- home
- Advanced Search
Filters
Year range
-chevron_right GO
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:IOP Publishing Pan Yongdong; Mourad Oudich; Mourad Oudich; Zhang Zheng; Yong Li; Li Qiuyu;Abstract In this work, we propose an acoustic energy harvesting metamaterial consisting of an array of silicone rubber pillars and a PZT patch deposited on an ultrathin aluminum plate with several holes based on locally resonant mechanism. The resonance is formed by removing four pillars, drilling a few of holes and attaching the PZT patch on the aluminum plate. The strain energy originating from an incident acoustic wave is centralized in the resonant region, and the PZT patch is used to convert the elastic strain energy into electrical power. Numerical analysis and experimental results show that the proposed millimeter-scale harvester with holes obviously improves the effect of acoustic energy harvesting while performing at the subwavelength scale for sonic low-frequency environment (less than 1150 Hz). In addition, the experimental results demonstrate that the maximum output voltage and power of the proposed acoustic energy harvesting system with 16 holes of 2 mm radius are 3 and 10 times higher than those without holes at the resonant mode for 2 Pa of incident acoustic pressure. Both the number and size of holes have a significant effect on the performance of acoustic energy harvesting. The advantages of the proposed structure are easy-to-machine and full of practicality, and it can be used in broad applications for low-frequency acoustic energy harvesting.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1367-2630/abcce8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1367-2630/abcce8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:IOP Publishing Pan Yongdong; Mourad Oudich; Mourad Oudich; Zhang Zheng; Yong Li; Li Qiuyu;Abstract In this work, we propose an acoustic energy harvesting metamaterial consisting of an array of silicone rubber pillars and a PZT patch deposited on an ultrathin aluminum plate with several holes based on locally resonant mechanism. The resonance is formed by removing four pillars, drilling a few of holes and attaching the PZT patch on the aluminum plate. The strain energy originating from an incident acoustic wave is centralized in the resonant region, and the PZT patch is used to convert the elastic strain energy into electrical power. Numerical analysis and experimental results show that the proposed millimeter-scale harvester with holes obviously improves the effect of acoustic energy harvesting while performing at the subwavelength scale for sonic low-frequency environment (less than 1150 Hz). In addition, the experimental results demonstrate that the maximum output voltage and power of the proposed acoustic energy harvesting system with 16 holes of 2 mm radius are 3 and 10 times higher than those without holes at the resonant mode for 2 Pa of incident acoustic pressure. Both the number and size of holes have a significant effect on the performance of acoustic energy harvesting. The advantages of the proposed structure are easy-to-machine and full of practicality, and it can be used in broad applications for low-frequency acoustic energy harvesting.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1367-2630/abcce8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1367-2630/abcce8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu