع ذلك، فإن مزاياها وقيودها في التنبؤ الموسمي ليست مفهومة جيدًا بعد. على وجه الخصوص، تتمثل المشكلة الرئيسية في هذا السياق في ما إذا كانت تعمل على تحسين جودة/مهارة التنبؤ لمخرجات النموذج الخام بما يتجاوز تعديل تحيزاتها المنهجية. في هذه الورقة، نقوم بتحليل هذه المشكلة من خلال تطبيق طريقتين حديثتين قبل الميلاد وطريقتين للبولي بروبلين لتقليل هطول الأمطار من توقعات موسمية متعددة النماذج في منطقة استوائية صعبة، الفلبين. لتقييم القيمة المضافة المحتملة بشكل صحيح بما يتجاوز الحد من تحيزات النموذج، نأخذ في الاعتبار درجتي التحقق غير الحساستين للتغيرات في المتوسط (فئتي الارتباط والموثوقية). تظهر نتائجنا أنه في حين أن طرق BC تحافظ على مهارة تنبؤات النموذج الخام أو تزيدها سوءًا، فإن طرق PP يمكن أن تسفر عن تحسن كبير في المهارات (تدهور) في الحالات التي تكون فيها المتغيرات التنبؤية واسعة النطاق التي يعتبرها النموذج أفضل (أسوأ) من هطول الأمطار. على سبيل المثال، تم العثور على طرق PP لزيادة (تقليل) موثوقية النموذج في ما يقرب من 40 ٪ من المحطات التي يتم النظر فيها في الصيف الشمالي (الخريف). لذلك، يعتمد اختيار نهج تصغير النطاق المناسب (إما BC أو PP) على المنطقة والموسم.
Climate Dynamics arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00382-017-3668-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 55 citations 55 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 229visibility views 229 download downloads 312 Powered bymore_vert Climate Dynamics arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00382-017-3668-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 France, Spain, SpainPublisher:Springer Science and Business Media LLC Saloua Balhane; Fatima Driouech; Omar Chafki; Rodrigo Manzanas; Abdelghani Chehbouni; Willfran Moufouma-Okia;AbstractInternal variability, multiple emission scenarios, and different model responses to anthropogenic forcing are ultimately behind a wide range of uncertainties that arise in climate change projections. Model weighting approaches are generally used to reduce the uncertainty related to the choice of the climate model. This study compares three multi-model combination approaches: a simple arithmetic mean and two recently developed weighting-based alternatives. One method takes into account models’ performance only and the other accounts for models’ performance and independence. The effect of these three multi-model approaches is assessed for projected changes of mean precipitation and temperature as well as four extreme indices over northern Morocco. We analyze different widely used high-resolution ensembles issued from statistical (NEXGDDP) and dynamical (Euro-CORDEX and bias-adjusted Euro-CORDEX) downscaling. For the latter, we also investigate the potential added value that bias adjustment may have over the raw dynamical simulations. Results show that model weighting can significantly reduce the spread of the future projections increasing their reliability. Nearly all model ensembles project a significant warming over the studied region (more intense inland than near the coasts), together with longer and more severe dry periods. In most cases, the different weighting methods lead to almost identical spatial patterns of climate change, indicating that the uncertainty due to the choice of multi-model combination strategy is nearly negligible.
Institut national de... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://insu.hal.science/insu-03668296Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00382-021-05910-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 128visibility views 128 download downloads 27 Powered bymore_vert Institut national de... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://insu.hal.science/insu-03668296Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00382-021-05910-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 SpainPublisher:American Geophysical Union (AGU) Maialen Iturbide; Jesús Fernández; Panmao Zhai; Rodrigo Manzanas; Rodrigo Manzanas; M. N. Legasa; Sixto Herrera; F. Driouech; José M. Gutiérrez; Wilfran Moufouma-Okia;doi: 10.1029/2019gl086799
handle: 10261/221881
AbstractThe Coordinated Regional Climate Downscaling Experiment (CORDEX) initiative has made available an enormous amount of regional climate projections in different domains worldwide. This information is crucial for the development of adaptation strategies and policy‐making. A relevant open issue in this context is assessing the potential multidomain conflicts that may result in overlapping regions and developing appropriate ensemble methods trying to make the most of all available information. This work addresses this timely topic by focusing on precipitation over the Mediterranean region, a first illustrative case study that is encompassed by both the Euro‐ and Africa‐CORDEX domains. We focus on several mean, extreme, and temporal indices and use variance decomposition to assess the separate contribution of the domain and models to the climate change signal, concluding that the contribution of the domain alone is nearly negligible (below in all cases). Nevertheless, for some cases, the combined model/domain effect triggers up to of the total variance.
Geophysical Research... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAGeophysical Research LettersArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2019gl086799&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 167visibility views 167 download downloads 159 Powered bymore_vert Geophysical Research... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAGeophysical Research LettersArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2019gl086799&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Embargo end date: 01 Jan 2020 Spain, France, Spain, Spain, Argentina, Spain, Switzerland, ArgentinaPublisher:Copernicus GmbH M. Iturbide; J. M. Gutiérrez; L. M. Alves; J. Bedia; R. Cerezo-Mota; E. Cimadevilla; A. S. Cofiño; A. Di Luca; S. H. Faria; S. H. Faria; I. V. Gorodetskaya; M. Hauser; S. Herrera; K. Hennessy; H. T. Hewitt; R. G. Jones; R. G. Jones; S. Krakovska; S. Krakovska; R. Manzanas; R. Manzanas; D. Martínez-Castro; D. Martínez-Castro; G. T. Narisma; I. S. Nurhati; I. Pinto; S. I. Seneviratne; B. van den Hurk; C. S. Vera; C. S. Vera; C. S. Vera;Abstract. Several sets of reference regions have been proposed in the literature for the regional synthesis of observed and model-projected climate change information. A popular example is the set of reference regions introduced in the IPCC Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Adaptation (SREX) based on a prior coarser selection and then slightly modified for the 5th Assessment Report of the IPCC. This set was developed for reporting sub-continental observed and projected changes over a reduced number (33) of climatologically consistent regions encompassing a representative number of grid boxes (the typical resolution of the 5th Climate Model Intercomparison Projection, CMIP5, climate models was around 2º). These regions have been used as the basis for several popular spatially aggregated datasets, such as the seasonal mean temperature and precipitation in IPCC regions for CMIP5. Here we present an updated version of the reference regions for the analysis of new observed and simulated datasets (including CMIP6) which offer an opportunity for refinement due to the higher model resolution (around 1º for CMIP6). As a result, the number of regions increased to 43 land plus 12 open ocean, better representing consistent regional climate features. The paper describes the rationale followed for the definition of the new regions and analyses their homogeneity. The regions are defined as polygons and are provided as coordinates and shapefile together with companion R and Python notebooks to illustrate their use in practical problems (trimming data, etc.). We also describe the generation of a new dataset with monthly temperature and precipitation spatially aggregated in the new regions, currently for CMIP5 (for backwards consistency) and CMIP6, to be extended to other datasets in the future (including observations). The use of these reference regions, dataset and code is illustrated through a worked example using scatter diagrams to offer guidance on the likely range of future climate change at the scale of reference regions. The regions, datasets and code (R and Python notebooks) are freely available at the ATLAS GitHub repository; https://github.com/SantanderMetGroup/ATLAS, doi:10.5281/zenodo.3688072 (Iturbide et al., 2020).
https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/essd-2...Article . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2020Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2019-258&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 327 citations 327 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 300visibility views 300 download downloads 169 Powered bymore_vert https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/essd-2...Article . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2020Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2019-258&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 SpainPublisher:American Meteorological Society Authors: San Martín Segura, Daniel; García Manzanas, Rodrigo; Brands, Swen Franz; Herrera García, Sixto; +1 AuthorsSan Martín Segura, Daniel; García Manzanas, Rodrigo; Brands, Swen Franz; Herrera García, Sixto; Gutiérrez Llorente, José Manuel;handle: 10261/170628
This is the second in a pair of papers in which the performance of statistical downscaling methods (SDMs) is critically reassessed with respect to their robust applicability in climate change studies. Whereas the companion paper focused on temperatures, the present manuscript deals with precipitation and considers an ensemble of 12 SDMs from the analog, weather typing, and regression families. First, the performance of the methods is cross-validated considering reanalysis predictors, screening different geographical domains and predictor sets. Standard accuracy and distributional similarity scores and a test for extrapolation capability are considered. The results are highly dependent on the predictor sets, with optimum configurations including information from midtropospheric humidity. Second, a reduced ensemble of well-performing SDMs is applied to four GCMs to properly assess the uncertainty of downscaled future climate projections. The results are compared with an ensemble of regional climate models (RCMs) produced in the ENSEMBLES project. Generally, the mean signal is similar with both methodologies (with the exception of summer, which is drier for the RCMs) but the uncertainty (spread) is larger for the SDM ensemble. Finally, the spread contribution of the GCM- and SDM-derived components is assessed using a simple analysis of variance previously applied to the RCMs, obtaining larger interaction terms. Results show that the main contributor to the spread is the choice of the GCM, although the SDM dominates the uncertainty in some cases during autumn and summer due to the diverging projections from different families.
Journal of Climate arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1175/jcli-d-16-0366.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 54 citations 54 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
visibility 332visibility views 332 download downloads 104 Powered bymore_vert Journal of Climate arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1175/jcli-d-16-0366.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 France, Spain, SpainPublisher:American Geophysical Union (AGU) Funded by:EC | XAIDAEC| XAIDAAuthors: Legasa, M; Thao, S.; Vrac, M.; Manzanas, R.;doi: 10.1029/2022gl102525
AbstractUnder the perfect prognosis approach, statistical downscaling methods learn the relationships between large‐scale variables from reanalysis and local observational records. These relationships are subsequently applied to downscale future global climate model (GCM) simulations in order to obtain projections for the local region and variables of interest. However, the capability of such methods to produce future climate change signals consistent with those from the GCM, often referred to as transferability, is an important issue that remains to be carefully analyzed. Using the EC‐Earth GCM and focusing on precipitation, we assess the transferability of generalized linear models, convolutional neural networks and a posteriori random forests (APRFs). We conclude that APRFs present the best overall performance for the historical period, and future local climate change signals consistent with those projected by EC‐Earth. Moreover, we show how a slight modification of APRFs can greatly improve the temporal consistency of the downscaled series.
Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2023Full-Text: https://hal.science/hal-04097215Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2023Full-Text: https://hal.science/hal-04097215Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2022gl102525&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 206visibility views 206 download downloads 41 Powered bymore_vert Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2023Full-Text: https://hal.science/hal-04097215Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2023Full-Text: https://hal.science/hal-04097215Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2022gl102525&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 SpainPublisher:Elsevier BV M. D. Frías; Jesús Fernández; Daniel San-Martín; Rodrigo Manzanas; Joaquín Bedia; Antonio S. Cofiño; Maialen Iturbide; Maialen Iturbide; Ezequiel Cimadevilla; José M. Gutiérrez; Jorge Baño-Medina; Sixto Herrera;handle: 10261/213738
Climate-driven sectoral applications commonly require different types of climate data (e.g. observations, reanalysis, climate change projections) from different providers. Data access, harmonization and post-processing (e.g. bias correction) are time-consuming error-prone tasks requiring different specialized software tools at each stage of the data workflow, thus hindering reproducibility. Here we introduce climate4R, an R-based climate services oriented framework tailored to the needs of the vulnerability and impact assessment community that integrates in the same computing environment harmonized data access, post-processing, visualization and a provenance metadata model for traceability and reproducibility of results. climate4R allows accessing local and remote (OPeNDAP) data sources, such as the Santander User Data Gateway (UDG), a THREDDS-based service including a wide catalogue of popular datasets (e.g. ERA-Interim, CORDEX, etc.). This provides a unique comprehensive open framework for end-to-end sectoral reproducible applications. All the packages, data and documentation for reproducing the experiments in this paper are available from http://www.meteo.unican.es/climate4R. This work has been funded by the Spanish R+D Program of the Ministry of Economy and Competitiveness, through grants MULTI-SDM (CGL2015-66583-R) and INSIGNIA (CGL2016-79210-R), co-funded by ERDF/FEDER.
Environmental Modell... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAEnvironmental Modelling & SoftwareArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envsoft.2018.09.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 100 citations 100 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 199visibility views 199 download downloads 799 Powered bymore_vert Environmental Modell... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAEnvironmental Modelling & SoftwareArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envsoft.2018.09.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type 2019Publisher:OpenAlex Haibo Du; Lisa V. Alexander; Markus G. Donat; Tanya Lippmann; Ashok Kumar Srivastava; Jim Salinger; Andries Kruger; Gwangyong Choi; Fumiaki Fujibe; Matilde Rusticucci; Banzragch Nandintsetseg; Rodrigo Manzanas; Shafiqur Rehman; Farhat Abbas; Ibouraïma Yabi; Zhengfang Wu;Ces données sont utilisées pour analyser les changements dans les précipitations extrêmes quotidiennes et persistantes observées à l'échelle mondiale. Estos datos se utilizan para analizar los cambios en la precipitación global extrema diaria y persistente observada. This data is used to analyse the changes in the observed global extreme daily and persistent precipitation. تُستخدم هذه البيانات لتحليل التغيرات في هطول الأمطار اليومي الشديد والمستمر الملحوظ على مستوى العالم.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60692/5z4jf-zbn02&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60692/5z4jf-zbn02&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 SpainPublisher:Elsevier BV Jorge Alvar-Beltrán; Riccardo Soldan; Proyuth Ly; Vang Seng; Khema Srun; Rodrigo Manzanas; Gianluca Franceschini; Ana Heureux;Increasing heat-stress conditions, rising evaporative demand and shifting rainfall patterns may have multifaceted impacts on Cambodia's agricultural systems, including vegetable production. Concurrently, domestic vegetable supply is highly seasonal and inadequate to meet the domestic food demand, which consequently poses risks to food security locally, particularly in rural areas. This study assesses the impact of climate change on the yields and crop water productivity (CWP) of tomato, pak choi and yard-long bean cultivated year-round under different irrigated conditions (drip, furrow and net irrigation) in Siem Reap, Cambodia. The findings of this study show a similar annual precipitation decline (-23%) when comparing the 2017-2040 and 2070-2099 periods for both Representative Concentration Pathways (RCPs 4.5 and 8.5), though with significant seasonal differences between the two climate scenarios. Increasing water and heat-stress conditions are expected to have adverse impacts on tomato plants compared to pak choi and yard-long bean, which have a much higher heat tolerance. Differing yield trends are expected depending on the transplanting/sowing date, irrigation method and RCP. In tomato, for example, a -55% yield loss is projected by the end-century (2070-2099) when transplanting in January, whereas a + 37% yield increase is expected between November and December over the same period. In addition, pak choi yield enhancements of up to +30% are projected if sowing in May under RCP 8.5 for both drip and net irrigation conditions. Similarly, higher yard-long bean yields are simulated under RCP 8.5 (+29%) compared to RCP 4.5 (+11%) for the average of all sowing dates (January to December) and irrigation methods (drip, furrow and net irrigation). In sum, the findings of this work are relevant for evidence-based decision-making and the development of projects, policies and programmes increasingly informed by simulation results from bundling climate-crop approaches to transform agriculture in response to climate change.
Agricultural and For... arrow_drop_down Agricultural and Forest MeteorologyArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agrformet.2022.109105&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Agricultural and For... arrow_drop_down Agricultural and Forest MeteorologyArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agrformet.2022.109105&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 Germany, Spain, Australia, SpainPublisher:MDPI AG Muhammad Usman; Christopher E. Ndehedehe; Rodrigo Manzanas; Bashir Ahmad; Oluwafemi E. Adeyeri;handle: 10072/405222
The global hydrological cycle is vulnerable to changing climatic conditions, especially in developing regions, which lack abundant resources and management of freshwater resources. This study evaluates the impacts of climate change on the hydrological regime of the Chirah and Dhoke Pathan sub catchments of the Soan River Basin (SRB), in Pakistan, by using the climate models included in the NEX-GDDP dataset and the hydrological model HBV-light. After proper calibration and validation, the latter is forced with NEX-GDDP inputs to simulate a historic and a future (under the RCP 4.5 and RCP 8.5 emission scenarios) streamflow. Multiple evaluation criteria were employed to find the best performing NEX-GDDP models. A different ensemble was produced for each sub catchment by including the five best performing NEX-GDDP GCMs (ACCESS1-0, CCSM4, CESM1-BGC, MIROC5, and MRI-CGCM3 for Chirah and BNU-ESM, CCSM4, GFDL-CM3. IPSL-CM5A-LR and NorESM1-M for Dhoke Pathan). Our results show that the streamflow is projected to decrease significantly for the two sub catchments, highlighting the vulnerability of the SRB to climate change.
Atmosphere arrow_drop_down AtmosphereOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2073-4433/12/6/792/pdfData sources: Multidisciplinary Digital Publishing InstituteKITopen (Karlsruhe Institute of Technologie)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2021License: CC BYFull-Text: https://www.mdpi.com/2073-4433/12/6/792Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/atmos12060792&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 177visibility views 177 download downloads 27 Powered bymore_vert Atmosphere arrow_drop_down AtmosphereOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2073-4433/12/6/792/pdfData sources: Multidisciplinary Digital Publishing InstituteKITopen (Karlsruhe Institute of Technologie)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2021License: CC BYFull-Text: https://www.mdpi.com/2073-4433/12/6/792Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/atmos12060792&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2017 Spain, United Kingdom, Spain, SpainPublisher:Springer Science and Business Media LLC Funded by:EC | EUPORIAS, EC | SPECSEC| EUPORIAS ,EC| SPECSJosé M. Gutiérrez; A. Lucero; Antje Weisheimer; Antje Weisheimer; Rodrigo Manzanas;handle: 10261/170441
Les méthodes de réduction d'échelle statistiques sont des outils de post-traitement populaires qui sont largement utilisés dans de nombreux secteurs pour adapter les résultats biaisés à résolution grossière des simulations climatiques mondiales à l'échelle régionale à locale généralement requise par les utilisateurs. Ils vont de méthodes simples et pragmatiques de correction de biais (BC), qui ajustent directement les sorties du modèle d'intérêt (par exemple les précipitations) en fonction des observations locales disponibles, à des méthodes plus complexes de pronostic parfait (PP), qui dérivent indirectement des prédictions locales (par exemple les précipitations) à partir de variables appropriées du modèle à grande échelle de l'air supérieur (prédicteurs). Les méthodes de réduction d'échelle statistiques ont été largement utilisées et évaluées de manière critique dans les applications du changement climatique ; cependant, leurs avantages et leurs limites dans les prévisions saisonnières ne sont pas encore bien compris. En particulier, un problème clé dans ce contexte est de savoir s'ils servent à améliorer la qualité/compétence prévisionnelle des résultats des modèles bruts au-delà de l'ajustement de leurs biais systématiques. Dans cet article, nous analysons ce problème en appliquant deux méthodes BC et deux méthodes PP à la pointe de la technologie pour réduire les précipitations à partir d'un rétroprojecteur saisonnier multimodèle dans une région tropicale difficile, les Philippines. Pour évaluer correctement la valeur ajoutée potentielle au-delà de la réduction des biais du modèle, nous considérons deux scores de validation qui ne sont pas sensibles aux changements de la moyenne (catégories de corrélation et de fiabilité). Nos résultats montrent que, alors que les méthodes BC maintiennent ou aggravent la compétence des prévisions du modèle brut, les méthodes PP peuvent apporter une amélioration significative des compétences (aggravation) dans les cas où les variables prédictives à grande échelle considérées sont meilleures (pires) prédites par le modèle que les précipitations. Par exemple, les méthodes PP augmentent (diminuent) la fiabilité du modèle dans près de 40 % des stations considérées en été boréal (automne). Par conséquent, le choix d'une approche pratique de réduction d'échelle (BC ou PP) dépend de la région et de la saison. Los métodos de reducción de escala estadística son herramientas populares de posprocesamiento que se utilizan ampliamente en muchos sectores para adaptar los resultados sesgados de resolución gruesa de las simulaciones climáticas globales a la escala regional a local que generalmente requieren los usuarios. Van desde métodos de corrección de sesgo (BC) simples y pragmáticos, que ajustan directamente los resultados del modelo de interés (por ejemplo, precipitación) de acuerdo con las observaciones locales disponibles, hasta métodos de pronóstico perfecto (PP) más complejos, que derivan indirectamente predicciones locales (por ejemplo, precipitación) de variables apropiadas del modelo a gran escala del aire superior (predictores). Los métodos estadísticos de reducción de escala se han utilizado ampliamente y se han evaluado críticamente en aplicaciones de cambio climático; sin embargo, sus ventajas y limitaciones en el pronóstico estacional aún no se comprenden bien. En particular, un problema clave en este contexto es si sirven para mejorar la calidad/habilidad de pronóstico de los resultados del modelo bruto más allá del ajuste de sus sesgos sistemáticos. En este documento analizamos este problema aplicando dos métodos BC y dos PP de última generación para reducir la precipitación de un retroceso estacional multimodelo en una región tropical desafiante, Filipinas. Para evaluar adecuadamente el valor añadido potencial más allá de la reducción de los sesgos del modelo, consideramos dos puntuaciones de validación que no son sensibles a los cambios en la media (categorías de correlación y fiabilidad). Nuestros resultados muestran que, mientras que los métodos BC mantienen o empeoran la habilidad de los pronósticos del modelo en bruto, los métodos PP pueden producir una mejora significativa de la habilidad (empeoramiento) en los casos en que las variables predictoras a gran escala consideradas son mejores (peores) predichas por el modelo que la precipitación. Por ejemplo, se encuentra que los métodos PP aumentan (disminuyen) la confiabilidad del modelo en casi el 40% de las estaciones consideradas en el verano boreal (otoño). Por lo tanto, la elección de un enfoque de reducción de escala conveniente (ya sea BC o PP) depende de la región y la temporada. Statistical downscaling methods are popular post-processing tools which are widely used in many sectors to adapt the coarse-resolution biased outputs from global climate simulations to the regional-to-local scale typically required by users. They range from simple and pragmatic Bias Correction (BC) methods, which directly adjust the model outputs of interest (e.g. precipitation) according to the available local observations, to more complex Perfect Prognosis (PP) ones, which indirectly derive local predictions (e.g. precipitation) from appropriate upper-air large-scale model variables (predictors). Statistical downscaling methods have been extensively used and critically assessed in climate change applications; however, their advantages and limitations in seasonal forecasting are not well understood yet. In particular, a key problem in this context is whether they serve to improve the forecast quality/skill of raw model outputs beyond the adjustment of their systematic biases. In this paper we analyze this issue by applying two state-of-the-art BC and two PP methods to downscale precipitation from a multimodel seasonal hindcast in a challenging tropical region, the Philippines. To properly assess the potential added value beyond the reduction of model biases, we consider two validation scores which are not sensitive to changes in the mean (correlation and reliability categories). Our results show that, whereas BC methods maintain or worsen the skill of the raw model forecasts, PP methods can yield significant skill improvement (worsening) in cases for which the large-scale predictor variables considered are better (worse) predicted by the model than precipitation. For instance, PP methods are found to increase (decrease) model reliability in nearly 40% of the stations considered in boreal summer (autumn). Therefore, the choice of a convenient downscaling approach (either BC or PP) depends on the region and the season. طرق تقليص النطاق الإحصائي هي أدوات شائعة لما بعد المعالجة تستخدم على نطاق واسع في العديد من القطاعات لتكييف المخرجات المتحيزة ذات الدقة الخشنة من محاكاة المناخ العالمي إلى النطاق الإقليمي إلى المحلي المطلوب عادةً من قبل المستخدمين. وهي تتراوح من طرق بسيطة وعملية لتصحيح التحيز (BC)، والتي تعدل بشكل مباشر مخرجات النموذج محل الاهتمام (مثل هطول الأمطار) وفقًا للملاحظات المحلية المتاحة، إلى طرق التكهن المثالي (PP) الأكثر تعقيدًا، والتي تستمد بشكل غير مباشر التنبؤات المحلية (مثل هطول الأمطار) من متغيرات النموذج المناسبة واسعة النطاق في الهواء العلوي (التنبؤات). تم استخدام طرق تقليص النطاق الإحصائي على نطاق واسع وتقييمها بشكل نقدي في تطبيقات تغير المناخ ؛ ومع ذلك، فإن مزاياها وقيودها في التنبؤ الموسمي ليست مفهومة جيدًا بعد. على وجه الخصوص، تتمثل المشكلة الرئيسية في هذا السياق في ما إذا كانت تعمل على تحسين جودة/مهارة التنبؤ لمخرجات النموذج الخام بما يتجاوز تعديل تحيزاتها المنهجية. في هذه الورقة، نقوم بتحليل هذه المشكلة من خلال تطبيق طريقتين حديثتين قبل الميلاد وطريقتين للبولي بروبلين لتقليل هطول الأمطار من توقعات موسمية متعددة النماذج في منطقة استوائية صعبة، الفلبين. لتقييم القيمة المضافة المحتملة بشكل صحيح بما يتجاوز الحد من تحيزات النموذج، نأخذ في الاعتبار درجتي التحقق غير الحساستين للتغيرات في المتوسط (فئتي الارتباط والموثوقية). تظهر نتائجنا أنه في حين أن طرق BC تحافظ على مهارة تنبؤات النموذج الخام أو تزيدها سوءًا، فإن طرق PP يمكن أن تسفر عن تحسن كبير في المهارات (تدهور) في الحالات التي تكون فيها المتغيرات التنبؤية واسعة النطاق التي يعتبرها النموذج أفضل (أسوأ) من هطول الأمطار. على سبيل المثال، تم العثور على طرق PP لزيادة (تقليل) موثوقية النموذج في ما يقرب من 40 ٪ من المحطات التي يتم النظر فيها في الصيف الشمالي (الخريف). لذلك، يعتمد اختيار نهج تصغير النطاق المناسب (إما BC أو PP) على المنطقة والموسم.
Climate Dynamics arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00382-017-3668-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 55 citations 55 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 229visibility views 229 download downloads 312 Powered bymore_vert Climate Dynamics arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00382-017-3668-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 France, Spain, SpainPublisher:Springer Science and Business Media LLC Saloua Balhane; Fatima Driouech; Omar Chafki; Rodrigo Manzanas; Abdelghani Chehbouni; Willfran Moufouma-Okia;AbstractInternal variability, multiple emission scenarios, and different model responses to anthropogenic forcing are ultimately behind a wide range of uncertainties that arise in climate change projections. Model weighting approaches are generally used to reduce the uncertainty related to the choice of the climate model. This study compares three multi-model combination approaches: a simple arithmetic mean and two recently developed weighting-based alternatives. One method takes into account models’ performance only and the other accounts for models’ performance and independence. The effect of these three multi-model approaches is assessed for projected changes of mean precipitation and temperature as well as four extreme indices over northern Morocco. We analyze different widely used high-resolution ensembles issued from statistical (NEXGDDP) and dynamical (Euro-CORDEX and bias-adjusted Euro-CORDEX) downscaling. For the latter, we also investigate the potential added value that bias adjustment may have over the raw dynamical simulations. Results show that model weighting can significantly reduce the spread of the future projections increasing their reliability. Nearly all model ensembles project a significant warming over the studied region (more intense inland than near the coasts), together with longer and more severe dry periods. In most cases, the different weighting methods lead to almost identical spatial patterns of climate change, indicating that the uncertainty due to the choice of multi-model combination strategy is nearly negligible.
Institut national de... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://insu.hal.science/insu-03668296Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00382-021-05910-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 128visibility views 128 download downloads 27 Powered bymore_vert Institut national de... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://insu.hal.science/insu-03668296Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00382-021-05910-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 SpainPublisher:American Geophysical Union (AGU) Maialen Iturbide; Jesús Fernández; Panmao Zhai; Rodrigo Manzanas; Rodrigo Manzanas; M. N. Legasa; Sixto Herrera; F. Driouech; José M. Gutiérrez; Wilfran Moufouma-Okia;doi: 10.1029/2019gl086799
handle: 10261/221881
AbstractThe Coordinated Regional Climate Downscaling Experiment (CORDEX) initiative has made available an enormous amount of regional climate projections in different domains worldwide. This information is crucial for the development of adaptation strategies and policy‐making. A relevant open issue in this context is assessing the potential multidomain conflicts that may result in overlapping regions and developing appropriate ensemble methods trying to make the most of all available information. This work addresses this timely topic by focusing on precipitation over the Mediterranean region, a first illustrative case study that is encompassed by both the Euro‐ and Africa‐CORDEX domains. We focus on several mean, extreme, and temporal indices and use variance decomposition to assess the separate contribution of the domain and models to the climate change signal, concluding that the contribution of the domain alone is nearly negligible (below in all cases). Nevertheless, for some cases, the combined model/domain effect triggers up to of the total variance.
Geophysical Research... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAGeophysical Research LettersArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2019gl086799&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 167visibility views 167 download downloads 159 Powered bymore_vert Geophysical Research... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAGeophysical Research LettersArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2019gl086799&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Embargo end date: 01 Jan 2020 Spain, France, Spain, Spain, Argentina, Spain, Switzerland, ArgentinaPublisher:Copernicus GmbH M. Iturbide; J. M. Gutiérrez; L. M. Alves; J. Bedia; R. Cerezo-Mota; E. Cimadevilla; A. S. Cofiño; A. Di Luca; S. H. Faria; S. H. Faria; I. V. Gorodetskaya; M. Hauser; S. Herrera; K. Hennessy; H. T. Hewitt; R. G. Jones; R. G. Jones; S. Krakovska; S. Krakovska; R. Manzanas; R. Manzanas; D. Martínez-Castro; D. Martínez-Castro; G. T. Narisma; I. S. Nurhati; I. Pinto; S. I. Seneviratne; B. van den Hurk; C. S. Vera; C. S. Vera; C. S. Vera;Abstract. Several sets of reference regions have been proposed in the literature for the regional synthesis of observed and model-projected climate change information. A popular example is the set of reference regions introduced in the IPCC Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Adaptation (SREX) based on a prior coarser selection and then slightly modified for the 5th Assessment Report of the IPCC. This set was developed for reporting sub-continental observed and projected changes over a reduced number (33) of climatologically consistent regions encompassing a representative number of grid boxes (the typical resolution of the 5th Climate Model Intercomparison Projection, CMIP5, climate models was around 2º). These regions have been used as the basis for several popular spatially aggregated datasets, such as the seasonal mean temperature and precipitation in IPCC regions for CMIP5. Here we present an updated version of the reference regions for the analysis of new observed and simulated datasets (including CMIP6) which offer an opportunity for refinement due to the higher model resolution (around 1º for CMIP6). As a result, the number of regions increased to 43 land plus 12 open ocean, better representing consistent regional climate features. The paper describes the rationale followed for the definition of the new regions and analyses their homogeneity. The regions are defined as polygons and are provided as coordinates and shapefile together with companion R and Python notebooks to illustrate their use in practical problems (trimming data, etc.). We also describe the generation of a new dataset with monthly temperature and precipitation spatially aggregated in the new regions, currently for CMIP5 (for backwards consistency) and CMIP6, to be extended to other datasets in the future (including observations). The use of these reference regions, dataset and code is illustrated through a worked example using scatter diagrams to offer guidance on the likely range of future climate change at the scale of reference regions. The regions, datasets and code (R and Python notebooks) are freely available at the ATLAS GitHub repository; https://github.com/SantanderMetGroup/ATLAS, doi:10.5281/zenodo.3688072 (Iturbide et al., 2020).
https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/essd-2...Article . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2020Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2019-258&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 327 citations 327 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 300visibility views 300 download downloads 169 Powered bymore_vert https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/essd-2...Article . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2020Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2019-258&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 SpainPublisher:American Meteorological Society Authors: San Martín Segura, Daniel; García Manzanas, Rodrigo; Brands, Swen Franz; Herrera García, Sixto; +1 AuthorsSan Martín Segura, Daniel; García Manzanas, Rodrigo; Brands, Swen Franz; Herrera García, Sixto; Gutiérrez Llorente, José Manuel;handle: 10261/170628
This is the second in a pair of papers in which the performance of statistical downscaling methods (SDMs) is critically reassessed with respect to their robust applicability in climate change studies. Whereas the companion paper focused on temperatures, the present manuscript deals with precipitation and considers an ensemble of 12 SDMs from the analog, weather typing, and regression families. First, the performance of the methods is cross-validated considering reanalysis predictors, screening different geographical domains and predictor sets. Standard accuracy and distributional similarity scores and a test for extrapolation capability are considered. The results are highly dependent on the predictor sets, with optimum configurations including information from midtropospheric humidity. Second, a reduced ensemble of well-performing SDMs is applied to four GCMs to properly assess the uncertainty of downscaled future climate projections. The results are compared with an ensemble of regional climate models (RCMs) produced in the ENSEMBLES project. Generally, the mean signal is similar with both methodologies (with the exception of summer, which is drier for the RCMs) but the uncertainty (spread) is larger for the SDM ensemble. Finally, the spread contribution of the GCM- and SDM-derived components is assessed using a simple analysis of variance previously applied to the RCMs, obtaining larger interaction terms. Results show that the main contributor to the spread is the choice of the GCM, although the SDM dominates the uncertainty in some cases during autumn and summer due to the diverging projections from different families.
Journal of Climate arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1175/jcli-d-16-0366.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 54 citations 54 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
visibility 332visibility views 332 download downloads 104 Powered bymore_vert Journal of Climate arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1175/jcli-d-16-0366.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 France, Spain, SpainPublisher:American Geophysical Union (AGU) Funded by:EC | XAIDAEC| XAIDAAuthors: Legasa, M; Thao, S.; Vrac, M.; Manzanas, R.;doi: 10.1029/2022gl102525
AbstractUnder the perfect prognosis approach, statistical downscaling methods learn the relationships between large‐scale variables from reanalysis and local observational records. These relationships are subsequently applied to downscale future global climate model (GCM) simulations in order to obtain projections for the local region and variables of interest. However, the capability of such methods to produce future climate change signals consistent with those from the GCM, often referred to as transferability, is an important issue that remains to be carefully analyzed. Using the EC‐Earth GCM and focusing on precipitation, we assess the transferability of generalized linear models, convolutional neural networks and a posteriori random forests (APRFs). We conclude that APRFs present the best overall performance for the historical period, and future local climate change signals consistent with those projected by EC‐Earth. Moreover, we show how a slight modification of APRFs can greatly improve the temporal consistency of the downscaled series.
Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2023Full-Text: https://hal.science/hal-04097215Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2023Full-Text: https://hal.science/hal-04097215Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2022gl102525&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 206visibility views 206 download downloads 41 Powered bymore_vert Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2023Full-Text: https://hal.science/hal-04097215Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2023Full-Text: https://hal.science/hal-04097215Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2022gl102525&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 SpainPublisher:Elsevier BV M. D. Frías; Jesús Fernández; Daniel San-Martín; Rodrigo Manzanas; Joaquín Bedia; Antonio S. Cofiño; Maialen Iturbide; Maialen Iturbide; Ezequiel Cimadevilla; José M. Gutiérrez; Jorge Baño-Medina; Sixto Herrera;handle: 10261/213738
Climate-driven sectoral applications commonly require different types of climate data (e.g. observations, reanalysis, climate change projections) from different providers. Data access, harmonization and post-processing (e.g. bias correction) are time-consuming error-prone tasks requiring different specialized software tools at each stage of the data workflow, thus hindering reproducibility. Here we introduce climate4R, an R-based climate services oriented framework tailored to the needs of the vulnerability and impact assessment community that integrates in the same computing environment harmonized data access, post-processing, visualization and a provenance metadata model for traceability and reproducibility of results. climate4R allows accessing local and remote (OPeNDAP) data sources, such as the Santander User Data Gateway (UDG), a THREDDS-based service including a wide catalogue of popular datasets (e.g. ERA-Interim, CORDEX, etc.). This provides a unique comprehensive open framework for end-to-end sectoral reproducible applications. All the packages, data and documentation for reproducing the experiments in this paper are available from http://www.meteo.unican.es/climate4R. This work has been funded by the Spanish R+D Program of the Ministry of Economy and Competitiveness, through grants MULTI-SDM (CGL2015-66583-R) and INSIGNIA (CGL2016-79210-R), co-funded by ERDF/FEDER.
Environmental Modell... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAEnvironmental Modelling & SoftwareArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envsoft.2018.09.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 100 citations 100 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 199visibility views 199 download downloads 799 Powered bymore_vert Environmental Modell... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAEnvironmental Modelling & SoftwareArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envsoft.2018.09.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type 2019Publisher:OpenAlex Haibo Du; Lisa V. Alexander; Markus G. Donat; Tanya Lippmann; Ashok Kumar Srivastava; Jim Salinger; Andries Kruger; Gwangyong Choi; Fumiaki Fujibe; Matilde Rusticucci; Banzragch Nandintsetseg; Rodrigo Manzanas; Shafiqur Rehman; Farhat Abbas; Ibouraïma Yabi; Zhengfang Wu;Ces données sont utilisées pour analyser les changements dans les précipitations extrêmes quotidiennes et persistantes observées à l'échelle mondiale. Estos datos se utilizan para analizar los cambios en la precipitación global extrema diaria y persistente observada. This data is used to analyse the changes in the observed global extreme daily and persistent precipitation. تُستخدم هذه البيانات لتحليل التغيرات في هطول الأمطار اليومي الشديد والمستمر الملحوظ على مستوى العالم.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60692/5z4jf-zbn02&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60692/5z4jf-zbn02&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 SpainPublisher:Elsevier BV Jorge Alvar-Beltrán; Riccardo Soldan; Proyuth Ly; Vang Seng; Khema Srun; Rodrigo Manzanas; Gianluca Franceschini; Ana Heureux;Increasing heat-stress conditions, rising evaporative demand and shifting rainfall patterns may have multifaceted impacts on Cambodia's agricultural systems, including vegetable production. Concurrently, domestic vegetable supply is highly seasonal and inadequate to meet the domestic food demand, which consequently poses risks to food security locally, particularly in rural areas. This study assesses the impact of climate change on the yields and crop water productivity (CWP) of tomato, pak choi and yard-long bean cultivated year-round under different irrigated conditions (drip, furrow and net irrigation) in Siem Reap, Cambodia. The findings of this study show a similar annual precipitation decline (-23%) when comparing the 2017-2040 and 2070-2099 periods for both Representative Concentration Pathways (RCPs 4.5 and 8.5), though with significant seasonal differences between the two climate scenarios. Increasing water and heat-stress conditions are expected to have adverse impacts on tomato plants compared to pak choi and yard-long bean, which have a much higher heat tolerance. Differing yield trends are expected depending on the transplanting/sowing date, irrigation method and RCP. In tomato, for example, a -55% yield loss is projected by the end-century (2070-2099) when transplanting in January, whereas a + 37% yield increase is expected between November and December over the same period. In addition, pak choi yield enhancements of up to +30% are projected if sowing in May under RCP 8.5 for both drip and net irrigation conditions. Similarly, higher yard-long bean yields are simulated under RCP 8.5 (+29%) compared to RCP 4.5 (+11%) for the average of all sowing dates (January to December) and irrigation methods (drip, furrow and net irrigation). In sum, the findings of this work are relevant for evidence-based decision-making and the development of projects, policies and programmes increasingly informed by simulation results from bundling climate-crop approaches to transform agriculture in response to climate change.
Agricultural and For... arrow_drop_down Agricultural and Forest MeteorologyArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agrformet.2022.109105&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Agricultural and For... arrow_drop_down Agricultural and Forest MeteorologyArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agrformet.2022.109105&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 Germany, Spain, Australia, SpainPublisher:MDPI AG Muhammad Usman; Christopher E. Ndehedehe; Rodrigo Manzanas; Bashir Ahmad; Oluwafemi E. Adeyeri;handle: 10072/405222
The global hydrological cycle is vulnerable to changing climatic conditions, especially in developing regions, which lack abundant resources and management of freshwater resources. This study evaluates the impacts of climate change on the hydrological regime of the Chirah and Dhoke Pathan sub catchments of the Soan River Basin (SRB), in Pakistan, by using the climate models included in the NEX-GDDP dataset and the hydrological model HBV-light. After proper calibration and validation, the latter is forced with NEX-GDDP inputs to simulate a historic and a future (under the RCP 4.5 and RCP 8.5 emission scenarios) streamflow. Multiple evaluation criteria were employed to find the best performing NEX-GDDP models. A different ensemble was produced for each sub catchment by including the five best performing NEX-GDDP GCMs (ACCESS1-0, CCSM4, CESM1-BGC, MIROC5, and MRI-CGCM3 for Chirah and BNU-ESM, CCSM4, GFDL-CM3. IPSL-CM5A-LR and NorESM1-M for Dhoke Pathan). Our results show that the streamflow is projected to decrease significantly for the two sub catchments, highlighting the vulnerability of the SRB to climate change.
Atmosphere arrow_drop_down AtmosphereOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2073-4433/12/6/792/pdfData sources: Multidisciplinary Digital Publishing InstituteKITopen (Karlsruhe Institute of Technologie)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2021License: CC BYFull-Text: https://www.mdpi.com/2073-4433/12/6/792Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/atmos12060792&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 177visibility views 177 download downloads 27 Powered bymore_vert Atmosphere arrow_drop_down AtmosphereOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2073-4433/12/6/792/pdfData sources: Multidisciplinary Digital Publishing InstituteKITopen (Karlsruhe Institute of Technologie)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2021License: CC BYFull-Text: https://www.mdpi.com/2073-4433/12/6/792Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/atmos12060792&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu