- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
SDG [Beta]
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Private Company Technology Center Authors: Volodymyr Balanyuk; Anton Kravchenko; Oleksandr Harasymyuk;This paper has theoretically substantiated and experimentally established the intensity of thermal radiation at burning and sublayer extinguishing of alcohols with environmentally acceptable aerosols. An installation has been improved that determines the effectiveness of sublayer extinguishing with fire-extinguishing aerosols; a procedure that has been devised for determining the intensity of thermal radiation implies equipping it with an additional heat flow meter HFM–01 at a distance of 30 and 60 mm. The task to establish the intensity of thermal radiation when burning alcohols and its impact on the process of sublayer extinguishing of alcohols with aerosols has been solved. The dependence of sublayer extinguishing efficiency on thermal radiation implies that the fire extinguishing aerosol completely shields the surface of the combustible liquid against its action. The result of this study has established that the intensity of thermal radiation at a distance of 60 and 30 mm from the surface of an alcohol flame with an area of 234 cm2 ranges from 0.8 to 4.7 kW/m2; the intensity of burning and, accordingly, radiation, maximizes on seconds 30‒40 of burning. It has been found that the intensity of thermal radiation for ethanol decreases with the addition of an aerosol with an intensity of up to 0.2 g/s, and decreases even more at the intensity of supply from 1.2 g/s. With a further increase in the intensity of aerosol supply, the radiation intensity begins to decrease, probably due to a decrease in the rate of combustion. In this case, the flame first decreases in size up to 2 times, and then, after 2‒3 seconds, it goes out. The use of fire-extinguishing aerosol for the sublayer extinguishing of alcohols ensures the effect of several factors that synergize and reduce the intensity of evaporation, burning, and, accordingly, thermal radiation
Eastern-European Jou... arrow_drop_down Eastern-European Journal of Enterprise TechnologiesArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15587/1729-4061.2021.225216&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
visibility 3visibility views 3 download downloads 2 Powered bymore_vert Eastern-European Jou... arrow_drop_down Eastern-European Journal of Enterprise TechnologiesArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15587/1729-4061.2021.225216&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Private Company Technology Center Authors: Volodymyr Balanyuk; Anton Kravchenko; Oleksandr Harasymyuk;This paper has theoretically substantiated and experimentally established the intensity of thermal radiation at burning and sublayer extinguishing of alcohols with environmentally acceptable aerosols. An installation has been improved that determines the effectiveness of sublayer extinguishing with fire-extinguishing aerosols; a procedure that has been devised for determining the intensity of thermal radiation implies equipping it with an additional heat flow meter HFM–01 at a distance of 30 and 60 mm. The task to establish the intensity of thermal radiation when burning alcohols and its impact on the process of sublayer extinguishing of alcohols with aerosols has been solved. The dependence of sublayer extinguishing efficiency on thermal radiation implies that the fire extinguishing aerosol completely shields the surface of the combustible liquid against its action. The result of this study has established that the intensity of thermal radiation at a distance of 60 and 30 mm from the surface of an alcohol flame with an area of 234 cm2 ranges from 0.8 to 4.7 kW/m2; the intensity of burning and, accordingly, radiation, maximizes on seconds 30‒40 of burning. It has been found that the intensity of thermal radiation for ethanol decreases with the addition of an aerosol with an intensity of up to 0.2 g/s, and decreases even more at the intensity of supply from 1.2 g/s. With a further increase in the intensity of aerosol supply, the radiation intensity begins to decrease, probably due to a decrease in the rate of combustion. In this case, the flame first decreases in size up to 2 times, and then, after 2‒3 seconds, it goes out. The use of fire-extinguishing aerosol for the sublayer extinguishing of alcohols ensures the effect of several factors that synergize and reduce the intensity of evaporation, burning, and, accordingly, thermal radiation
Eastern-European Jou... arrow_drop_down Eastern-European Journal of Enterprise TechnologiesArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15587/1729-4061.2021.225216&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
visibility 3visibility views 3 download downloads 2 Powered bymore_vert Eastern-European Jou... arrow_drop_down Eastern-European Journal of Enterprise TechnologiesArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15587/1729-4061.2021.225216&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu