- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Informa UK Limited Alessandro Dalla Riva; Jasmina Burek; Daesoo Kim; Greg Thoma; Martino Cassandro; Massimo De Marchi;handle: 11577/3289959
A farm gate-to-plant gate life cycle assessment was performed to estimate the environmental impact of Asiago Protected Designation of Origin (PDO) cheese, the fourth most produced Italian PDO cheese. One manufacturing plant were surveyed for primary data. Emphasis was given to manufacturing processes, wherein environmental hotspots were identified. However the farm phase was discussed in order to obtain a clear prospect of Asiago cheese production. Inputs and outputs at the plant, such as cheese ingredients, fuels, electricity, water, cleaning agents, packaging, waste, and associated transport were included. Asiago cheese was the main product and co-products were other cheeses and liquid whey. Raw milk, other materials and energy flows were allocated using economic allocation strategy, while salt was attributed using plant specific information. Scenario analysis was about allocation strategies and time of cheese aging. SimaPro© 8.1.1 was the modelling software. Ecoinvent® v3.1 database was used for upstream processes. Climate change and energy consumption per kg of Asiago cheese was 10.1 kg CO2-eq and 70.2 MJ, respectively. Uncertainty analysis gave 95% confidence interval of 6.2–17.5 kg CO2-eq and 41.8–115 MJ per kg of Asiago cheese. The main impact driver was raw milk production. At the plant, electricity and fuels usage, refrigerants, packaging and wastewater treatment had the highest contribution to the overall impacts, except for fresh water eutrophication where wastewater treatment had the largest impact. Energy and fuel consumption were the crucial “hot spots” to focus on for efficiency and mitigation procedures at plant.
Italian Journal of A... arrow_drop_down Italian Journal of Animal ScienceArticle . 2017 . Peer-reviewedLicense: CC BY NCData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/1828051x.2017.1344936&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 15 citations 15 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 2visibility views 2 download downloads 1 Powered bymore_vert Italian Journal of A... arrow_drop_down Italian Journal of Animal ScienceArticle . 2017 . Peer-reviewedLicense: CC BY NCData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/1828051x.2017.1344936&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Informa UK Limited Alessandro Dalla Riva; Jasmina Burek; Daesoo Kim; Greg Thoma; Martino Cassandro; Massimo De Marchi;handle: 11577/3289959
A farm gate-to-plant gate life cycle assessment was performed to estimate the environmental impact of Asiago Protected Designation of Origin (PDO) cheese, the fourth most produced Italian PDO cheese. One manufacturing plant were surveyed for primary data. Emphasis was given to manufacturing processes, wherein environmental hotspots were identified. However the farm phase was discussed in order to obtain a clear prospect of Asiago cheese production. Inputs and outputs at the plant, such as cheese ingredients, fuels, electricity, water, cleaning agents, packaging, waste, and associated transport were included. Asiago cheese was the main product and co-products were other cheeses and liquid whey. Raw milk, other materials and energy flows were allocated using economic allocation strategy, while salt was attributed using plant specific information. Scenario analysis was about allocation strategies and time of cheese aging. SimaPro© 8.1.1 was the modelling software. Ecoinvent® v3.1 database was used for upstream processes. Climate change and energy consumption per kg of Asiago cheese was 10.1 kg CO2-eq and 70.2 MJ, respectively. Uncertainty analysis gave 95% confidence interval of 6.2–17.5 kg CO2-eq and 41.8–115 MJ per kg of Asiago cheese. The main impact driver was raw milk production. At the plant, electricity and fuels usage, refrigerants, packaging and wastewater treatment had the highest contribution to the overall impacts, except for fresh water eutrophication where wastewater treatment had the largest impact. Energy and fuel consumption were the crucial “hot spots” to focus on for efficiency and mitigation procedures at plant.
Italian Journal of A... arrow_drop_down Italian Journal of Animal ScienceArticle . 2017 . Peer-reviewedLicense: CC BY NCData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/1828051x.2017.1344936&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 15 citations 15 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 2visibility views 2 download downloads 1 Powered bymore_vert Italian Journal of A... arrow_drop_down Italian Journal of Animal ScienceArticle . 2017 . Peer-reviewedLicense: CC BY NCData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/1828051x.2017.1344936&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Authors: Daesoo Kim; Ranjan Parajuli; Gregory J. Thoma;doi: 10.3390/su12041586
A tiered hybrid input–output-based life cycle assessment (LCA) was conducted to analyze potential environmental impacts associated with current US food consumption patterns and the recommended USDA food consumption patterns. The greenhouse gas emissions (GHGEs) in the current consumption pattern (CFP 2547 kcal) and the USDA recommended food consumption pattern (RFP 2000 kcal) were 8.80 and 9.61 tons CO2-eq per household per year, respectively. Unlike adopting a vegetarian diet (i.e., RFP 2000 kcal veg or RFP 2600 kcal veg), adoption of a RFP 2000 kcal diet has a probability of increasing GHGEs and other environmental impacts under iso-caloric analysis. The bigger environmental impacts of non-vegetarian RFP scenarios were largely attributable to supply chain activities and food losses at retail and consumer levels. However, the RFP 2000 vegetarian diet showed a significant reduction in the environmental impacts (e.g., GHGEs were 22% lower than CFP 2547). Uncertainty analysis confirmed that the RFP 2600 scenario (mean of 11.2; range 10.3–12.4 tons CO2-eq per household per year) is higher than CFP 2547 (mean of 8.81; range 7.89–9.95 tons CO2-eq per household per year) with 95% confidence. The outcomes highlight the importance of incorporating environmental sustainability into dietary guidelines through the entire life cycle of the food system with a full accounting of the effects of food loss/waste.
Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/4/1586/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12041586&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/4/1586/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12041586&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Authors: Daesoo Kim; Ranjan Parajuli; Gregory J. Thoma;doi: 10.3390/su12041586
A tiered hybrid input–output-based life cycle assessment (LCA) was conducted to analyze potential environmental impacts associated with current US food consumption patterns and the recommended USDA food consumption patterns. The greenhouse gas emissions (GHGEs) in the current consumption pattern (CFP 2547 kcal) and the USDA recommended food consumption pattern (RFP 2000 kcal) were 8.80 and 9.61 tons CO2-eq per household per year, respectively. Unlike adopting a vegetarian diet (i.e., RFP 2000 kcal veg or RFP 2600 kcal veg), adoption of a RFP 2000 kcal diet has a probability of increasing GHGEs and other environmental impacts under iso-caloric analysis. The bigger environmental impacts of non-vegetarian RFP scenarios were largely attributable to supply chain activities and food losses at retail and consumer levels. However, the RFP 2000 vegetarian diet showed a significant reduction in the environmental impacts (e.g., GHGEs were 22% lower than CFP 2547). Uncertainty analysis confirmed that the RFP 2600 scenario (mean of 11.2; range 10.3–12.4 tons CO2-eq per household per year) is higher than CFP 2547 (mean of 8.81; range 7.89–9.95 tons CO2-eq per household per year) with 95% confidence. The outcomes highlight the importance of incorporating environmental sustainability into dietary guidelines through the entire life cycle of the food system with a full accounting of the effects of food loss/waste.
Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/4/1586/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12041586&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/4/1586/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12041586&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 Canada, Denmark, CanadaPublisher:MDPI AG Andrew D. Henderson; Anne Asselin-Balençon; Martin C. Heller; Jasmina Burek; Daesoo Kim; Lindsay Lessard; Manuele Margni; Rosie Saad; Marty D. Matlock; Greg Thoma; Ying Wang; Olivier Jolliet;doi: 10.3390/su15031890
Purpose: Understanding the main factors affecting the environmental impacts of milk production and consumption along the value chain is key towards reducing these impacts. This paper aims to present detailed spatialized distributions of impacts associated with milk production and consumption across the United States (U.S.), accounting for locations of both feed and on-farm activities, as well as variations in impact intensity. Using a Life Cycle Analysis (LCA) approach, focus is given to impacts related to (a) water consumption, (b) eutrophication of marine and freshwater, (c) land use, (d) human toxicity and ecotoxicity, and (e) greenhouse gases. Methods: Drawing on data representing regional agricultural practices, feed production is modelled for 50 states and 18 main watersheds and linked to regions of milk production in a spatialized matrix-based approach to yield milk produced at farm gate. Milk processing, distribution, retail, and consumption are then modelled at a national level, accounting for retail and consumer losses. Custom characterization factors are developed for freshwater and marine eutrophication in the U.S. context. Results and discussion: In the overall life cycle, up to 30% of the impact per kg milk consumed is due to milk losses that occur during the retail and consumption phases (i.e., after production), emphasizing the importance of differentiating between farm gate and consumer estimates. Water scarcity is the impact category with the highest spatial variability. Watersheds in the western part of the U.S. are the dominant contributors to the total water consumed, with 80% of water scarcity impacts driven by only 40% of the total milk production. Freshwater eutrophication also has strong spatial variation, with high persistence of emitted phosphorus in Midwest and Great Lakes area, but high freshwater eutrophication impacts associated with extant phosphorus concentration above 100 µg/L in the California, Missouri, and Upper Mississippi water basins. Overall, normalized impacts of fluid milk consumption represent 0.25% to 0.8% of the annual average impact of a person living in the U.S. As milk at farm gate is used for fluid milk and other dairy products, the production of milk at farm gate represents 0.5% to 3% of this annual impact. Dominant contributions to human health impacts are from fine particulate matter and from climate change, whereas ecosystem impacts of milk are mostly due to land use and water consumption. Conclusion: This study provides a systematic, national perspective on the environmental impacts of milk production and consumption in the United States, showing high spatial variation in inputs, farm practices, and impacts.
Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/3/1890/pdfData sources: Multidisciplinary Digital Publishing InstituteOnline Research Database In TechnologyArticle . 2023Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15031890&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/3/1890/pdfData sources: Multidisciplinary Digital Publishing InstituteOnline Research Database In TechnologyArticle . 2023Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15031890&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 Canada, Denmark, CanadaPublisher:MDPI AG Andrew D. Henderson; Anne Asselin-Balençon; Martin C. Heller; Jasmina Burek; Daesoo Kim; Lindsay Lessard; Manuele Margni; Rosie Saad; Marty D. Matlock; Greg Thoma; Ying Wang; Olivier Jolliet;doi: 10.3390/su15031890
Purpose: Understanding the main factors affecting the environmental impacts of milk production and consumption along the value chain is key towards reducing these impacts. This paper aims to present detailed spatialized distributions of impacts associated with milk production and consumption across the United States (U.S.), accounting for locations of both feed and on-farm activities, as well as variations in impact intensity. Using a Life Cycle Analysis (LCA) approach, focus is given to impacts related to (a) water consumption, (b) eutrophication of marine and freshwater, (c) land use, (d) human toxicity and ecotoxicity, and (e) greenhouse gases. Methods: Drawing on data representing regional agricultural practices, feed production is modelled for 50 states and 18 main watersheds and linked to regions of milk production in a spatialized matrix-based approach to yield milk produced at farm gate. Milk processing, distribution, retail, and consumption are then modelled at a national level, accounting for retail and consumer losses. Custom characterization factors are developed for freshwater and marine eutrophication in the U.S. context. Results and discussion: In the overall life cycle, up to 30% of the impact per kg milk consumed is due to milk losses that occur during the retail and consumption phases (i.e., after production), emphasizing the importance of differentiating between farm gate and consumer estimates. Water scarcity is the impact category with the highest spatial variability. Watersheds in the western part of the U.S. are the dominant contributors to the total water consumed, with 80% of water scarcity impacts driven by only 40% of the total milk production. Freshwater eutrophication also has strong spatial variation, with high persistence of emitted phosphorus in Midwest and Great Lakes area, but high freshwater eutrophication impacts associated with extant phosphorus concentration above 100 µg/L in the California, Missouri, and Upper Mississippi water basins. Overall, normalized impacts of fluid milk consumption represent 0.25% to 0.8% of the annual average impact of a person living in the U.S. As milk at farm gate is used for fluid milk and other dairy products, the production of milk at farm gate represents 0.5% to 3% of this annual impact. Dominant contributions to human health impacts are from fine particulate matter and from climate change, whereas ecosystem impacts of milk are mostly due to land use and water consumption. Conclusion: This study provides a systematic, national perspective on the environmental impacts of milk production and consumption in the United States, showing high spatial variation in inputs, farm practices, and impacts.
Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/3/1890/pdfData sources: Multidisciplinary Digital Publishing InstituteOnline Research Database In TechnologyArticle . 2023Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15031890&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/3/1890/pdfData sources: Multidisciplinary Digital Publishing InstituteOnline Research Database In TechnologyArticle . 2023Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15031890&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Publisher:MDPI AG Authors: Mahmoud Sharara; Daesoo Kim; Sammy Sadaka; Greg Thoma;doi: 10.3390/en12214081
Sustainable swine manure management is critical to reducing adverse environmental impacts on surrounding ecosystems, particularly in regions of intensive production. Conventional swine manure management practices contribute to agricultural greenhouse gas (GHG) emissions and aquatic eutrophication. There is a lack of full-scale research of the thermochemical conversion of solid-separated swine manure. This study utilizes a consequential life cycle assessment (CLCA) to investigate the environmental impacts of the thermal gasification of swine manure solids as a manure management strategy. CLCA is a modeling tool for a comprehensive estimation of the environmental impacts attributable to a production system. The present study evaluates merely the gasification scenario as it includes manure drying, syngas production, and biochar field application. The assessment revealed that liquid storage of manure had the highest contribution of 57.5% to GHG emissions for the entire proposed manure management scenario. Solid-liquid separation decreased GHG emissions from the manure liquid fraction. Swine manure solids separation, drying, and gasification resulted in a net energy expenditure of 12.3 MJ for each functional unit (treatment of 1 metric ton of manure slurry). Land application of manure slurry mixed with biochar residue could potentially be credited with 5.9 kg CO2-eq in avoided GHG emissions, and 135 MJ of avoided fossil fuel energy. Manure drying had the highest share of fossil fuel energy use. Increasing thermochemical conversion efficiency was shown to decrease overall energy use significantly. Improvements in drying technology efficiency, or the use of solar or waste-heat streams as energy sources, can significantly improve the potential environmental impacts of manure solids gasification.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/21/4081/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12214081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/21/4081/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12214081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Publisher:MDPI AG Authors: Mahmoud Sharara; Daesoo Kim; Sammy Sadaka; Greg Thoma;doi: 10.3390/en12214081
Sustainable swine manure management is critical to reducing adverse environmental impacts on surrounding ecosystems, particularly in regions of intensive production. Conventional swine manure management practices contribute to agricultural greenhouse gas (GHG) emissions and aquatic eutrophication. There is a lack of full-scale research of the thermochemical conversion of solid-separated swine manure. This study utilizes a consequential life cycle assessment (CLCA) to investigate the environmental impacts of the thermal gasification of swine manure solids as a manure management strategy. CLCA is a modeling tool for a comprehensive estimation of the environmental impacts attributable to a production system. The present study evaluates merely the gasification scenario as it includes manure drying, syngas production, and biochar field application. The assessment revealed that liquid storage of manure had the highest contribution of 57.5% to GHG emissions for the entire proposed manure management scenario. Solid-liquid separation decreased GHG emissions from the manure liquid fraction. Swine manure solids separation, drying, and gasification resulted in a net energy expenditure of 12.3 MJ for each functional unit (treatment of 1 metric ton of manure slurry). Land application of manure slurry mixed with biochar residue could potentially be credited with 5.9 kg CO2-eq in avoided GHG emissions, and 135 MJ of avoided fossil fuel energy. Manure drying had the highest share of fossil fuel energy use. Increasing thermochemical conversion efficiency was shown to decrease overall energy use significantly. Improvements in drying technology efficiency, or the use of solar or waste-heat streams as energy sources, can significantly improve the potential environmental impacts of manure solids gasification.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/21/4081/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12214081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/21/4081/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12214081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Informa UK Limited Alessandro Dalla Riva; Jasmina Burek; Daesoo Kim; Greg Thoma; Martino Cassandro; Massimo De Marchi;handle: 11577/3289959
A farm gate-to-plant gate life cycle assessment was performed to estimate the environmental impact of Asiago Protected Designation of Origin (PDO) cheese, the fourth most produced Italian PDO cheese. One manufacturing plant were surveyed for primary data. Emphasis was given to manufacturing processes, wherein environmental hotspots were identified. However the farm phase was discussed in order to obtain a clear prospect of Asiago cheese production. Inputs and outputs at the plant, such as cheese ingredients, fuels, electricity, water, cleaning agents, packaging, waste, and associated transport were included. Asiago cheese was the main product and co-products were other cheeses and liquid whey. Raw milk, other materials and energy flows were allocated using economic allocation strategy, while salt was attributed using plant specific information. Scenario analysis was about allocation strategies and time of cheese aging. SimaPro© 8.1.1 was the modelling software. Ecoinvent® v3.1 database was used for upstream processes. Climate change and energy consumption per kg of Asiago cheese was 10.1 kg CO2-eq and 70.2 MJ, respectively. Uncertainty analysis gave 95% confidence interval of 6.2–17.5 kg CO2-eq and 41.8–115 MJ per kg of Asiago cheese. The main impact driver was raw milk production. At the plant, electricity and fuels usage, refrigerants, packaging and wastewater treatment had the highest contribution to the overall impacts, except for fresh water eutrophication where wastewater treatment had the largest impact. Energy and fuel consumption were the crucial “hot spots” to focus on for efficiency and mitigation procedures at plant.
Italian Journal of A... arrow_drop_down Italian Journal of Animal ScienceArticle . 2017 . Peer-reviewedLicense: CC BY NCData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/1828051x.2017.1344936&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 15 citations 15 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 2visibility views 2 download downloads 1 Powered bymore_vert Italian Journal of A... arrow_drop_down Italian Journal of Animal ScienceArticle . 2017 . Peer-reviewedLicense: CC BY NCData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/1828051x.2017.1344936&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Informa UK Limited Alessandro Dalla Riva; Jasmina Burek; Daesoo Kim; Greg Thoma; Martino Cassandro; Massimo De Marchi;handle: 11577/3289959
A farm gate-to-plant gate life cycle assessment was performed to estimate the environmental impact of Asiago Protected Designation of Origin (PDO) cheese, the fourth most produced Italian PDO cheese. One manufacturing plant were surveyed for primary data. Emphasis was given to manufacturing processes, wherein environmental hotspots were identified. However the farm phase was discussed in order to obtain a clear prospect of Asiago cheese production. Inputs and outputs at the plant, such as cheese ingredients, fuels, electricity, water, cleaning agents, packaging, waste, and associated transport were included. Asiago cheese was the main product and co-products were other cheeses and liquid whey. Raw milk, other materials and energy flows were allocated using economic allocation strategy, while salt was attributed using plant specific information. Scenario analysis was about allocation strategies and time of cheese aging. SimaPro© 8.1.1 was the modelling software. Ecoinvent® v3.1 database was used for upstream processes. Climate change and energy consumption per kg of Asiago cheese was 10.1 kg CO2-eq and 70.2 MJ, respectively. Uncertainty analysis gave 95% confidence interval of 6.2–17.5 kg CO2-eq and 41.8–115 MJ per kg of Asiago cheese. The main impact driver was raw milk production. At the plant, electricity and fuels usage, refrigerants, packaging and wastewater treatment had the highest contribution to the overall impacts, except for fresh water eutrophication where wastewater treatment had the largest impact. Energy and fuel consumption were the crucial “hot spots” to focus on for efficiency and mitigation procedures at plant.
Italian Journal of A... arrow_drop_down Italian Journal of Animal ScienceArticle . 2017 . Peer-reviewedLicense: CC BY NCData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/1828051x.2017.1344936&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 15 citations 15 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 2visibility views 2 download downloads 1 Powered bymore_vert Italian Journal of A... arrow_drop_down Italian Journal of Animal ScienceArticle . 2017 . Peer-reviewedLicense: CC BY NCData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/1828051x.2017.1344936&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Authors: Daesoo Kim; Ranjan Parajuli; Gregory J. Thoma;doi: 10.3390/su12041586
A tiered hybrid input–output-based life cycle assessment (LCA) was conducted to analyze potential environmental impacts associated with current US food consumption patterns and the recommended USDA food consumption patterns. The greenhouse gas emissions (GHGEs) in the current consumption pattern (CFP 2547 kcal) and the USDA recommended food consumption pattern (RFP 2000 kcal) were 8.80 and 9.61 tons CO2-eq per household per year, respectively. Unlike adopting a vegetarian diet (i.e., RFP 2000 kcal veg or RFP 2600 kcal veg), adoption of a RFP 2000 kcal diet has a probability of increasing GHGEs and other environmental impacts under iso-caloric analysis. The bigger environmental impacts of non-vegetarian RFP scenarios were largely attributable to supply chain activities and food losses at retail and consumer levels. However, the RFP 2000 vegetarian diet showed a significant reduction in the environmental impacts (e.g., GHGEs were 22% lower than CFP 2547). Uncertainty analysis confirmed that the RFP 2600 scenario (mean of 11.2; range 10.3–12.4 tons CO2-eq per household per year) is higher than CFP 2547 (mean of 8.81; range 7.89–9.95 tons CO2-eq per household per year) with 95% confidence. The outcomes highlight the importance of incorporating environmental sustainability into dietary guidelines through the entire life cycle of the food system with a full accounting of the effects of food loss/waste.
Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/4/1586/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12041586&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/4/1586/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12041586&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Authors: Daesoo Kim; Ranjan Parajuli; Gregory J. Thoma;doi: 10.3390/su12041586
A tiered hybrid input–output-based life cycle assessment (LCA) was conducted to analyze potential environmental impacts associated with current US food consumption patterns and the recommended USDA food consumption patterns. The greenhouse gas emissions (GHGEs) in the current consumption pattern (CFP 2547 kcal) and the USDA recommended food consumption pattern (RFP 2000 kcal) were 8.80 and 9.61 tons CO2-eq per household per year, respectively. Unlike adopting a vegetarian diet (i.e., RFP 2000 kcal veg or RFP 2600 kcal veg), adoption of a RFP 2000 kcal diet has a probability of increasing GHGEs and other environmental impacts under iso-caloric analysis. The bigger environmental impacts of non-vegetarian RFP scenarios were largely attributable to supply chain activities and food losses at retail and consumer levels. However, the RFP 2000 vegetarian diet showed a significant reduction in the environmental impacts (e.g., GHGEs were 22% lower than CFP 2547). Uncertainty analysis confirmed that the RFP 2600 scenario (mean of 11.2; range 10.3–12.4 tons CO2-eq per household per year) is higher than CFP 2547 (mean of 8.81; range 7.89–9.95 tons CO2-eq per household per year) with 95% confidence. The outcomes highlight the importance of incorporating environmental sustainability into dietary guidelines through the entire life cycle of the food system with a full accounting of the effects of food loss/waste.
Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/4/1586/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12041586&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/4/1586/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12041586&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 Canada, Denmark, CanadaPublisher:MDPI AG Andrew D. Henderson; Anne Asselin-Balençon; Martin C. Heller; Jasmina Burek; Daesoo Kim; Lindsay Lessard; Manuele Margni; Rosie Saad; Marty D. Matlock; Greg Thoma; Ying Wang; Olivier Jolliet;doi: 10.3390/su15031890
Purpose: Understanding the main factors affecting the environmental impacts of milk production and consumption along the value chain is key towards reducing these impacts. This paper aims to present detailed spatialized distributions of impacts associated with milk production and consumption across the United States (U.S.), accounting for locations of both feed and on-farm activities, as well as variations in impact intensity. Using a Life Cycle Analysis (LCA) approach, focus is given to impacts related to (a) water consumption, (b) eutrophication of marine and freshwater, (c) land use, (d) human toxicity and ecotoxicity, and (e) greenhouse gases. Methods: Drawing on data representing regional agricultural practices, feed production is modelled for 50 states and 18 main watersheds and linked to regions of milk production in a spatialized matrix-based approach to yield milk produced at farm gate. Milk processing, distribution, retail, and consumption are then modelled at a national level, accounting for retail and consumer losses. Custom characterization factors are developed for freshwater and marine eutrophication in the U.S. context. Results and discussion: In the overall life cycle, up to 30% of the impact per kg milk consumed is due to milk losses that occur during the retail and consumption phases (i.e., after production), emphasizing the importance of differentiating between farm gate and consumer estimates. Water scarcity is the impact category with the highest spatial variability. Watersheds in the western part of the U.S. are the dominant contributors to the total water consumed, with 80% of water scarcity impacts driven by only 40% of the total milk production. Freshwater eutrophication also has strong spatial variation, with high persistence of emitted phosphorus in Midwest and Great Lakes area, but high freshwater eutrophication impacts associated with extant phosphorus concentration above 100 µg/L in the California, Missouri, and Upper Mississippi water basins. Overall, normalized impacts of fluid milk consumption represent 0.25% to 0.8% of the annual average impact of a person living in the U.S. As milk at farm gate is used for fluid milk and other dairy products, the production of milk at farm gate represents 0.5% to 3% of this annual impact. Dominant contributions to human health impacts are from fine particulate matter and from climate change, whereas ecosystem impacts of milk are mostly due to land use and water consumption. Conclusion: This study provides a systematic, national perspective on the environmental impacts of milk production and consumption in the United States, showing high spatial variation in inputs, farm practices, and impacts.
Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/3/1890/pdfData sources: Multidisciplinary Digital Publishing InstituteOnline Research Database In TechnologyArticle . 2023Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15031890&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/3/1890/pdfData sources: Multidisciplinary Digital Publishing InstituteOnline Research Database In TechnologyArticle . 2023Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15031890&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 Canada, Denmark, CanadaPublisher:MDPI AG Andrew D. Henderson; Anne Asselin-Balençon; Martin C. Heller; Jasmina Burek; Daesoo Kim; Lindsay Lessard; Manuele Margni; Rosie Saad; Marty D. Matlock; Greg Thoma; Ying Wang; Olivier Jolliet;doi: 10.3390/su15031890
Purpose: Understanding the main factors affecting the environmental impacts of milk production and consumption along the value chain is key towards reducing these impacts. This paper aims to present detailed spatialized distributions of impacts associated with milk production and consumption across the United States (U.S.), accounting for locations of both feed and on-farm activities, as well as variations in impact intensity. Using a Life Cycle Analysis (LCA) approach, focus is given to impacts related to (a) water consumption, (b) eutrophication of marine and freshwater, (c) land use, (d) human toxicity and ecotoxicity, and (e) greenhouse gases. Methods: Drawing on data representing regional agricultural practices, feed production is modelled for 50 states and 18 main watersheds and linked to regions of milk production in a spatialized matrix-based approach to yield milk produced at farm gate. Milk processing, distribution, retail, and consumption are then modelled at a national level, accounting for retail and consumer losses. Custom characterization factors are developed for freshwater and marine eutrophication in the U.S. context. Results and discussion: In the overall life cycle, up to 30% of the impact per kg milk consumed is due to milk losses that occur during the retail and consumption phases (i.e., after production), emphasizing the importance of differentiating between farm gate and consumer estimates. Water scarcity is the impact category with the highest spatial variability. Watersheds in the western part of the U.S. are the dominant contributors to the total water consumed, with 80% of water scarcity impacts driven by only 40% of the total milk production. Freshwater eutrophication also has strong spatial variation, with high persistence of emitted phosphorus in Midwest and Great Lakes area, but high freshwater eutrophication impacts associated with extant phosphorus concentration above 100 µg/L in the California, Missouri, and Upper Mississippi water basins. Overall, normalized impacts of fluid milk consumption represent 0.25% to 0.8% of the annual average impact of a person living in the U.S. As milk at farm gate is used for fluid milk and other dairy products, the production of milk at farm gate represents 0.5% to 3% of this annual impact. Dominant contributions to human health impacts are from fine particulate matter and from climate change, whereas ecosystem impacts of milk are mostly due to land use and water consumption. Conclusion: This study provides a systematic, national perspective on the environmental impacts of milk production and consumption in the United States, showing high spatial variation in inputs, farm practices, and impacts.
Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/3/1890/pdfData sources: Multidisciplinary Digital Publishing InstituteOnline Research Database In TechnologyArticle . 2023Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15031890&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/3/1890/pdfData sources: Multidisciplinary Digital Publishing InstituteOnline Research Database In TechnologyArticle . 2023Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15031890&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Publisher:MDPI AG Authors: Mahmoud Sharara; Daesoo Kim; Sammy Sadaka; Greg Thoma;doi: 10.3390/en12214081
Sustainable swine manure management is critical to reducing adverse environmental impacts on surrounding ecosystems, particularly in regions of intensive production. Conventional swine manure management practices contribute to agricultural greenhouse gas (GHG) emissions and aquatic eutrophication. There is a lack of full-scale research of the thermochemical conversion of solid-separated swine manure. This study utilizes a consequential life cycle assessment (CLCA) to investigate the environmental impacts of the thermal gasification of swine manure solids as a manure management strategy. CLCA is a modeling tool for a comprehensive estimation of the environmental impacts attributable to a production system. The present study evaluates merely the gasification scenario as it includes manure drying, syngas production, and biochar field application. The assessment revealed that liquid storage of manure had the highest contribution of 57.5% to GHG emissions for the entire proposed manure management scenario. Solid-liquid separation decreased GHG emissions from the manure liquid fraction. Swine manure solids separation, drying, and gasification resulted in a net energy expenditure of 12.3 MJ for each functional unit (treatment of 1 metric ton of manure slurry). Land application of manure slurry mixed with biochar residue could potentially be credited with 5.9 kg CO2-eq in avoided GHG emissions, and 135 MJ of avoided fossil fuel energy. Manure drying had the highest share of fossil fuel energy use. Increasing thermochemical conversion efficiency was shown to decrease overall energy use significantly. Improvements in drying technology efficiency, or the use of solar or waste-heat streams as energy sources, can significantly improve the potential environmental impacts of manure solids gasification.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/21/4081/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12214081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/21/4081/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12214081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Publisher:MDPI AG Authors: Mahmoud Sharara; Daesoo Kim; Sammy Sadaka; Greg Thoma;doi: 10.3390/en12214081
Sustainable swine manure management is critical to reducing adverse environmental impacts on surrounding ecosystems, particularly in regions of intensive production. Conventional swine manure management practices contribute to agricultural greenhouse gas (GHG) emissions and aquatic eutrophication. There is a lack of full-scale research of the thermochemical conversion of solid-separated swine manure. This study utilizes a consequential life cycle assessment (CLCA) to investigate the environmental impacts of the thermal gasification of swine manure solids as a manure management strategy. CLCA is a modeling tool for a comprehensive estimation of the environmental impacts attributable to a production system. The present study evaluates merely the gasification scenario as it includes manure drying, syngas production, and biochar field application. The assessment revealed that liquid storage of manure had the highest contribution of 57.5% to GHG emissions for the entire proposed manure management scenario. Solid-liquid separation decreased GHG emissions from the manure liquid fraction. Swine manure solids separation, drying, and gasification resulted in a net energy expenditure of 12.3 MJ for each functional unit (treatment of 1 metric ton of manure slurry). Land application of manure slurry mixed with biochar residue could potentially be credited with 5.9 kg CO2-eq in avoided GHG emissions, and 135 MJ of avoided fossil fuel energy. Manure drying had the highest share of fossil fuel energy use. Increasing thermochemical conversion efficiency was shown to decrease overall energy use significantly. Improvements in drying technology efficiency, or the use of solar or waste-heat streams as energy sources, can significantly improve the potential environmental impacts of manure solids gasification.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/21/4081/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12214081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/21/4081/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12214081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu