- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2012 United StatesPublisher:Proceedings of the National Academy of Sciences Vlad, Alexandru; Reddy, Arava Leela Mohana; Ajayan, Anakha; Singh, Neelam; Gohy, Jean-François; Melinte, Sorin; Ajayan, Pulickel M.;Here we report an approach to roll out Li-ion battery components from silicon chips by a continuous and repeatable etch-infiltrate-peel cycle. Vertically aligned silicon nanowires etched from recycled silicon wafers are captured in a polymer matrix that operates as Li + gel-electrolyte and electrode separator and peeled off to make multiple battery devices out of a single wafer. Porous, electrically interconnected copper nanoshells are conformally deposited around the silicon nanowires to stabilize the electrodes over extended cycles and provide efficient current collection. Using the above developed process we demonstrate an operational full cell 3.4 V lithium-polymer silicon nanowire (LIPOSIL) battery which is mechanically flexible and scalable to large dimensions.
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2012 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1208638109&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 114 citations 114 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2012 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1208638109&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2020 BelgiumPublisher:Springer Science and Business Media LLC Authors: Jiande Wang; Alexandru Vlad;handle: 2078.1/241976
Mg-ion diffusion in cathodes and dissociation in electrolyte complexes are sluggish processes that hinder the development of Mg batteries. Now, a new design of both the cathode and the electrolyte drastically improves the kinetics of these processes, leading to a high-power Mg battery.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-020-00744-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-020-00744-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Belgium, United KingdomPublisher:Wiley Funded by:EC | MOOiRE, EC | MIGHTYEC| MOOiRE ,EC| MIGHTYDeepak Gupta; Alae E. Lakraychi; Buddha D. Boruah; Simon De Kreijger; Ludovic Troian‐Gautier; Benjamin Elias; Michael De Volder; Alexandru Vlad;AbstractControlling redox activity of judiciously appended redox units on a photo‐sensitive molecular core is an effective strategy for visible light energy harvesting and storage. The first example of a photosensitizer ‐ electron donor coordination compound in which the photoinduced electron transfer step is used for light to electrical energy conversion and storage is reported. A photo‐responsive Ru‐diimine module conjugated with redox‐active catechol groups in [Ru(II)(phenanthroline‐5,6‐diolate)3]4− photosensitizer can mediate photoinduced catechol to dione oxidation in the presence of a sacrificial electron acceptor or at the surface of an electrode. Under potentiostatic condition, visible light triggered current density enhancement confirmed the light harvesting ability of this photosensitizer. Upon implementation in galvanostatic charge‐discharge of a Li battery configuration, the storage capacity was found to be increased by 100 %, under 470 nm illumination with output power of 4.0 mW/cm−2. This proof‐of‐concept molecular system marks an important milestone towards a new generation of molecular photo‐rechargeable materials.
Dépôt Institutionel ... arrow_drop_down Chemistry - A European JournalArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefChemistry - A European JournalArticleLicense: Wiley Online Library User AgreementData sources: SygmaChemistry - A European JournalArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/chem.202201220&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Dépôt Institutionel ... arrow_drop_down Chemistry - A European JournalArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefChemistry - A European JournalArticleLicense: Wiley Online Library User AgreementData sources: SygmaChemistry - A European JournalArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/chem.202201220&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 Netherlands, BelgiumPublisher:Royal Society of Chemistry (RSC) Funded by:EC | SoloBat, EC | MOOiREEC| SoloBat ,EC| MOOiREXiaolong Guo; Petru Apostol; Xuan Zhou; Jiande Wang; Xiaodong Lin; Darsi Rambabu; Mengyuan Du; Süleyman Er; Alexandru Vlad;Organic electrode materials have garnered a great deal of interest owing to their sustainability, cost-efficiency, and design flexibility metrics.
Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2024 . Peer-reviewedLicense: CC BY NCData sources: CrossrefEnergy & Environmental ScienceArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d3ee02897f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 7 citations 7 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2024 . Peer-reviewedLicense: CC BY NCData sources: CrossrefEnergy & Environmental ScienceArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d3ee02897f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 United States, United States, BelgiumPublisher:Springer Science and Business Media LLC Vlad, A.; Singh, N.; Melinte, S.; Gohy, J.-F.; Ajayan, P.M.;AbstractEnergy storage devices that provide high specific power without compromising on specific energy are highly desirable for many electric-powered applications. Here, we demonstrate that polymer organic radical gel materials support fast bulk-redox charge storage, commensurate to surface double layer ion exchange at carbon electrodes. When integrated with a carbon-based electrical double layer capacitor, nearly ideal electrode properties such as high electrical and ionic conductivity, fast bulk redox and surface charge storage as well as excellent cycling stability are attained. Such hybrid carbon redox-polymer-gel electrodes support unprecedented discharge rate of 1,000C with 50% of the nominal capacity delivered in less than 2 seconds. Devices made with such electrodes hold the potential for battery-scale energy storage while attaining supercapacitor-like power performances.
Rice Research Reposi... arrow_drop_down Rice Research RepositoryArticle . 2016License: CC BYFull-Text: https://hdl.handle.net/1911/88841Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep22194&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 50 citations 50 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Rice Research Reposi... arrow_drop_down Rice Research RepositoryArticle . 2016License: CC BYFull-Text: https://hdl.handle.net/1911/88841Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep22194&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 BelgiumPublisher:The Electrochemical Society Sepideh Behboudikhiavi; Joel Ojonugwa Omale; Binson Babu; Luc Piraux; Alexandru Vlad;handle: 2078.1/272561
Li-ion microbatteries are the frontline candidates to fulfill the requirements of powering miniature autonomous devices. However, it still remains challenging to attain the required energy densities of > 0.3mWh cm−2 μm−1 in a planar configuration. To overcome this limitation, 3D architectures of LIMBs have been proposed. However, most deposition techniques are poorly compatible with 3D architectures because they limit the choice of current collectors and selective deposition of the active materials. Electrodeposition was suggested as an alternative for rapidly and reproducibly depositing active materials under mild conditions, and with controlled properties. However, despite the huge potential, electrodeposition remains underexplored for LIMB cathode materials, partly due to challenges associated with the electrodeposition of Li-ion phases. Herein, we review advances in the electrodeposition of Li-ion cathode materials with the main focus set on the direct, one-step deposition of electrochemically active phases. We highlight the merits of electrodeposition over other methods and discuss the various classes of reported materials, including layered transition metal oxides, vanadates, spinel, and olivines. We offer a perspective on the future advances for the adoption of electrodeposition processes for the fabrication of microbatteries to pave the way for future research on the electrodeposition of cathode materials.
Dépôt Institutionel ... arrow_drop_down Journal of The Electrochemical SocietyArticle . 2023 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1945-7111/acb6b9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Dépôt Institutionel ... arrow_drop_down Journal of The Electrochemical SocietyArticle . 2023 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1945-7111/acb6b9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 BelgiumPublisher:Royal Society of Chemistry (RSC) Funded by:EC | MOOiREEC| MOOiREVasudeva Rao Bakuru; Petru Apostol; Darsi Rambabu; Shubhadeep Pal; Xiaodong Lin; Robert Markowski; Tom Goossens; Da Tie; Andrii Kachmar; Yan Zhang; Géraldine Chanteux; Alexandru Vlad;doi: 10.1039/d4ee05701e
handle: 2078.1/301425
An alkali-rich organic redox system, A6THBPD, enables high-capacity, high-voltage Li-, Na-, and K-ion storage. Delivering up to 4e− per unit and strong full-cell output, A6THBPD advances high-energy organic materials for alkali-ion batteries.
Dépôt Institutionel ... arrow_drop_down Energy & Environmental ScienceArticle . 2025 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d4ee05701e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Dépôt Institutionel ... arrow_drop_down Energy & Environmental ScienceArticle . 2025 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d4ee05701e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Sweden, BelgiumPublisher:The Electrochemical Society Funded by:RCN | The Norwegian Centre for ..., EC | Hydra, RCN | Norwegian Micro- and Nano...RCN| The Norwegian Centre for Transmission Electron Microscopy - NORTEM ,EC| Hydra ,RCN| Norwegian Micro- and Nanofabrication Facility IIXuelian Liu; Marion Maffre; Da Tie; Nils Peter Wagner; Noelia Cortés Félix; Raheleh Azmi; Killian Stokes; Per Erik Vullum; Jérome Bailly; Shubhadeep Pal; Gary Evans; Mihaela Buga; Maria Hahlin; Kristina Edström; Simon Clark; Alexandru Vlad;handle: 2078.1/281630
Spinel LiNi0.5Mn1.5O4 as one of the high-energy positive electrode materials for next generation Li-ion batteries has attracted significant interest due to its economic and environmental advantages. However, the sensitivity of this type of material upon short to long term ambient storage conditions and the impact on the electrochemical performances remains poorly explored. Nevertheless, this remains an important aspect for practical large-scale synthesis, storage and utilization. Herein, we study and compare the evolution of surface chemistry, bulk crystal structure and elemental content evolution and distribution of LiNi0.5Mn1.5O4 using a variety of characterization techniques including XPS and STEM-EDS-EELS, as well as electrochemical analysis. We show that Mn species dominate the outer surface (0–5 nm), while Ni and Li are preferentially located further away and in the bulk. The studied LiNi0.5Mn1.5O4 material is found to be stable, with minor changes in surface or bulk characteristics detected, even after 12 months of storage under ambient air conditions. The low surface reactivity to air also accounts for the minor changes to the electrochemical performance of the air-exposed LiNi0.5Mn1.5O4, compared to the pristine material. This study provides guidance for the appropriate storage, handling and processing of this high-performance cathode material.
Journal of The Elect... arrow_drop_down Journal of The Electrochemical SocietyArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefPublikationer från Uppsala UniversitetArticle . 2023 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2023 . Peer-reviewedJournal of The Electrochemical SocietyArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1945-7111/ad0263&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of The Elect... arrow_drop_down Journal of The Electrochemical SocietyArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefPublikationer från Uppsala UniversitetArticle . 2023 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2023 . Peer-reviewedJournal of The Electrochemical SocietyArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1945-7111/ad0263&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 BelgiumPublisher:The Electrochemical Society Authors: Rico Rupp; Alexandru Vlad;doi: 10.1149/2.0161914jes
handle: 2078.1/228251
Sodium metal is an auspicious, sustainable alternative to be used in next generation rechargeable batteries. During the past years, a considerable effort was put into finding suitable chemistries, electrode designs, cell setups, and test configurations to enable the safe and efficient use of sodium metal electrodes. With the hunt for ever-increasing coulombic efficiencies and dendrite suppression, the understanding of basic influencing factors is thereby often neglected. Here, we show that not only the basic and so far most studied cell elements, namely electrolyte, separator and substrate, have an impact on the performance of sodium metal anodes. Smallest variations in the amount of electrolyte, current density, cell architecture, and electrode preparation, which are often overlooked, are shown to make the difference between instant cell failure and stable long-term cycling. By optimizing all discussed parameters, we apply the findings and show that stable cycling for more than 1.000 cycles can be achieved with a commercially available electrolyte, if seemingly unimportant factors are considered.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/2.0161914jes&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/2.0161914jes&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 BelgiumPublisher:American Chemical Society (ACS) Funded by:EC | MOOiREEC| MOOiREWang, Jiande; Liu, Xuelian; Jia, He; Apostol, Petru; Guo, Xiaolong; Lucaccioni, Fabio; Zhang, Xiaozhe; Zhu, Qi; Morari, Cristian; Gohy, Jean-François; Vlad, Alexandru;handle: 2078.1/257494
The organic metal-ion battery field remains challenged by the lack of high-voltage alkali-cation reservoir cathode materials. Whereas a few recent breakthroughs provided valuable solutions for Li-ion storage, Na-ion and K-ion organic reservoirs with high voltage and ambient stability remain elusive. Herein, we show that the versatile benzene-1,2,4,5-tetrayltetrakis methylsulfonyl-amide (PTtSA) tetra-anionic framework displays universal performance for alkali cation storage. The new synthesized Na4-PTtSA and K4-PTtSA phases reversibly exchange two Na+ or K+ equivalents per formula unit at redox potentials of 2.5 V vs Na+/Na and 2.6 V vs K+/K, respectively. A singular comparative analysis of Li-, Na-, and K-ion phases discloses the impact of the alkali cation on the physicochemical properties, with direct impact on the electrochemistry of the materials. This work not only offers guidance and principles to tune the redox properties of organic redox materials via spectator cations but also highlights the versatility of organic materials for alkali cation storage.
Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsenergylett.1c02571&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 48 citations 48 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsenergylett.1c02571&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2012 United StatesPublisher:Proceedings of the National Academy of Sciences Vlad, Alexandru; Reddy, Arava Leela Mohana; Ajayan, Anakha; Singh, Neelam; Gohy, Jean-François; Melinte, Sorin; Ajayan, Pulickel M.;Here we report an approach to roll out Li-ion battery components from silicon chips by a continuous and repeatable etch-infiltrate-peel cycle. Vertically aligned silicon nanowires etched from recycled silicon wafers are captured in a polymer matrix that operates as Li + gel-electrolyte and electrode separator and peeled off to make multiple battery devices out of a single wafer. Porous, electrically interconnected copper nanoshells are conformally deposited around the silicon nanowires to stabilize the electrodes over extended cycles and provide efficient current collection. Using the above developed process we demonstrate an operational full cell 3.4 V lithium-polymer silicon nanowire (LIPOSIL) battery which is mechanically flexible and scalable to large dimensions.
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2012 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1208638109&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 114 citations 114 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2012 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1208638109&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2020 BelgiumPublisher:Springer Science and Business Media LLC Authors: Jiande Wang; Alexandru Vlad;handle: 2078.1/241976
Mg-ion diffusion in cathodes and dissociation in electrolyte complexes are sluggish processes that hinder the development of Mg batteries. Now, a new design of both the cathode and the electrolyte drastically improves the kinetics of these processes, leading to a high-power Mg battery.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-020-00744-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-020-00744-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Belgium, United KingdomPublisher:Wiley Funded by:EC | MOOiRE, EC | MIGHTYEC| MOOiRE ,EC| MIGHTYDeepak Gupta; Alae E. Lakraychi; Buddha D. Boruah; Simon De Kreijger; Ludovic Troian‐Gautier; Benjamin Elias; Michael De Volder; Alexandru Vlad;AbstractControlling redox activity of judiciously appended redox units on a photo‐sensitive molecular core is an effective strategy for visible light energy harvesting and storage. The first example of a photosensitizer ‐ electron donor coordination compound in which the photoinduced electron transfer step is used for light to electrical energy conversion and storage is reported. A photo‐responsive Ru‐diimine module conjugated with redox‐active catechol groups in [Ru(II)(phenanthroline‐5,6‐diolate)3]4− photosensitizer can mediate photoinduced catechol to dione oxidation in the presence of a sacrificial electron acceptor or at the surface of an electrode. Under potentiostatic condition, visible light triggered current density enhancement confirmed the light harvesting ability of this photosensitizer. Upon implementation in galvanostatic charge‐discharge of a Li battery configuration, the storage capacity was found to be increased by 100 %, under 470 nm illumination with output power of 4.0 mW/cm−2. This proof‐of‐concept molecular system marks an important milestone towards a new generation of molecular photo‐rechargeable materials.
Dépôt Institutionel ... arrow_drop_down Chemistry - A European JournalArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefChemistry - A European JournalArticleLicense: Wiley Online Library User AgreementData sources: SygmaChemistry - A European JournalArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/chem.202201220&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Dépôt Institutionel ... arrow_drop_down Chemistry - A European JournalArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefChemistry - A European JournalArticleLicense: Wiley Online Library User AgreementData sources: SygmaChemistry - A European JournalArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/chem.202201220&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 Netherlands, BelgiumPublisher:Royal Society of Chemistry (RSC) Funded by:EC | SoloBat, EC | MOOiREEC| SoloBat ,EC| MOOiREXiaolong Guo; Petru Apostol; Xuan Zhou; Jiande Wang; Xiaodong Lin; Darsi Rambabu; Mengyuan Du; Süleyman Er; Alexandru Vlad;Organic electrode materials have garnered a great deal of interest owing to their sustainability, cost-efficiency, and design flexibility metrics.
Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2024 . Peer-reviewedLicense: CC BY NCData sources: CrossrefEnergy & Environmental ScienceArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d3ee02897f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 7 citations 7 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2024 . Peer-reviewedLicense: CC BY NCData sources: CrossrefEnergy & Environmental ScienceArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d3ee02897f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 United States, United States, BelgiumPublisher:Springer Science and Business Media LLC Vlad, A.; Singh, N.; Melinte, S.; Gohy, J.-F.; Ajayan, P.M.;AbstractEnergy storage devices that provide high specific power without compromising on specific energy are highly desirable for many electric-powered applications. Here, we demonstrate that polymer organic radical gel materials support fast bulk-redox charge storage, commensurate to surface double layer ion exchange at carbon electrodes. When integrated with a carbon-based electrical double layer capacitor, nearly ideal electrode properties such as high electrical and ionic conductivity, fast bulk redox and surface charge storage as well as excellent cycling stability are attained. Such hybrid carbon redox-polymer-gel electrodes support unprecedented discharge rate of 1,000C with 50% of the nominal capacity delivered in less than 2 seconds. Devices made with such electrodes hold the potential for battery-scale energy storage while attaining supercapacitor-like power performances.
Rice Research Reposi... arrow_drop_down Rice Research RepositoryArticle . 2016License: CC BYFull-Text: https://hdl.handle.net/1911/88841Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep22194&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 50 citations 50 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Rice Research Reposi... arrow_drop_down Rice Research RepositoryArticle . 2016License: CC BYFull-Text: https://hdl.handle.net/1911/88841Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep22194&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 BelgiumPublisher:The Electrochemical Society Sepideh Behboudikhiavi; Joel Ojonugwa Omale; Binson Babu; Luc Piraux; Alexandru Vlad;handle: 2078.1/272561
Li-ion microbatteries are the frontline candidates to fulfill the requirements of powering miniature autonomous devices. However, it still remains challenging to attain the required energy densities of > 0.3mWh cm−2 μm−1 in a planar configuration. To overcome this limitation, 3D architectures of LIMBs have been proposed. However, most deposition techniques are poorly compatible with 3D architectures because they limit the choice of current collectors and selective deposition of the active materials. Electrodeposition was suggested as an alternative for rapidly and reproducibly depositing active materials under mild conditions, and with controlled properties. However, despite the huge potential, electrodeposition remains underexplored for LIMB cathode materials, partly due to challenges associated with the electrodeposition of Li-ion phases. Herein, we review advances in the electrodeposition of Li-ion cathode materials with the main focus set on the direct, one-step deposition of electrochemically active phases. We highlight the merits of electrodeposition over other methods and discuss the various classes of reported materials, including layered transition metal oxides, vanadates, spinel, and olivines. We offer a perspective on the future advances for the adoption of electrodeposition processes for the fabrication of microbatteries to pave the way for future research on the electrodeposition of cathode materials.
Dépôt Institutionel ... arrow_drop_down Journal of The Electrochemical SocietyArticle . 2023 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1945-7111/acb6b9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Dépôt Institutionel ... arrow_drop_down Journal of The Electrochemical SocietyArticle . 2023 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1945-7111/acb6b9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 BelgiumPublisher:Royal Society of Chemistry (RSC) Funded by:EC | MOOiREEC| MOOiREVasudeva Rao Bakuru; Petru Apostol; Darsi Rambabu; Shubhadeep Pal; Xiaodong Lin; Robert Markowski; Tom Goossens; Da Tie; Andrii Kachmar; Yan Zhang; Géraldine Chanteux; Alexandru Vlad;doi: 10.1039/d4ee05701e
handle: 2078.1/301425
An alkali-rich organic redox system, A6THBPD, enables high-capacity, high-voltage Li-, Na-, and K-ion storage. Delivering up to 4e− per unit and strong full-cell output, A6THBPD advances high-energy organic materials for alkali-ion batteries.
Dépôt Institutionel ... arrow_drop_down Energy & Environmental ScienceArticle . 2025 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d4ee05701e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Dépôt Institutionel ... arrow_drop_down Energy & Environmental ScienceArticle . 2025 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d4ee05701e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Sweden, BelgiumPublisher:The Electrochemical Society Funded by:RCN | The Norwegian Centre for ..., EC | Hydra, RCN | Norwegian Micro- and Nano...RCN| The Norwegian Centre for Transmission Electron Microscopy - NORTEM ,EC| Hydra ,RCN| Norwegian Micro- and Nanofabrication Facility IIXuelian Liu; Marion Maffre; Da Tie; Nils Peter Wagner; Noelia Cortés Félix; Raheleh Azmi; Killian Stokes; Per Erik Vullum; Jérome Bailly; Shubhadeep Pal; Gary Evans; Mihaela Buga; Maria Hahlin; Kristina Edström; Simon Clark; Alexandru Vlad;handle: 2078.1/281630
Spinel LiNi0.5Mn1.5O4 as one of the high-energy positive electrode materials for next generation Li-ion batteries has attracted significant interest due to its economic and environmental advantages. However, the sensitivity of this type of material upon short to long term ambient storage conditions and the impact on the electrochemical performances remains poorly explored. Nevertheless, this remains an important aspect for practical large-scale synthesis, storage and utilization. Herein, we study and compare the evolution of surface chemistry, bulk crystal structure and elemental content evolution and distribution of LiNi0.5Mn1.5O4 using a variety of characterization techniques including XPS and STEM-EDS-EELS, as well as electrochemical analysis. We show that Mn species dominate the outer surface (0–5 nm), while Ni and Li are preferentially located further away and in the bulk. The studied LiNi0.5Mn1.5O4 material is found to be stable, with minor changes in surface or bulk characteristics detected, even after 12 months of storage under ambient air conditions. The low surface reactivity to air also accounts for the minor changes to the electrochemical performance of the air-exposed LiNi0.5Mn1.5O4, compared to the pristine material. This study provides guidance for the appropriate storage, handling and processing of this high-performance cathode material.
Journal of The Elect... arrow_drop_down Journal of The Electrochemical SocietyArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefPublikationer från Uppsala UniversitetArticle . 2023 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2023 . Peer-reviewedJournal of The Electrochemical SocietyArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1945-7111/ad0263&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of The Elect... arrow_drop_down Journal of The Electrochemical SocietyArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefPublikationer från Uppsala UniversitetArticle . 2023 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2023 . Peer-reviewedJournal of The Electrochemical SocietyArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1945-7111/ad0263&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 BelgiumPublisher:The Electrochemical Society Authors: Rico Rupp; Alexandru Vlad;doi: 10.1149/2.0161914jes
handle: 2078.1/228251
Sodium metal is an auspicious, sustainable alternative to be used in next generation rechargeable batteries. During the past years, a considerable effort was put into finding suitable chemistries, electrode designs, cell setups, and test configurations to enable the safe and efficient use of sodium metal electrodes. With the hunt for ever-increasing coulombic efficiencies and dendrite suppression, the understanding of basic influencing factors is thereby often neglected. Here, we show that not only the basic and so far most studied cell elements, namely electrolyte, separator and substrate, have an impact on the performance of sodium metal anodes. Smallest variations in the amount of electrolyte, current density, cell architecture, and electrode preparation, which are often overlooked, are shown to make the difference between instant cell failure and stable long-term cycling. By optimizing all discussed parameters, we apply the findings and show that stable cycling for more than 1.000 cycles can be achieved with a commercially available electrolyte, if seemingly unimportant factors are considered.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/2.0161914jes&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/2.0161914jes&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 BelgiumPublisher:American Chemical Society (ACS) Funded by:EC | MOOiREEC| MOOiREWang, Jiande; Liu, Xuelian; Jia, He; Apostol, Petru; Guo, Xiaolong; Lucaccioni, Fabio; Zhang, Xiaozhe; Zhu, Qi; Morari, Cristian; Gohy, Jean-François; Vlad, Alexandru;handle: 2078.1/257494
The organic metal-ion battery field remains challenged by the lack of high-voltage alkali-cation reservoir cathode materials. Whereas a few recent breakthroughs provided valuable solutions for Li-ion storage, Na-ion and K-ion organic reservoirs with high voltage and ambient stability remain elusive. Herein, we show that the versatile benzene-1,2,4,5-tetrayltetrakis methylsulfonyl-amide (PTtSA) tetra-anionic framework displays universal performance for alkali cation storage. The new synthesized Na4-PTtSA and K4-PTtSA phases reversibly exchange two Na+ or K+ equivalents per formula unit at redox potentials of 2.5 V vs Na+/Na and 2.6 V vs K+/K, respectively. A singular comparative analysis of Li-, Na-, and K-ion phases discloses the impact of the alkali cation on the physicochemical properties, with direct impact on the electrochemistry of the materials. This work not only offers guidance and principles to tune the redox properties of organic redox materials via spectator cations but also highlights the versatility of organic materials for alkali cation storage.
Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsenergylett.1c02571&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 48 citations 48 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsenergylett.1c02571&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu