Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down

Filters

  • Access
  • Type
  • Year range
  • Field of Science
  • Funder
  • SDG [Beta]
  • Country
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
3 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research

  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Nicolai Kallscheuer; Michael Bott; Jan van Ooyen; Tino Polen;

    ABSTRACT Peptidyl-prolyl cis / trans isomerases (PPIases) catalyze the rate-limiting protein folding step at peptidyl bonds preceding proline residues and were found to be involved in several biological processes, including gene expression, signal transduction, and protein secretion. Representative enzymes were found in almost all sequenced genomes, including Corynebacterium glutamicum , a facultative anaerobic Gram-positive and industrial workhorse for the production of amino acids. In C. glutamicum , a predicted single-domain FK-506 (tacrolimus) binding protein (FKBP)-type PPIase (FkpA) is encoded directly downstream of gltA , which encodes citrate synthase (CS). This gene cluster is also present in other Actinobacteria . Here we carried out in vitro and in vivo experiments to study the function and influence of predicted FkpA in C. glutamicum . In vitro , FkpA indeed shows typical PPIase activity with artificial substrates and is inhibited by FK-506. Furthermore, FkpA delays the aggregation of CS, which is also inhibited by FK-506. Surprisingly, FkpA has a positive effect on the activity and temperature range of CS in vitro . Deletion of fkpA causes a 50% reduced biomass yield compared to that of the wild type when grown at 37°C, whereas there is only a 10% reduced biomass yield at the optimal growth temperature of 30°C accompanied by accumulation of 7 mM l -glutamate and 22 mM 2-oxoglutarate. Thus, FkpA may be exploited for improved product formation in biotechnical processes. Comparative transcriptome analysis revealed 69 genes which exhibit ≥2-fold mRNA level changes in C. glutamicum Δ fkpA , giving insight into the transcriptional response upon mild heat stress when FkpA is absent.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Applied and Environm...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Applied and Environmental Microbiology
    Article . 2015 . Peer-reviewed
    License: ASM Journals Non-Commercial TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Applied and Environm...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Applied and Environmental Microbiology
      Article . 2015 . Peer-reviewed
      License: ASM Journals Non-Commercial TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Nick Wierckx; Nick Wierckx; Tino Polen; Nadine Runge; +6 Authors

    Microbes harbor many traits that are dispensable or even unfavorable under industrial and laboratory settings. The elimination of such traits could improve the host's efficiency, genetic stability, and robustness, thereby increasing the predictability and boosting its performance as a microbial cell factory. We engineered solvent-tolerant Pseudomonas taiwanensis VLB120 to yield streamlined chassis strains with higher growth rates and biomass yields, enhanced solvent tolerance, and improved process performance. In total, the genome was reduced by up to 10%. This was achieved by the elimination of genes that enable the cell to swim and form biofilms and by the deletion of the megaplasmid pSTY and large proviral segments. The resulting strain GRC1 had a 15% higher growth rate and biomass yield than the wildtype. However, this strain lacks the pSTY-encoded efflux pump TtgGHI, rendering it solvent-sensitive. Through reintegration of ttgGHI by chromosomal insertion without (GRC2) and with (GRC3) the corresponding regulator genes, the solvent-tolerant phenotype was enhanced. The generated P. taiwanensis GRC strains enlarge the repertoire of streamlined chassis with enhanced key performance indicators, making them attractive hosts for biotechnological applications. The different solvent tolerance levels of GRC1, GRC2, and GRC3 enable the selection of a fitting host platform in relation to the desired process requirements in a chassis à la carte principle. This was demonstrated in a metabolic engineering approach for the production of phenol from glycerol. The streamlined producer GRC1Δ5-TPL38 outperformed the equivalent nonstreamlined producer VLB120Δ5-TPL38 concerning phenol titer, rate, and yield, thereby highlighting the added value of the streamlined chassis.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Juelich Shared Elect...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ACS Synthetic Biology
    Article . 2019 . Peer-reviewed
    License: STM Policy #29
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    37
    citations37
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Juelich Shared Elect...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ACS Synthetic Biology
      Article . 2019 . Peer-reviewed
      License: STM Policy #29
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Halle, Lars; Hollmann, Niels; Tenhaef, Niklas; Mbengi, Lea; +6 Authors

    Abstract Background Adaptive laboratory evolution (ALE) is known as a powerful tool for untargeted engineering of microbial strains and genomics research. It is particularly well suited for the adaptation of microorganisms to new environmental conditions, such as alternative substrate sources. Since the probability of generating beneficial mutations increases with the frequency of DNA replication, ALE experiments are ideally free of constraints on the required duration of cell proliferation. Results Here, we present an extended robotic workflow for performing long-term evolution experiments based on fully automated repetitive batch cultures (rbALE) in a well-controlled microbioreactor environment. Using a microtiter plate recycling approach, the number of batches and thus cell generations is technically unlimited. By applying the validated workflow in three parallel rbALE runs, ethanol utilization by Corynebacterium glutamicum ATCC 13032 (WT) was significantly improved. The evolved mutant strain WT_EtOH-Evo showed a specific ethanol uptake rate of 8.45 ± 0.12 mmolEtOH gCDW−1 h−1 and a growth rate of 0.15 ± 0.01 h−1 in lab-scale bioreactors. Genome sequencing of this strain revealed a striking single nucleotide variation (SNV) upstream of the ald gene (NCgl2698, cg3096) encoding acetaldehyde dehydrogenase (ALDH). The mutated basepair was previously predicted to be part of the binding site for the global transcriptional regulator GlxR, and re-engineering demonstrated that the identified SNV is key for enhanced ethanol assimilation. Decreased binding of GlxR leads to increased synthesis of the rate-limiting enzyme ALDH, which was confirmed by proteomics measurements. Conclusions The established rbALE technology is generally applicable to any microbial strain and selection pressure that fits the small-scale cultivation format. In addition, our specific results will enable improved production processes with C. glutamicum from ethanol, which is of particular interest for acetyl-CoA-derived products.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Microbial Cell Facto...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Microbial Cell Factories
    Article . 2023 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Microbial Cell Factories
    Article . 2023
    Data sources: DOAJ
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    gold
    7
    citations7
    popularityAverage
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
3 Research products
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Nicolai Kallscheuer; Michael Bott; Jan van Ooyen; Tino Polen;

    ABSTRACT Peptidyl-prolyl cis / trans isomerases (PPIases) catalyze the rate-limiting protein folding step at peptidyl bonds preceding proline residues and were found to be involved in several biological processes, including gene expression, signal transduction, and protein secretion. Representative enzymes were found in almost all sequenced genomes, including Corynebacterium glutamicum , a facultative anaerobic Gram-positive and industrial workhorse for the production of amino acids. In C. glutamicum , a predicted single-domain FK-506 (tacrolimus) binding protein (FKBP)-type PPIase (FkpA) is encoded directly downstream of gltA , which encodes citrate synthase (CS). This gene cluster is also present in other Actinobacteria . Here we carried out in vitro and in vivo experiments to study the function and influence of predicted FkpA in C. glutamicum . In vitro , FkpA indeed shows typical PPIase activity with artificial substrates and is inhibited by FK-506. Furthermore, FkpA delays the aggregation of CS, which is also inhibited by FK-506. Surprisingly, FkpA has a positive effect on the activity and temperature range of CS in vitro . Deletion of fkpA causes a 50% reduced biomass yield compared to that of the wild type when grown at 37°C, whereas there is only a 10% reduced biomass yield at the optimal growth temperature of 30°C accompanied by accumulation of 7 mM l -glutamate and 22 mM 2-oxoglutarate. Thus, FkpA may be exploited for improved product formation in biotechnical processes. Comparative transcriptome analysis revealed 69 genes which exhibit ≥2-fold mRNA level changes in C. glutamicum Δ fkpA , giving insight into the transcriptional response upon mild heat stress when FkpA is absent.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Applied and Environm...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Applied and Environmental Microbiology
    Article . 2015 . Peer-reviewed
    License: ASM Journals Non-Commercial TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Applied and Environm...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Applied and Environmental Microbiology
      Article . 2015 . Peer-reviewed
      License: ASM Journals Non-Commercial TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Nick Wierckx; Nick Wierckx; Tino Polen; Nadine Runge; +6 Authors

    Microbes harbor many traits that are dispensable or even unfavorable under industrial and laboratory settings. The elimination of such traits could improve the host's efficiency, genetic stability, and robustness, thereby increasing the predictability and boosting its performance as a microbial cell factory. We engineered solvent-tolerant Pseudomonas taiwanensis VLB120 to yield streamlined chassis strains with higher growth rates and biomass yields, enhanced solvent tolerance, and improved process performance. In total, the genome was reduced by up to 10%. This was achieved by the elimination of genes that enable the cell to swim and form biofilms and by the deletion of the megaplasmid pSTY and large proviral segments. The resulting strain GRC1 had a 15% higher growth rate and biomass yield than the wildtype. However, this strain lacks the pSTY-encoded efflux pump TtgGHI, rendering it solvent-sensitive. Through reintegration of ttgGHI by chromosomal insertion without (GRC2) and with (GRC3) the corresponding regulator genes, the solvent-tolerant phenotype was enhanced. The generated P. taiwanensis GRC strains enlarge the repertoire of streamlined chassis with enhanced key performance indicators, making them attractive hosts for biotechnological applications. The different solvent tolerance levels of GRC1, GRC2, and GRC3 enable the selection of a fitting host platform in relation to the desired process requirements in a chassis à la carte principle. This was demonstrated in a metabolic engineering approach for the production of phenol from glycerol. The streamlined producer GRC1Δ5-TPL38 outperformed the equivalent nonstreamlined producer VLB120Δ5-TPL38 concerning phenol titer, rate, and yield, thereby highlighting the added value of the streamlined chassis.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Juelich Shared Elect...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ACS Synthetic Biology
    Article . 2019 . Peer-reviewed
    License: STM Policy #29
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    37
    citations37
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Juelich Shared Elect...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ACS Synthetic Biology
      Article . 2019 . Peer-reviewed
      License: STM Policy #29
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Halle, Lars; Hollmann, Niels; Tenhaef, Niklas; Mbengi, Lea; +6 Authors

    Abstract Background Adaptive laboratory evolution (ALE) is known as a powerful tool for untargeted engineering of microbial strains and genomics research. It is particularly well suited for the adaptation of microorganisms to new environmental conditions, such as alternative substrate sources. Since the probability of generating beneficial mutations increases with the frequency of DNA replication, ALE experiments are ideally free of constraints on the required duration of cell proliferation. Results Here, we present an extended robotic workflow for performing long-term evolution experiments based on fully automated repetitive batch cultures (rbALE) in a well-controlled microbioreactor environment. Using a microtiter plate recycling approach, the number of batches and thus cell generations is technically unlimited. By applying the validated workflow in three parallel rbALE runs, ethanol utilization by Corynebacterium glutamicum ATCC 13032 (WT) was significantly improved. The evolved mutant strain WT_EtOH-Evo showed a specific ethanol uptake rate of 8.45 ± 0.12 mmolEtOH gCDW−1 h−1 and a growth rate of 0.15 ± 0.01 h−1 in lab-scale bioreactors. Genome sequencing of this strain revealed a striking single nucleotide variation (SNV) upstream of the ald gene (NCgl2698, cg3096) encoding acetaldehyde dehydrogenase (ALDH). The mutated basepair was previously predicted to be part of the binding site for the global transcriptional regulator GlxR, and re-engineering demonstrated that the identified SNV is key for enhanced ethanol assimilation. Decreased binding of GlxR leads to increased synthesis of the rate-limiting enzyme ALDH, which was confirmed by proteomics measurements. Conclusions The established rbALE technology is generally applicable to any microbial strain and selection pressure that fits the small-scale cultivation format. In addition, our specific results will enable improved production processes with C. glutamicum from ethanol, which is of particular interest for acetyl-CoA-derived products.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Microbial Cell Facto...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Microbial Cell Factories
    Article . 2023 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Microbial Cell Factories
    Article . 2023
    Data sources: DOAJ
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    gold
    7
    citations7
    popularityAverage
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
Powered by OpenAIRE graph