- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Conference object 2015 ItalyTAMBURINI, Alessandro; Cattarinich, R; CIPOLLINA, Andrea; VELLA, Giuseppa; MICALE, Giorgio Domenico Maria; NAPOLI, Enrico;handle: 10447/170907
Different spacer features and operating conditions were investigated in order to identify a good compromise between concentration polarization and pumping power reductions.
Archivio istituziona... arrow_drop_down Archivio istituzionale della ricerca - Università di PalermoConference object . 2015Repertorio Competenze e RicercheConference object . 2015Data sources: Repertorio Competenze e Ricercheadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10447/170907&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down Archivio istituzionale della ricerca - Università di PalermoConference object . 2015Repertorio Competenze e RicercheConference object . 2015Data sources: Repertorio Competenze e Ricercheadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10447/170907&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Alessandro Cosenza; Giovanni Campisi; Francesco Giacalone; Serena Randazzo; Andrea Cipollina; Alessandro Tamburini; Giorgio Micale;doi: 10.3390/en15114177
handle: 10447/566164
Wastewaters generated by crude oil extraction processes, called “produced waters” (PWs), are complex solutions that contain organic compounds, mainly hydrocarbons, and often exhibit high salinity. The large amounts of PWs represent a global issue because of their environmental impact. An approach widely used in the oil industry is the reinjection of this wastewater into the extraction wells after a suitable treatment. The high salt concentration of such solutions may be used in salinity gradient technologies to produce green electricity. Among these technologies, reverse electrodialysis (RED) is one of the most promising. In this work, the application of RED for energy generation from two different real oil industry brines was investigated. An experimental campaign was performed by testing 10 × 10 cm2 units in long-run continuous operations, monitoring the performance for more than 25 days. Fouling phenomena, occurring during the continuous operation, decrease the unit performance and several anti-fouling strategies were adopted to tackle this issue. As a result, a positive net power density for up to 18 days of continuous operation was obtained. A maximum power density of about 2.5 W/m2 was observed, demonstrating how the RED technology could be an important strategy to harvest energy from an industrial waste.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/11/4177/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15114177&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/11/4177/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15114177&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 ItalyPublisher:Elsevier BV Funded by:EC | INSHIP, EC | RED-Heat-to-PowerEC| INSHIP ,EC| RED-Heat-to-PowerAuthors: Ortega Delgado, Bartolomé; GIACALONE, FRANCESCO; Catrini, Pietro; Cipollina, A.; +3 AuthorsOrtega Delgado, Bartolomé; GIACALONE, FRANCESCO; Catrini, Pietro; Cipollina, A.; Piacentino, A.; Tamburini, A.; Micale, G.;handle: 10447/357326
Abstract The increasing worldwide energy demand is rising the interest on alternative power production technologies based on renewable and emission-free energy sources. In this regard, the closed-loop reverse electrodialysis heat engine is a promising technology with the potential to convert low-grade heat into electric power. The reverse electrodialysis technology has been under investigation in the last years to explore the real potentials for energy generation from natural and artificial solutions, and recent works have been addressing also the potential of its coupling with regeneration strategies, looking at medium and large energy supply purposes. In this work, for the first time, a comprehensive exergy analysis at component level is applied to a reverse electrodialysis heat engine with multi-effect distillation in order to determine the real capability of the waste heat to power conversion, identifying and quantifying the sources of exergy destruction. In particular, sensitivity analyses have been performed to assess the influence of the main operating conditions (i.e. solutions concentration and velocity) and design features (aspect ratio of the pile), characterizing the most advantageous scenarios and including the effect of new generations of membranes. Results show that the multi-effect distillation unit is the main source of exergy destruction. Also, using high-performing membranes, inlet solutions concentration and velocity of 4.5–0.01 mol/L and 0.2–0.36 cm/s, respectively, a global exergy efficiency of 24% is reached for the system, proving the high potential of this technology to sustainably convert waste heat into power.
Archivio istituziona... arrow_drop_down Energy Conversion and ManagementArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefEnergy Conversion and ManagementArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2019.04.056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 51 citations 51 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down Energy Conversion and ManagementArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefEnergy Conversion and ManagementArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2019.04.056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 ItalyPublisher:Elsevier BV Funded by:EC | REvivED waterEC| REvivED waterCampione A.; Cipollina A.; Calise F.; Tamburini A.; Galluzzo M.; Micale G.;handle: 11588/817880 , 10447/424460
Abstract The presence of desalination systems in polygeneration facilities is usually limited by important difficulties in operating under non-stationary regimes typical of renewable energy sources. Reverse osmosis, namely the most common desalination technology, is characterised by slow dynamics that rarely adapts to the power fluctuations of renewables. Therefore, the possibility of using electrodialysis coupled with a hybrid photovoltaic/wind energy source was investigated in this work. In particular, the combination of photovoltaic and wind energy is very attractive in order to achieve a more stable energy production, while electrodialysis is claimed to be a more flexible process compared to reverse osmosis. For this reason, the aim of this work was to analyse the technical advantages of using electrodialysis in the aforementioned scenarios, Suitable transitory simulation models are implemented for modelling electrodialysis units, photovoltaic panels and wind turbines. Dynamic scenarios were analysed, looking at two different time scales. Quasi steady-state simulations were used to study the yearly operation of 4 electrodialysis units operating in parallel, demonstrating process flexibility over a wide range of produced flowrates (from 920 to 230 m3/d) and power inputs (5–45 kW) when producing drinking water at a constant NaCl outlet concentration of 0.25 g/l. Dynamic simulations were adopted to study the daily time scale, where the desalination unit control system, purposely designed and tuned, was able to maintain a relatively stable target value in presence of disturbances in power availability, i.e. with a fluctuation of the outlet concentration lower than ± 10%, in between 0,23 and 0,27 g/l . Simulation results show how the electrodialysis process is particularly suitable for the integration within polygeneration systems as energy-buffer.
Archivio istituziona... arrow_drop_down Energy Conversion and ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefEnergy Conversion and ManagementArticle . 2020 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2020.112940&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 51 citations 51 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down Energy Conversion and ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefEnergy Conversion and ManagementArticle . 2020 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2020.112940&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 ItalyPublisher:MDPI AG Funded by:EC | ZERO BRINE, EC | RED-Heat-to-Power, EC | INSHIPEC| ZERO BRINE ,EC| RED-Heat-to-Power ,EC| INSHIPAuthors: Patricia Palenzuela; Marina Micari; Bartolomé Ortega-Delgado; Francesco Giacalone; +5 AuthorsPatricia Palenzuela; Marina Micari; Bartolomé Ortega-Delgado; Francesco Giacalone; Guillermo Zaragoza; Diego-César Alarcón-Padilla; Andrea Cipollina; Alessandro Tamburini; Giorgio Micale;doi: 10.3390/en11123385
handle: 10447/336028
A performance analysis of a salinity gradient heat engine (SGP-HE) is presented for the conversion of low temperature heat into power via a closed-loop Reverse Electrodialysis (RED) coupled with Multi-Effect Distillation (MED). Mathematical models for the RED and MED systems have been purposely developed in order to investigate the performance of both processes and have been then coupled to analyze the efficiency of the overall integrated system. The influence of the main operating conditions (i.e., solutions concentration and velocity) has been quantified, looking at the power density and conversion efficiency of the RED unit, MED Specific Thermal Consumption (STC) and at the overall system exergy efficiency. Results show how the membrane properties (i.e., electrical resistance, permselectivity, water and salt permeability) dramatically affect the performance of the RED process. In particular, the power density achievable using membranes with optimized features (ideal membranes) can be more than three times higher than that obtained with current reference ion exchange membranes. On the other hand, MED STC is strongly influenced by the available waste heat temperature, feed salinity and recovery ratio to be achieved. Lowest values of STC below 25 kWh/m3 can be reached at 100 °C and 27 effects. Increasing the feed salinity also increases the STC, while an increase in the recovery ratio is beneficial for the thermal efficiency of the system. For the integrated system, a more complex influence of operating parameters has been found, leading to the identification of some favorable operating conditions in which exergy efficiency close to 7% (1.4% thermal) can be achieved for the case of current membranes, and up to almost 31% (6.6% thermal) assuming ideal membrane properties.
Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/12/3385/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio istituzionale della ricerca - Università di PalermoArticle . 2018EnergiesArticleLicense: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/12/3385/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11123385&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/12/3385/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio istituzionale della ricerca - Università di PalermoArticle . 2018EnergiesArticleLicense: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/12/3385/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11123385&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object 2014 ItalyPublisher:Elsevier BV Funded by:EC | REAPOWEREC| REAPOWERAuthors: TAMBURINI, Alessandro; La Barbera, G; CIPOLLINA, Andrea; MICALE, Giorgio Domenico Maria; +1 AuthorsTAMBURINI, Alessandro; La Barbera, G; CIPOLLINA, Andrea; MICALE, Giorgio Domenico Maria; CIOFALO, Michele;handle: 10447/97694 , 10447/98453
AbstractReverse electrodialysis (RED) is a very promising technology allowing the electrochemical potential difference of a salinity gradient to be directly converted into electric energy. The fluid dynamics optimization of the thin channels used in RED is still an open problem. The present preliminary work focuses on the computational fluid dynamics simulation of the flow and concentration fields in these channels. In particular, three different configurations were investigated: a channel unprovided with a spacer (empty channel) and two channels filled with spacers, one made of overlapped filaments and the other of woven filaments. The transport of two passive scalars, representative of the ions present in the solution, was simulated in order to evaluate concentration polarization phenomena. Computational domain effects were also addressed. Results show that: (i) the adoption of a computational domain limited to a single unit cell along with periodic boundary conditions provides results very close to tho...
Archivio istituziona... arrow_drop_down Archivio istituzionale della ricerca - Università di PalermoConference object . 2014Repertorio Competenze e RicercheConference object . 2014Data sources: Repertorio Competenze e Ricercheadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/19443994.2014.959735&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down Archivio istituzionale della ricerca - Università di PalermoConference object . 2014Repertorio Competenze e RicercheConference object . 2014Data sources: Repertorio Competenze e Ricercheadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/19443994.2014.959735&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 ItalyPublisher:AIDIC Servizi S.r.l. Funded by:EC | RED-Heat-to-PowerEC| RED-Heat-to-PowerAuthors: Giacalone F.; Tamburini A.; Cipollina A.; Micale G.;doi: 10.3303/cet1974132
handle: 10447/393140
Salinity Gradient Heat Engines (SG-HEs) have been proposed as a promising technology for converting low-temperature heat into electricity. The SG-HE includes two different processes: (i) a salinity gradient process where the salinity gradient between two solutions is converted into electricity and (ii) a thermal regeneration process where low-grade heat (T
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3303/cet1974132&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3303/cet1974132&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 ItalyPublisher:MDPI AG Funded by:EC | RED-Heat-to-PowerEC| RED-Heat-to-PowerPapapetrou M.; Kosmadakis G.; Giacalone F.; Ortega-Delgado B.; Cipollina A.; Tamburini A.; Micale G.;doi: 10.3390/en12173206
handle: 10447/393142
In the examined heat engine, reverse electrodialysis (RED) is used to generate electricity from the salinity difference between two artificial solutions. The salinity gradient is restored through a multi-effect distillation system (MED) powered by low-temperature waste heat at 100 °C. The current work presents the first comprehensive economic and environmental analysis of this advanced concept, when varying the number of MED effects, the system sizing, the salt of the solutions, and other key parameters. The levelized cost of electricity (LCOE) has been calculated, showing that competitive solutions can be reached only when the system is at least medium to large scale. The lowest LCOE, at about 0.03 €/kWh, is achieved using potassium acetate salt and six MED effects while reheating the solutions. A similar analysis has been conducted when using the system in energy storage mode, where the two regenerated solutions are stored in reservoir tanks and the RED is operating for a few hours per day, supplying valuable peak power, resulting in a LCOE just below 0.10 €/kWh. A life-cycle assessment has been also carried out, showing that the case with the lowest environmental impact is the same as the one with the most attractive economic performance. Results indicate that the material manufacturing has the main impact; primarily the metallic parts of the MED. Overall, this study highlights the development efforts required in terms of both membrane performance and cost reduction, in order to make this technology cost effective in the future.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/17/3206/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12173206&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/17/3206/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12173206&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Funded by:EC | BAoBaBEC| BAoBaBAndrea Zaffora; Andrea Culcasi; Luigi Gurreri; Alessandro Cosenza; Alessandro Tamburini; Monica Santamaria; Giorgio Micale;doi: 10.3390/en13205510
handle: 10447/438897
Bipolar Membrane Reverse Electrodialysis (BMRED) can be used to produce electricity exploiting acid-base neutralization, thus representing a valuable route in reusing waste streams. The present work investigates the performance of a lab-scale BMRED module under several operating conditions. By feeding the stack with 1 M HCl and NaOH streams, a maximum power density of ~17 W m−2 was obtained at 100 A m−2 with a 10-triplet stack with a flow velocity of 1 cm s−1, while an energy density of ~10 kWh m−3 acid could be extracted by a complete neutralization. Parasitic currents along feed and drain manifolds significantly affected the performance of the stack when equipped with a higher number of triplets. The apparent permselectivity at 1 M acid and base decreased from 93% with the five-triplet stack to 54% with the 38-triplet stack, which exhibited lower values (~35% less) of power density. An important role may be played also by the presence of NaCl in the acidic and alkaline solutions. With a low number of triplets, the added salt had almost negligible effects. However, with a higher number of triplets it led to a reduction of 23.4–45.7% in power density. The risk of membrane delamination is another aspect that can limit the process performance. However, overall, the present results highlight the high potential of BMRED systems as a productive way of neutralizing waste solutions for energy harvesting.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/20/5510/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13205510&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/20/5510/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13205510&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020 NetherlandsPublisher:MDPI AG Funded by:EC | BAoBaBEC| BAoBaBRagne Pärnamäe; Luigi Gurreri; Jan Post; Willem Johannes van Egmond; Andrea Culcasi; Michel Saakes; Jiajun Cen; Emil Goosen; Alessandro Tamburini; David A. Vermaas; Michele Tedesco;The increasing share of renewables in electric grids nowadays causes a growing daily and seasonal mismatch between electricity generation and demand. In this regard, novel energy storage systems need to be developed, to allow large-scale storage of the excess electricity during low-demand time, and its distribution during peak demand time. Acid–base flow battery (ABFB) is a novel and environmentally friendly technology based on the reversible water dissociation by bipolar membranes, and it stores electricity in the form of chemical energy in acid and base solutions. The technology has already been demonstrated at the laboratory scale, and the experimental testing of the first 1 kW pilot plant is currently ongoing. This work aims to describe the current development and the perspectives of the ABFB technology. In particular, we discuss the main technical challenges related to the development of battery components (membranes, electrolyte solutions, and stack design), as well as simulated scenarios, to demonstrate the technology at the kW–MW scale. Finally, we present an economic analysis for a first 100 kW commercial unit and suggest future directions for further technology scale-up and commercial deployment.
Membranes arrow_drop_down MembranesArticleLicense: CC BYFull-Text: https://www.mdpi.com/2077-0375/10/12/409/pdfData sources: SygmaWageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff PublicationsDelft University of Technology: Institutional RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/membranes10120409&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 40 citations 40 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 229visibility views 229 download downloads 42 Powered bymore_vert Membranes arrow_drop_down MembranesArticleLicense: CC BYFull-Text: https://www.mdpi.com/2077-0375/10/12/409/pdfData sources: SygmaWageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff PublicationsDelft University of Technology: Institutional RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/membranes10120409&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Conference object 2015 ItalyTAMBURINI, Alessandro; Cattarinich, R; CIPOLLINA, Andrea; VELLA, Giuseppa; MICALE, Giorgio Domenico Maria; NAPOLI, Enrico;handle: 10447/170907
Different spacer features and operating conditions were investigated in order to identify a good compromise between concentration polarization and pumping power reductions.
Archivio istituziona... arrow_drop_down Archivio istituzionale della ricerca - Università di PalermoConference object . 2015Repertorio Competenze e RicercheConference object . 2015Data sources: Repertorio Competenze e Ricercheadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10447/170907&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down Archivio istituzionale della ricerca - Università di PalermoConference object . 2015Repertorio Competenze e RicercheConference object . 2015Data sources: Repertorio Competenze e Ricercheadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10447/170907&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Alessandro Cosenza; Giovanni Campisi; Francesco Giacalone; Serena Randazzo; Andrea Cipollina; Alessandro Tamburini; Giorgio Micale;doi: 10.3390/en15114177
handle: 10447/566164
Wastewaters generated by crude oil extraction processes, called “produced waters” (PWs), are complex solutions that contain organic compounds, mainly hydrocarbons, and often exhibit high salinity. The large amounts of PWs represent a global issue because of their environmental impact. An approach widely used in the oil industry is the reinjection of this wastewater into the extraction wells after a suitable treatment. The high salt concentration of such solutions may be used in salinity gradient technologies to produce green electricity. Among these technologies, reverse electrodialysis (RED) is one of the most promising. In this work, the application of RED for energy generation from two different real oil industry brines was investigated. An experimental campaign was performed by testing 10 × 10 cm2 units in long-run continuous operations, monitoring the performance for more than 25 days. Fouling phenomena, occurring during the continuous operation, decrease the unit performance and several anti-fouling strategies were adopted to tackle this issue. As a result, a positive net power density for up to 18 days of continuous operation was obtained. A maximum power density of about 2.5 W/m2 was observed, demonstrating how the RED technology could be an important strategy to harvest energy from an industrial waste.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/11/4177/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15114177&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/11/4177/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15114177&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 ItalyPublisher:Elsevier BV Funded by:EC | INSHIP, EC | RED-Heat-to-PowerEC| INSHIP ,EC| RED-Heat-to-PowerAuthors: Ortega Delgado, Bartolomé; GIACALONE, FRANCESCO; Catrini, Pietro; Cipollina, A.; +3 AuthorsOrtega Delgado, Bartolomé; GIACALONE, FRANCESCO; Catrini, Pietro; Cipollina, A.; Piacentino, A.; Tamburini, A.; Micale, G.;handle: 10447/357326
Abstract The increasing worldwide energy demand is rising the interest on alternative power production technologies based on renewable and emission-free energy sources. In this regard, the closed-loop reverse electrodialysis heat engine is a promising technology with the potential to convert low-grade heat into electric power. The reverse electrodialysis technology has been under investigation in the last years to explore the real potentials for energy generation from natural and artificial solutions, and recent works have been addressing also the potential of its coupling with regeneration strategies, looking at medium and large energy supply purposes. In this work, for the first time, a comprehensive exergy analysis at component level is applied to a reverse electrodialysis heat engine with multi-effect distillation in order to determine the real capability of the waste heat to power conversion, identifying and quantifying the sources of exergy destruction. In particular, sensitivity analyses have been performed to assess the influence of the main operating conditions (i.e. solutions concentration and velocity) and design features (aspect ratio of the pile), characterizing the most advantageous scenarios and including the effect of new generations of membranes. Results show that the multi-effect distillation unit is the main source of exergy destruction. Also, using high-performing membranes, inlet solutions concentration and velocity of 4.5–0.01 mol/L and 0.2–0.36 cm/s, respectively, a global exergy efficiency of 24% is reached for the system, proving the high potential of this technology to sustainably convert waste heat into power.
Archivio istituziona... arrow_drop_down Energy Conversion and ManagementArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefEnergy Conversion and ManagementArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2019.04.056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 51 citations 51 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down Energy Conversion and ManagementArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefEnergy Conversion and ManagementArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2019.04.056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 ItalyPublisher:Elsevier BV Funded by:EC | REvivED waterEC| REvivED waterCampione A.; Cipollina A.; Calise F.; Tamburini A.; Galluzzo M.; Micale G.;handle: 11588/817880 , 10447/424460
Abstract The presence of desalination systems in polygeneration facilities is usually limited by important difficulties in operating under non-stationary regimes typical of renewable energy sources. Reverse osmosis, namely the most common desalination technology, is characterised by slow dynamics that rarely adapts to the power fluctuations of renewables. Therefore, the possibility of using electrodialysis coupled with a hybrid photovoltaic/wind energy source was investigated in this work. In particular, the combination of photovoltaic and wind energy is very attractive in order to achieve a more stable energy production, while electrodialysis is claimed to be a more flexible process compared to reverse osmosis. For this reason, the aim of this work was to analyse the technical advantages of using electrodialysis in the aforementioned scenarios, Suitable transitory simulation models are implemented for modelling electrodialysis units, photovoltaic panels and wind turbines. Dynamic scenarios were analysed, looking at two different time scales. Quasi steady-state simulations were used to study the yearly operation of 4 electrodialysis units operating in parallel, demonstrating process flexibility over a wide range of produced flowrates (from 920 to 230 m3/d) and power inputs (5–45 kW) when producing drinking water at a constant NaCl outlet concentration of 0.25 g/l. Dynamic simulations were adopted to study the daily time scale, where the desalination unit control system, purposely designed and tuned, was able to maintain a relatively stable target value in presence of disturbances in power availability, i.e. with a fluctuation of the outlet concentration lower than ± 10%, in between 0,23 and 0,27 g/l . Simulation results show how the electrodialysis process is particularly suitable for the integration within polygeneration systems as energy-buffer.
Archivio istituziona... arrow_drop_down Energy Conversion and ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefEnergy Conversion and ManagementArticle . 2020 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2020.112940&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 51 citations 51 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down Energy Conversion and ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefEnergy Conversion and ManagementArticle . 2020 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2020.112940&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 ItalyPublisher:MDPI AG Funded by:EC | ZERO BRINE, EC | RED-Heat-to-Power, EC | INSHIPEC| ZERO BRINE ,EC| RED-Heat-to-Power ,EC| INSHIPAuthors: Patricia Palenzuela; Marina Micari; Bartolomé Ortega-Delgado; Francesco Giacalone; +5 AuthorsPatricia Palenzuela; Marina Micari; Bartolomé Ortega-Delgado; Francesco Giacalone; Guillermo Zaragoza; Diego-César Alarcón-Padilla; Andrea Cipollina; Alessandro Tamburini; Giorgio Micale;doi: 10.3390/en11123385
handle: 10447/336028
A performance analysis of a salinity gradient heat engine (SGP-HE) is presented for the conversion of low temperature heat into power via a closed-loop Reverse Electrodialysis (RED) coupled with Multi-Effect Distillation (MED). Mathematical models for the RED and MED systems have been purposely developed in order to investigate the performance of both processes and have been then coupled to analyze the efficiency of the overall integrated system. The influence of the main operating conditions (i.e., solutions concentration and velocity) has been quantified, looking at the power density and conversion efficiency of the RED unit, MED Specific Thermal Consumption (STC) and at the overall system exergy efficiency. Results show how the membrane properties (i.e., electrical resistance, permselectivity, water and salt permeability) dramatically affect the performance of the RED process. In particular, the power density achievable using membranes with optimized features (ideal membranes) can be more than three times higher than that obtained with current reference ion exchange membranes. On the other hand, MED STC is strongly influenced by the available waste heat temperature, feed salinity and recovery ratio to be achieved. Lowest values of STC below 25 kWh/m3 can be reached at 100 °C and 27 effects. Increasing the feed salinity also increases the STC, while an increase in the recovery ratio is beneficial for the thermal efficiency of the system. For the integrated system, a more complex influence of operating parameters has been found, leading to the identification of some favorable operating conditions in which exergy efficiency close to 7% (1.4% thermal) can be achieved for the case of current membranes, and up to almost 31% (6.6% thermal) assuming ideal membrane properties.
Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/12/3385/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio istituzionale della ricerca - Università di PalermoArticle . 2018EnergiesArticleLicense: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/12/3385/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11123385&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/12/3385/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio istituzionale della ricerca - Università di PalermoArticle . 2018EnergiesArticleLicense: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/12/3385/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11123385&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object 2014 ItalyPublisher:Elsevier BV Funded by:EC | REAPOWEREC| REAPOWERAuthors: TAMBURINI, Alessandro; La Barbera, G; CIPOLLINA, Andrea; MICALE, Giorgio Domenico Maria; +1 AuthorsTAMBURINI, Alessandro; La Barbera, G; CIPOLLINA, Andrea; MICALE, Giorgio Domenico Maria; CIOFALO, Michele;handle: 10447/97694 , 10447/98453
AbstractReverse electrodialysis (RED) is a very promising technology allowing the electrochemical potential difference of a salinity gradient to be directly converted into electric energy. The fluid dynamics optimization of the thin channels used in RED is still an open problem. The present preliminary work focuses on the computational fluid dynamics simulation of the flow and concentration fields in these channels. In particular, three different configurations were investigated: a channel unprovided with a spacer (empty channel) and two channels filled with spacers, one made of overlapped filaments and the other of woven filaments. The transport of two passive scalars, representative of the ions present in the solution, was simulated in order to evaluate concentration polarization phenomena. Computational domain effects were also addressed. Results show that: (i) the adoption of a computational domain limited to a single unit cell along with periodic boundary conditions provides results very close to tho...
Archivio istituziona... arrow_drop_down Archivio istituzionale della ricerca - Università di PalermoConference object . 2014Repertorio Competenze e RicercheConference object . 2014Data sources: Repertorio Competenze e Ricercheadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/19443994.2014.959735&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down Archivio istituzionale della ricerca - Università di PalermoConference object . 2014Repertorio Competenze e RicercheConference object . 2014Data sources: Repertorio Competenze e Ricercheadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/19443994.2014.959735&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 ItalyPublisher:AIDIC Servizi S.r.l. Funded by:EC | RED-Heat-to-PowerEC| RED-Heat-to-PowerAuthors: Giacalone F.; Tamburini A.; Cipollina A.; Micale G.;doi: 10.3303/cet1974132
handle: 10447/393140
Salinity Gradient Heat Engines (SG-HEs) have been proposed as a promising technology for converting low-temperature heat into electricity. The SG-HE includes two different processes: (i) a salinity gradient process where the salinity gradient between two solutions is converted into electricity and (ii) a thermal regeneration process where low-grade heat (T
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3303/cet1974132&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3303/cet1974132&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 ItalyPublisher:MDPI AG Funded by:EC | RED-Heat-to-PowerEC| RED-Heat-to-PowerPapapetrou M.; Kosmadakis G.; Giacalone F.; Ortega-Delgado B.; Cipollina A.; Tamburini A.; Micale G.;doi: 10.3390/en12173206
handle: 10447/393142
In the examined heat engine, reverse electrodialysis (RED) is used to generate electricity from the salinity difference between two artificial solutions. The salinity gradient is restored through a multi-effect distillation system (MED) powered by low-temperature waste heat at 100 °C. The current work presents the first comprehensive economic and environmental analysis of this advanced concept, when varying the number of MED effects, the system sizing, the salt of the solutions, and other key parameters. The levelized cost of electricity (LCOE) has been calculated, showing that competitive solutions can be reached only when the system is at least medium to large scale. The lowest LCOE, at about 0.03 €/kWh, is achieved using potassium acetate salt and six MED effects while reheating the solutions. A similar analysis has been conducted when using the system in energy storage mode, where the two regenerated solutions are stored in reservoir tanks and the RED is operating for a few hours per day, supplying valuable peak power, resulting in a LCOE just below 0.10 €/kWh. A life-cycle assessment has been also carried out, showing that the case with the lowest environmental impact is the same as the one with the most attractive economic performance. Results indicate that the material manufacturing has the main impact; primarily the metallic parts of the MED. Overall, this study highlights the development efforts required in terms of both membrane performance and cost reduction, in order to make this technology cost effective in the future.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/17/3206/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12173206&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/17/3206/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12173206&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Funded by:EC | BAoBaBEC| BAoBaBAndrea Zaffora; Andrea Culcasi; Luigi Gurreri; Alessandro Cosenza; Alessandro Tamburini; Monica Santamaria; Giorgio Micale;doi: 10.3390/en13205510
handle: 10447/438897
Bipolar Membrane Reverse Electrodialysis (BMRED) can be used to produce electricity exploiting acid-base neutralization, thus representing a valuable route in reusing waste streams. The present work investigates the performance of a lab-scale BMRED module under several operating conditions. By feeding the stack with 1 M HCl and NaOH streams, a maximum power density of ~17 W m−2 was obtained at 100 A m−2 with a 10-triplet stack with a flow velocity of 1 cm s−1, while an energy density of ~10 kWh m−3 acid could be extracted by a complete neutralization. Parasitic currents along feed and drain manifolds significantly affected the performance of the stack when equipped with a higher number of triplets. The apparent permselectivity at 1 M acid and base decreased from 93% with the five-triplet stack to 54% with the 38-triplet stack, which exhibited lower values (~35% less) of power density. An important role may be played also by the presence of NaCl in the acidic and alkaline solutions. With a low number of triplets, the added salt had almost negligible effects. However, with a higher number of triplets it led to a reduction of 23.4–45.7% in power density. The risk of membrane delamination is another aspect that can limit the process performance. However, overall, the present results highlight the high potential of BMRED systems as a productive way of neutralizing waste solutions for energy harvesting.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/20/5510/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13205510&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/20/5510/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13205510&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020 NetherlandsPublisher:MDPI AG Funded by:EC | BAoBaBEC| BAoBaBRagne Pärnamäe; Luigi Gurreri; Jan Post; Willem Johannes van Egmond; Andrea Culcasi; Michel Saakes; Jiajun Cen; Emil Goosen; Alessandro Tamburini; David A. Vermaas; Michele Tedesco;The increasing share of renewables in electric grids nowadays causes a growing daily and seasonal mismatch between electricity generation and demand. In this regard, novel energy storage systems need to be developed, to allow large-scale storage of the excess electricity during low-demand time, and its distribution during peak demand time. Acid–base flow battery (ABFB) is a novel and environmentally friendly technology based on the reversible water dissociation by bipolar membranes, and it stores electricity in the form of chemical energy in acid and base solutions. The technology has already been demonstrated at the laboratory scale, and the experimental testing of the first 1 kW pilot plant is currently ongoing. This work aims to describe the current development and the perspectives of the ABFB technology. In particular, we discuss the main technical challenges related to the development of battery components (membranes, electrolyte solutions, and stack design), as well as simulated scenarios, to demonstrate the technology at the kW–MW scale. Finally, we present an economic analysis for a first 100 kW commercial unit and suggest future directions for further technology scale-up and commercial deployment.
Membranes arrow_drop_down MembranesArticleLicense: CC BYFull-Text: https://www.mdpi.com/2077-0375/10/12/409/pdfData sources: SygmaWageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff PublicationsDelft University of Technology: Institutional RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/membranes10120409&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 40 citations 40 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 229visibility views 229 download downloads 42 Powered bymore_vert Membranes arrow_drop_down MembranesArticleLicense: CC BYFull-Text: https://www.mdpi.com/2077-0375/10/12/409/pdfData sources: SygmaWageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff PublicationsDelft University of Technology: Institutional RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/membranes10120409&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu