- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
SDG [Beta]
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2022 FinlandPublisher:Wiley Tunga Salthammer; Jiangyue Zhao; Alexandra Schieweck; Erik Uhde; Tareq Hussein; Florian Antretter; Hartwig Künzel; Matthias Pazold; Jan Radon; Wolfram Birmili;The IPCC 2021 report predicts rising global temperatures and more frequent extreme weather events in the future, which will have different effects on the regional climate and concentrations of ambient air pollutants. Consequently, changes in heat and mass transfer between the inside and outside of buildings will also have an increasing impact on indoor air quality. It is therefore surprising that indoor spaces and occupant well-being still play a subordinate role in the studies of climate change. To increase awareness for this topic, the Indoor Air Quality Climate Change (IAQCC) model system was developed, which allows short and long-term predictions of the indoor climate with respect to outdoor conditions. The IAQCC is a holistic model that combines different scenarios in the form of submodels: building physics, indoor emissions, chemical-physical reaction and transformation, mold growth, and indoor exposure. IAQCC allows simulation of indoor gas and particle concentrations with outdoor influences, indoor materials and activity emissions, particle deposition and coagulation, gas reactions, and SVOC partitioning. These key processes are fundamentally linked to temperature and relative humidity. With the aid of the building physics model, the indoor temperature and humidity, and pollutant transport in building zones can be simulated. The exposure model refers to the calculated concentrations and provides evaluations of indoor thermal comfort and exposure to gaseous, particulate, and microbial pollutants.
Indoor Air arrow_drop_down HELDA - Digital Repository of the University of HelsinkiArticle . 2022 . Peer-reviewedData sources: HELDA - Digital Repository of the University of Helsinkiadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ina.13039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Indoor Air arrow_drop_down HELDA - Digital Repository of the University of HelsinkiArticle . 2022 . Peer-reviewedData sources: HELDA - Digital Repository of the University of Helsinkiadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ina.13039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2022 FinlandPublisher:Wiley Tunga Salthammer; Jiangyue Zhao; Alexandra Schieweck; Erik Uhde; Tareq Hussein; Florian Antretter; Hartwig Künzel; Matthias Pazold; Jan Radon; Wolfram Birmili;The IPCC 2021 report predicts rising global temperatures and more frequent extreme weather events in the future, which will have different effects on the regional climate and concentrations of ambient air pollutants. Consequently, changes in heat and mass transfer between the inside and outside of buildings will also have an increasing impact on indoor air quality. It is therefore surprising that indoor spaces and occupant well-being still play a subordinate role in the studies of climate change. To increase awareness for this topic, the Indoor Air Quality Climate Change (IAQCC) model system was developed, which allows short and long-term predictions of the indoor climate with respect to outdoor conditions. The IAQCC is a holistic model that combines different scenarios in the form of submodels: building physics, indoor emissions, chemical-physical reaction and transformation, mold growth, and indoor exposure. IAQCC allows simulation of indoor gas and particle concentrations with outdoor influences, indoor materials and activity emissions, particle deposition and coagulation, gas reactions, and SVOC partitioning. These key processes are fundamentally linked to temperature and relative humidity. With the aid of the building physics model, the indoor temperature and humidity, and pollutant transport in building zones can be simulated. The exposure model refers to the calculated concentrations and provides evaluations of indoor thermal comfort and exposure to gaseous, particulate, and microbial pollutants.
Indoor Air arrow_drop_down HELDA - Digital Repository of the University of HelsinkiArticle . 2022 . Peer-reviewedData sources: HELDA - Digital Repository of the University of Helsinkiadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ina.13039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Indoor Air arrow_drop_down HELDA - Digital Repository of the University of HelsinkiArticle . 2022 . Peer-reviewedData sources: HELDA - Digital Repository of the University of Helsinkiadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ina.13039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu