- home
- Advanced Search
Filters
Year range
-chevron_right GOField of Science
SDG [Beta]
Country
Source
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2018 SpainPublisher:Elsevier BV Funded by:SSHRCSSHRCEduardo Aguilera; Gloria I. Guzmán; Jorge Álvaro-Fuentes; Juan Infante-Amate; Roberto García-Ruiz; Guiomar Carranza-Gallego; David Soto; Manuel González de Molina;Soil organic carbon (SOC) management is key for soil fertility and for mitigation and adaptation to climate change, particularly in desertification-prone areas such as Mediterranean croplands. Industrialization and global change processes affect SOC dynamics in multiple, often opposing, ways. Here we present a detailed SOC balance in Spanish cropland from 1900 to 2008, as a model of a Mediterranean, industrialized agriculture. Net Primary Productivity (NPP) and soil C inputs were estimated based on yield and management data. Changes in SOC stocks were modeled using HSOC, a simple model with one inert and two active C pools, which combines RothC model parameters with humification coefficients. Crop yields increased by 227% during the studied period, but total C exported from the agroecosystem only increased by 73%, total NPP by 30%, and soil C inputs by 20%. There was a continued decline in SOC during the 20th century, and cropland SOC levels in 2008 were 17% below their 1933 peak. SOC trends were driven by historical changes in land uses, management practices and climate. Cropland expansion was the main driver of SOC loss until mid-20th century, followed by the decline in soil C inputs during the fast agricultural industrialization starting in the 1950s, which reduced harvest indices and weed biomass production, particularly in woody cropping systems. C inputs started recovering in the 1980s, mainly through increasing crop residue return. The upward trend in SOC mineralization rates was an increasingly important driver of SOC losses, triggered by irrigation expansion, soil cover loss and climate change-driven temperature rise.
The Science of The T... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAThe Science of The Total EnvironmentArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2017.11.243&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 57 citations 57 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 23visibility views 23 download downloads 259 Powered bymore_vert The Science of The T... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAThe Science of The Total EnvironmentArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2017.11.243&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:MDPI AG Funded by:SSHRCSSHRCAuthors: Guiomar Carranza-Gallego; Gloria I. Guzmán; Roberto Garcia-Ruíz; Manuel González de Molina; +1 AuthorsGuiomar Carranza-Gallego; Gloria I. Guzmán; Roberto Garcia-Ruíz; Manuel González de Molina; Eduardo Aguilera;doi: 10.3390/su11216029
Wheat yields are predicted to decrease over the next decades due to climate change (CC). Mediterranean regions are characterized by low soil fertility and stressful conditions that limit the effect of technological improvements on increasing yield gains, while worsening the negative CC impacts. Additionally, organic farming (OF) lacks specifically adapted genetic material. Accordingly, there is a need to search for varieties adapted to these conditions and whose cultivation may help semi-arid agroecosystems sustainability, focusing on specific agronomic and functional traits. To this purpose, wheat landraces and modern wheat varieties were evaluated under Mediterranean rainfed conditions during three growing seasons under contrasting situations: A conventional farm and an organic farm. Results regarding straw production, weed biomass and biodiversity, and grain N concentration suggest that the cultivation of landraces under Mediterranean rainfed conditions can enhance agroecosystem sustainability through positive effects on ecosystem services such as soil quality, functional biodiversity, or grain protein content, without significant reductions in grain yield. Results highlight the relevant role of wheat landraces as genetic resources for the development of cultivars adapted to Mediterranean agroecosystems conditions, especially for organic farming, but also for conventional agriculture.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11216029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11216029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:MDPI AG Funded by:SSHRCSSHRCAuthors: Manuel González de Molina; Gloria Guzmán Casado;doi: 10.3390/su9010086
This paper documents the origin and conceptual ambiguity of the terms Sustainable, Ecological and Agroecological Intensification. It defines the concept of Ecological Intensification from an agroecological perspective, and examines in energy terms whether it may be sustainable. To illustrate the theory, we apply Land Cost of Sustainable Agriculture (LACAS) methodology to Spanish agriculture, which is representative of Mediterranean agroclimatic conditions. As a result, we demonstrate the impossibility of generalizing an extensive Organic Farming (OF) scenario under the techniques currently used by organic farmers. This is due to the fact that it would bring about a reduction of 13% in agricultural production. Which necessarily means that OF has to be intensified under agroecological criteria. This option is also explored in two scenarios. As a result, we show that it is possible to compensate the yield gap between OF and conventional agriculture by implementing low-entropy internal loop strategies which reduce the land cost of generating the necessary nitrogen flows. However, these cannot exceed the limits established by the structure of Spanish territory. That is, agroecological intensification cannot be prolonged indefinitely over time since it is limited by the land available.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su9010086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su9010086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:MDPI AG Authors: Manuel González de Molina; David Soto Fernández; Juan Infante-Amate; Eduardo Aguilera; +2 AuthorsManuel González de Molina; David Soto Fernández; Juan Infante-Amate; Eduardo Aguilera; Jaime Vila Traver; Gloria Guzmán;doi: 10.3390/su9122348
For a large extent of historiography, the history of Spanish agriculture during the twentieth century is a story of success. However, this narrative has been built on monetary analysis, and it does not usually take into account the effects on rural society and agroecosystems. The aim of this paper is to analyze what has happened from a biophysical perspective to ascertain whether transformations linked with industrialization of agriculture have also been positive. For this, we have integrated the results—some unpublished and others already published—of a broader research project about different aspects of food production from a biophysical perspective in Spain, applying methodologies pertaining to the Social Metabolism. Our research seeks to provide a new narrative, emerging through the consideration of environmental aspects of the process, providing a more complex vision of the process of industrialization in European agriculture. The results show that the industrialization of Spanish agriculture has brought about profound changes in land uses and in the functionality of the biomass produced, increasing pressure on croplands and, paradoxically, facilitating the abandonment of an important proportion of pasture and croplands. This has led to the subordination of a very significant portion of Spanish agroecosystems to the feed demands of intensive livestock farming. This process has been based on the injection of large quantities of external energy. Agricultural production has undergone significant growth since the 1960s, but this has been insufficient to deal with the growing demand created by the change in the Spanish diet and the increasing trend to focus on livestock farming. The process of globalization has allowed both roles to be reconciled, although in recent decades Spain has accentuated its role as a net importer of biomass from a biophysical perspective, with very significant impacts on third party countries, particularly in Latin America. From a biophysical perspective, the industrialization of Spanish agriculture has entailed negative consequences that threaten the sustainability of Spanish agroecosystems and also negatively affect the sustainability of other territories.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su9122348&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su9122348&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 SpainPublisher:MDPI AG Authors: Daniel López-García; Manuel González de Molina;doi: 10.3390/su13158443
handle: 10261/295994
In recent years, the transition to sustainability at a food systems’ scale has drawn major attention both from the scientific and political arenas. Agroecology has become central to such discussions, while impressive efforts have been made to conceptualize the agroecology scaling process. It has thus become necessary to apply the concept of agroecology transitions to the scale of food systems and in different “real-world” contexts. Scaling local agroecology experiences of production, distribution, and consumption, which are often disconnected and/or disorganized, also reveals emergent research gaps. A critical review was performed in order to establish a transdisciplinary dialogue between both political agroecology and the literature on sustainable food systems. The objective was to build insights into how to advance towards Agroecology-based Local Agri-food Systems (ALAS). Our review unveils emergent questions such as: how to overcome the metabolic rift related to segregated activities along the food chain, how to feed cities sustainably, and how they should relate to the surrounding territories, which social subjects should drive such transitions, and which governance arrangements would be needed. The paper argues in favor of the re-construction of food metabolisms, territorial flows, plural subjects and (bottom-up) governance assemblages, placing life at the center of the food system and going beyond the rural–urban divide.
Sustainability arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13158443&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 11visibility views 11 download downloads 74 Powered bymore_vert Sustainability arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13158443&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 SpainPublisher:MDPI AG Funded by:SGOV | EVALUACION DE LA SOSTENIB...SGOV| EVALUACION DE LA SOSTENIBILIDAD AGRICOLA MEDIANTE SIMULACION E INTEGRACION DE EROSION Y FORMACION DE SUELO A LARGO PLAZOJosé Gómez; Juan Infante-Amate; Manuel De Molina; Tom Vanwalleghem; Encarnación Taguas; Ignacio Lorite;handle: 10261/150335 , 10396/15348
This article is intended as a review of the current situation regarding the impact of olive cultivation in Southern Spain (Andalusia) on soil degradation processes and its progression into yield impacts, due to diminishing soil profile depth and climate change in the sloping areas where it is usually cultivated. Finally, it explores the possible implications in the regional agricultural policy these results might have. It tries to show how the expansion and intensification of olive cultivation in Andalusia, especially since the late 18th century, had as a consequence an acceleration of erosion processes that can be identified by several indicators and techniques. Experimental and model analysis indicates that the rate of soil erosion accelerated since the expansion of mechanization in the late 1950s. In addition, that unsustainable erosion rates have prevailed in the region since the shift to a more intense olive cultivation systems by the end of the 17th Century. Although agroenvironmental measures implemented since the early 2000s have reduced erosion rates, they are still unsustainably high in a large fraction of the olive area in the region. In the case of olive orchards located in steeper areas with soils of lower water-holding capacity (due to coarse texture and stone content), cumulative erosion has already had a high impact on reducing their potential productivity. This is one of the factors that contributes towards increasing the gap between these less intensified orchards in the mountainous areas and those in the hilly areas with more gentle slopes, such as for instance the lower stretches of the Guadalquivir River Valley. In the case of olive orchards in the hilly areas with better soils, easier access to irrigation and lower production costs per unit, the efforts on soil conservation should be oriented towards limiting off-site damage, since the soil water-storage function of these soils may be preserved in the medium term even at the current soil erosion rates. The assessment made in this manuscript should be regarded as an initial approximation, since additional efforts in terms of increasing experimental records (for current or historical erosion) and of improving model analysis, with more comprehensive studies and more robust calibration and validation processes, are required.
Helvia - Repositorio... arrow_drop_down Helvia - Repositorio Institucional de la Universidad de CórdobaArticle . 2014License: CC BYFull-Text: http://dx.doi.org/10.3390/agriculture4020170Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2014Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2014License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agriculture4020170&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 95 citations 95 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
visibility 17visibility views 17 download downloads 90 Powered bymore_vert Helvia - Repositorio... arrow_drop_down Helvia - Repositorio Institucional de la Universidad de CórdobaArticle . 2014License: CC BYFull-Text: http://dx.doi.org/10.3390/agriculture4020170Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2014Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2014License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agriculture4020170&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 SpainPublisher:Elsevier BV Funded by:SSHRCSSHRCManel Pons; Enric Tello; Joan Marull; Gloria I. Guzmán; Manuel González de Molina; Claudio Cattaneo; Claudio Cattaneo; Andrew Watson; Simone Gingrich; Joshua MacFadyen;Along the last century there has been an unprecedented growth in both global food production and related socioecological impacts. The objective of this paper is to analyse the effects of long-term metabolic patterns of agrarian systems on land use and cover changes (LUCC) (...)
Agricultural Systems arrow_drop_down Diposit Digital de la Universitat de BarcelonaArticle . 2019License: CC BY NC NDData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agsy.2019.05.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 39visibility views 39 download downloads 100 Powered bymore_vert Agricultural Systems arrow_drop_down Diposit Digital de la Universitat de BarcelonaArticle . 2019License: CC BY NC NDData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agsy.2019.05.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Funded by:SSHRCSSHRCAuthors: Eduardo Aguilera; Juan Infante-Amate; Manuel González de Molina;Abstract This paper analyses the use of energy in the Spanish Agri-Food System (ASF) between 1960 and 2010. It distinguishes between several different forms of energy (renewable, non-renewable, final and primary), six sectors and up to a hundred activities. The use of energy in the AFS increased 10.2 fold during the period analysed, from 181 TJ to 1855 TJ, between 1960 and 2015. In the first stage, up to 1985, agriculture accounted for the majority of new consumption. However, from that date onwards, consumption in other sectors such as transport, packaging and homes grew at a faster rate. A decomposition analysis reveals that the increase in activity in the sector, in other words managed biomass, explains 46% of the increase in the use of energy, whereas the rest is explained by losses in efficiency, chiefly losses in efficiency within a sector that requires a greater amount of resources per biomass produced. The final energy consumption of the AFS over the total consumption of the economy represents 19.6%, suggesting a significant potential of agri-food policies as means of reducing the use of energy.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2018.07.054&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2018.07.054&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:MDPI AG Funded by:SSHRCSSHRCGuiomar Carranza-Gallego; Gloria Isabel Guzmán; David Soto; Eduardo Aguilera; Inma Villa; Juan Infante-Amate; Antonio Herrera; Manuel González de Molina;doi: 10.3390/su10103724
The high grain yield of modern varieties (MV) respond to the increase in fossil-based inputs, and the widespread belief that they are more productive than old varieties (OV) is biased. This belief focuses only on marketable biomass, without considering the consequences on agroecosystem sustainability of the reductions in other portions of NPP. Additionally, field comparisons of OV and MV were normally conducted under industrialized farming conditions, which is detrimental for OV performance. Both trials carried out in this study comparing wheat OV and MV show that, under Mediterranean rainfed conditions and traditional organic management, aerial and belowground biomass production of OV is higher than that of MV, without significantly decreasing yield and enabling a better competition against weeds. From the data of our trials, bibliographic review and information from historical sources, we have reconstructed the NPP and destinations of biomass of Spanish wheat fields (1900–2000). Varietal replacement entailed the reduction in residues and unharvested biomass (UhB), which involved soil degradation in rainfed cereal fields and undermining heterotrophic trophic webs. Our results suggest that OV can increase the sustainability of rainfed Mediterranean agroecosystems at present through the improvement of soil quality, the reduction of herbicides use, and the recovery of biodiversity.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10103724&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10103724&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 SpainPublisher:Springer Science and Business Media LLC Funded by:SSHRC, EC | HEFTSSHRC ,EC| HEFTTello, Enric; Sacristán, Vera; Olarieta, José Ramon; Cattaneo, Claudio; Marull, Joan; Pons, Manel; Gingrich, Simone; Krausmann, Fridolin; Galán, Elena; Marco, Ines; Padró, Roc; Guzmán, Gloria; González de Molina, Manuel; Cunfer, Geoff; Watson, Andrew; MacFadyen, Joshua; Fraňková, Eva; AGUILERA, EDUARDO; Infante-Amate, Juan; Urrego Mesa, John Alexander; Soto, David; Parcerisas, Lluis; Dupras, Jérôme; Díez Sanjuán, Lucía; Caravaca, Jonathan; Gómez, Laura; Fullana, Onofre; Murray, Ivan; Jover, Gabriel; Cussó, Xavier; Garrabou, Ramon;pmid: 37969112
pmc: PMC10632262
AbstractEarly energy analyses of agriculture revealed that behind higher labor and land productivity of industrial farming, there was a decrease in energy returns on energy (EROI) invested, in comparison to more traditional organic agricultural systems. Studies on recent trends show that efficiency gains in production and use of inputs have again somewhat improved energy returns. However, most of these agricultural energy studies have focused only on external inputs at the crop level, concealing the important role of internal biomass flows that livestock and forestry recirculate within agroecosystems. Here, we synthesize the results of 82 farm systems in North America and Europe from 1830 to 2012 that for the first time show the changing energy profiles of agroecosystems, including livestock and forestry, with a multi-EROI approach that accounts for the energy returns on external inputs, on internal biomass reuses, and on all inputs invested. With this historical circular bioeconomic approach, we found a general trend towards much lower external returns, little or no increases in internal returns, and almost no improvement in total returns. This “energy trap” was driven by shifts towards a growing dependence of crop production on fossil-fueled external inputs, much more intensive livestock production based on feed grains, less forestry, and a structural disintegration of agroecosystem components by increasingly linear industrial farm managements. We conclude that overcoming the energy trap requires nature-based solutions to reduce current dependence on fossil-fueled external industrial inputs and increase the circularity and complexity of agroecosystems to provide healthier diets with less animal products.
Agronomy for Sustain... arrow_drop_down Agronomy for Sustainable DevelopmentArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de la Universitat de BarcelonaArticle . 2023License: CC BYData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2023Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13593-023-00925-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Agronomy for Sustain... arrow_drop_down Agronomy for Sustainable DevelopmentArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de la Universitat de BarcelonaArticle . 2023License: CC BYData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2023Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13593-023-00925-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2018 SpainPublisher:Elsevier BV Funded by:SSHRCSSHRCEduardo Aguilera; Gloria I. Guzmán; Jorge Álvaro-Fuentes; Juan Infante-Amate; Roberto García-Ruiz; Guiomar Carranza-Gallego; David Soto; Manuel González de Molina;Soil organic carbon (SOC) management is key for soil fertility and for mitigation and adaptation to climate change, particularly in desertification-prone areas such as Mediterranean croplands. Industrialization and global change processes affect SOC dynamics in multiple, often opposing, ways. Here we present a detailed SOC balance in Spanish cropland from 1900 to 2008, as a model of a Mediterranean, industrialized agriculture. Net Primary Productivity (NPP) and soil C inputs were estimated based on yield and management data. Changes in SOC stocks were modeled using HSOC, a simple model with one inert and two active C pools, which combines RothC model parameters with humification coefficients. Crop yields increased by 227% during the studied period, but total C exported from the agroecosystem only increased by 73%, total NPP by 30%, and soil C inputs by 20%. There was a continued decline in SOC during the 20th century, and cropland SOC levels in 2008 were 17% below their 1933 peak. SOC trends were driven by historical changes in land uses, management practices and climate. Cropland expansion was the main driver of SOC loss until mid-20th century, followed by the decline in soil C inputs during the fast agricultural industrialization starting in the 1950s, which reduced harvest indices and weed biomass production, particularly in woody cropping systems. C inputs started recovering in the 1980s, mainly through increasing crop residue return. The upward trend in SOC mineralization rates was an increasingly important driver of SOC losses, triggered by irrigation expansion, soil cover loss and climate change-driven temperature rise.
The Science of The T... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAThe Science of The Total EnvironmentArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2017.11.243&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 57 citations 57 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 23visibility views 23 download downloads 259 Powered bymore_vert The Science of The T... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAThe Science of The Total EnvironmentArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2017.11.243&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:MDPI AG Funded by:SSHRCSSHRCAuthors: Guiomar Carranza-Gallego; Gloria I. Guzmán; Roberto Garcia-Ruíz; Manuel González de Molina; +1 AuthorsGuiomar Carranza-Gallego; Gloria I. Guzmán; Roberto Garcia-Ruíz; Manuel González de Molina; Eduardo Aguilera;doi: 10.3390/su11216029
Wheat yields are predicted to decrease over the next decades due to climate change (CC). Mediterranean regions are characterized by low soil fertility and stressful conditions that limit the effect of technological improvements on increasing yield gains, while worsening the negative CC impacts. Additionally, organic farming (OF) lacks specifically adapted genetic material. Accordingly, there is a need to search for varieties adapted to these conditions and whose cultivation may help semi-arid agroecosystems sustainability, focusing on specific agronomic and functional traits. To this purpose, wheat landraces and modern wheat varieties were evaluated under Mediterranean rainfed conditions during three growing seasons under contrasting situations: A conventional farm and an organic farm. Results regarding straw production, weed biomass and biodiversity, and grain N concentration suggest that the cultivation of landraces under Mediterranean rainfed conditions can enhance agroecosystem sustainability through positive effects on ecosystem services such as soil quality, functional biodiversity, or grain protein content, without significant reductions in grain yield. Results highlight the relevant role of wheat landraces as genetic resources for the development of cultivars adapted to Mediterranean agroecosystems conditions, especially for organic farming, but also for conventional agriculture.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11216029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11216029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:MDPI AG Funded by:SSHRCSSHRCAuthors: Manuel González de Molina; Gloria Guzmán Casado;doi: 10.3390/su9010086
This paper documents the origin and conceptual ambiguity of the terms Sustainable, Ecological and Agroecological Intensification. It defines the concept of Ecological Intensification from an agroecological perspective, and examines in energy terms whether it may be sustainable. To illustrate the theory, we apply Land Cost of Sustainable Agriculture (LACAS) methodology to Spanish agriculture, which is representative of Mediterranean agroclimatic conditions. As a result, we demonstrate the impossibility of generalizing an extensive Organic Farming (OF) scenario under the techniques currently used by organic farmers. This is due to the fact that it would bring about a reduction of 13% in agricultural production. Which necessarily means that OF has to be intensified under agroecological criteria. This option is also explored in two scenarios. As a result, we show that it is possible to compensate the yield gap between OF and conventional agriculture by implementing low-entropy internal loop strategies which reduce the land cost of generating the necessary nitrogen flows. However, these cannot exceed the limits established by the structure of Spanish territory. That is, agroecological intensification cannot be prolonged indefinitely over time since it is limited by the land available.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su9010086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su9010086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:MDPI AG Authors: Manuel González de Molina; David Soto Fernández; Juan Infante-Amate; Eduardo Aguilera; +2 AuthorsManuel González de Molina; David Soto Fernández; Juan Infante-Amate; Eduardo Aguilera; Jaime Vila Traver; Gloria Guzmán;doi: 10.3390/su9122348
For a large extent of historiography, the history of Spanish agriculture during the twentieth century is a story of success. However, this narrative has been built on monetary analysis, and it does not usually take into account the effects on rural society and agroecosystems. The aim of this paper is to analyze what has happened from a biophysical perspective to ascertain whether transformations linked with industrialization of agriculture have also been positive. For this, we have integrated the results—some unpublished and others already published—of a broader research project about different aspects of food production from a biophysical perspective in Spain, applying methodologies pertaining to the Social Metabolism. Our research seeks to provide a new narrative, emerging through the consideration of environmental aspects of the process, providing a more complex vision of the process of industrialization in European agriculture. The results show that the industrialization of Spanish agriculture has brought about profound changes in land uses and in the functionality of the biomass produced, increasing pressure on croplands and, paradoxically, facilitating the abandonment of an important proportion of pasture and croplands. This has led to the subordination of a very significant portion of Spanish agroecosystems to the feed demands of intensive livestock farming. This process has been based on the injection of large quantities of external energy. Agricultural production has undergone significant growth since the 1960s, but this has been insufficient to deal with the growing demand created by the change in the Spanish diet and the increasing trend to focus on livestock farming. The process of globalization has allowed both roles to be reconciled, although in recent decades Spain has accentuated its role as a net importer of biomass from a biophysical perspective, with very significant impacts on third party countries, particularly in Latin America. From a biophysical perspective, the industrialization of Spanish agriculture has entailed negative consequences that threaten the sustainability of Spanish agroecosystems and also negatively affect the sustainability of other territories.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su9122348&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su9122348&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 SpainPublisher:MDPI AG Authors: Daniel López-García; Manuel González de Molina;doi: 10.3390/su13158443
handle: 10261/295994
In recent years, the transition to sustainability at a food systems’ scale has drawn major attention both from the scientific and political arenas. Agroecology has become central to such discussions, while impressive efforts have been made to conceptualize the agroecology scaling process. It has thus become necessary to apply the concept of agroecology transitions to the scale of food systems and in different “real-world” contexts. Scaling local agroecology experiences of production, distribution, and consumption, which are often disconnected and/or disorganized, also reveals emergent research gaps. A critical review was performed in order to establish a transdisciplinary dialogue between both political agroecology and the literature on sustainable food systems. The objective was to build insights into how to advance towards Agroecology-based Local Agri-food Systems (ALAS). Our review unveils emergent questions such as: how to overcome the metabolic rift related to segregated activities along the food chain, how to feed cities sustainably, and how they should relate to the surrounding territories, which social subjects should drive such transitions, and which governance arrangements would be needed. The paper argues in favor of the re-construction of food metabolisms, territorial flows, plural subjects and (bottom-up) governance assemblages, placing life at the center of the food system and going beyond the rural–urban divide.
Sustainability arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13158443&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 11visibility views 11 download downloads 74 Powered bymore_vert Sustainability arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13158443&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 SpainPublisher:MDPI AG Funded by:SGOV | EVALUACION DE LA SOSTENIB...SGOV| EVALUACION DE LA SOSTENIBILIDAD AGRICOLA MEDIANTE SIMULACION E INTEGRACION DE EROSION Y FORMACION DE SUELO A LARGO PLAZOJosé Gómez; Juan Infante-Amate; Manuel De Molina; Tom Vanwalleghem; Encarnación Taguas; Ignacio Lorite;handle: 10261/150335 , 10396/15348
This article is intended as a review of the current situation regarding the impact of olive cultivation in Southern Spain (Andalusia) on soil degradation processes and its progression into yield impacts, due to diminishing soil profile depth and climate change in the sloping areas where it is usually cultivated. Finally, it explores the possible implications in the regional agricultural policy these results might have. It tries to show how the expansion and intensification of olive cultivation in Andalusia, especially since the late 18th century, had as a consequence an acceleration of erosion processes that can be identified by several indicators and techniques. Experimental and model analysis indicates that the rate of soil erosion accelerated since the expansion of mechanization in the late 1950s. In addition, that unsustainable erosion rates have prevailed in the region since the shift to a more intense olive cultivation systems by the end of the 17th Century. Although agroenvironmental measures implemented since the early 2000s have reduced erosion rates, they are still unsustainably high in a large fraction of the olive area in the region. In the case of olive orchards located in steeper areas with soils of lower water-holding capacity (due to coarse texture and stone content), cumulative erosion has already had a high impact on reducing their potential productivity. This is one of the factors that contributes towards increasing the gap between these less intensified orchards in the mountainous areas and those in the hilly areas with more gentle slopes, such as for instance the lower stretches of the Guadalquivir River Valley. In the case of olive orchards in the hilly areas with better soils, easier access to irrigation and lower production costs per unit, the efforts on soil conservation should be oriented towards limiting off-site damage, since the soil water-storage function of these soils may be preserved in the medium term even at the current soil erosion rates. The assessment made in this manuscript should be regarded as an initial approximation, since additional efforts in terms of increasing experimental records (for current or historical erosion) and of improving model analysis, with more comprehensive studies and more robust calibration and validation processes, are required.
Helvia - Repositorio... arrow_drop_down Helvia - Repositorio Institucional de la Universidad de CórdobaArticle . 2014License: CC BYFull-Text: http://dx.doi.org/10.3390/agriculture4020170Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2014Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2014License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agriculture4020170&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 95 citations 95 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
visibility 17visibility views 17 download downloads 90 Powered bymore_vert Helvia - Repositorio... arrow_drop_down Helvia - Repositorio Institucional de la Universidad de CórdobaArticle . 2014License: CC BYFull-Text: http://dx.doi.org/10.3390/agriculture4020170Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2014Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2014License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agriculture4020170&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 SpainPublisher:Elsevier BV Funded by:SSHRCSSHRCManel Pons; Enric Tello; Joan Marull; Gloria I. Guzmán; Manuel González de Molina; Claudio Cattaneo; Claudio Cattaneo; Andrew Watson; Simone Gingrich; Joshua MacFadyen;Along the last century there has been an unprecedented growth in both global food production and related socioecological impacts. The objective of this paper is to analyse the effects of long-term metabolic patterns of agrarian systems on land use and cover changes (LUCC) (...)
Agricultural Systems arrow_drop_down Diposit Digital de la Universitat de BarcelonaArticle . 2019License: CC BY NC NDData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agsy.2019.05.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 39visibility views 39 download downloads 100 Powered bymore_vert Agricultural Systems arrow_drop_down Diposit Digital de la Universitat de BarcelonaArticle . 2019License: CC BY NC NDData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agsy.2019.05.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Funded by:SSHRCSSHRCAuthors: Eduardo Aguilera; Juan Infante-Amate; Manuel González de Molina;Abstract This paper analyses the use of energy in the Spanish Agri-Food System (ASF) between 1960 and 2010. It distinguishes between several different forms of energy (renewable, non-renewable, final and primary), six sectors and up to a hundred activities. The use of energy in the AFS increased 10.2 fold during the period analysed, from 181 TJ to 1855 TJ, between 1960 and 2015. In the first stage, up to 1985, agriculture accounted for the majority of new consumption. However, from that date onwards, consumption in other sectors such as transport, packaging and homes grew at a faster rate. A decomposition analysis reveals that the increase in activity in the sector, in other words managed biomass, explains 46% of the increase in the use of energy, whereas the rest is explained by losses in efficiency, chiefly losses in efficiency within a sector that requires a greater amount of resources per biomass produced. The final energy consumption of the AFS over the total consumption of the economy represents 19.6%, suggesting a significant potential of agri-food policies as means of reducing the use of energy.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2018.07.054&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2018.07.054&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:MDPI AG Funded by:SSHRCSSHRCGuiomar Carranza-Gallego; Gloria Isabel Guzmán; David Soto; Eduardo Aguilera; Inma Villa; Juan Infante-Amate; Antonio Herrera; Manuel González de Molina;doi: 10.3390/su10103724
The high grain yield of modern varieties (MV) respond to the increase in fossil-based inputs, and the widespread belief that they are more productive than old varieties (OV) is biased. This belief focuses only on marketable biomass, without considering the consequences on agroecosystem sustainability of the reductions in other portions of NPP. Additionally, field comparisons of OV and MV were normally conducted under industrialized farming conditions, which is detrimental for OV performance. Both trials carried out in this study comparing wheat OV and MV show that, under Mediterranean rainfed conditions and traditional organic management, aerial and belowground biomass production of OV is higher than that of MV, without significantly decreasing yield and enabling a better competition against weeds. From the data of our trials, bibliographic review and information from historical sources, we have reconstructed the NPP and destinations of biomass of Spanish wheat fields (1900–2000). Varietal replacement entailed the reduction in residues and unharvested biomass (UhB), which involved soil degradation in rainfed cereal fields and undermining heterotrophic trophic webs. Our results suggest that OV can increase the sustainability of rainfed Mediterranean agroecosystems at present through the improvement of soil quality, the reduction of herbicides use, and the recovery of biodiversity.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10103724&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10103724&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 SpainPublisher:Springer Science and Business Media LLC Funded by:SSHRC, EC | HEFTSSHRC ,EC| HEFTTello, Enric; Sacristán, Vera; Olarieta, José Ramon; Cattaneo, Claudio; Marull, Joan; Pons, Manel; Gingrich, Simone; Krausmann, Fridolin; Galán, Elena; Marco, Ines; Padró, Roc; Guzmán, Gloria; González de Molina, Manuel; Cunfer, Geoff; Watson, Andrew; MacFadyen, Joshua; Fraňková, Eva; AGUILERA, EDUARDO; Infante-Amate, Juan; Urrego Mesa, John Alexander; Soto, David; Parcerisas, Lluis; Dupras, Jérôme; Díez Sanjuán, Lucía; Caravaca, Jonathan; Gómez, Laura; Fullana, Onofre; Murray, Ivan; Jover, Gabriel; Cussó, Xavier; Garrabou, Ramon;pmid: 37969112
pmc: PMC10632262
AbstractEarly energy analyses of agriculture revealed that behind higher labor and land productivity of industrial farming, there was a decrease in energy returns on energy (EROI) invested, in comparison to more traditional organic agricultural systems. Studies on recent trends show that efficiency gains in production and use of inputs have again somewhat improved energy returns. However, most of these agricultural energy studies have focused only on external inputs at the crop level, concealing the important role of internal biomass flows that livestock and forestry recirculate within agroecosystems. Here, we synthesize the results of 82 farm systems in North America and Europe from 1830 to 2012 that for the first time show the changing energy profiles of agroecosystems, including livestock and forestry, with a multi-EROI approach that accounts for the energy returns on external inputs, on internal biomass reuses, and on all inputs invested. With this historical circular bioeconomic approach, we found a general trend towards much lower external returns, little or no increases in internal returns, and almost no improvement in total returns. This “energy trap” was driven by shifts towards a growing dependence of crop production on fossil-fueled external inputs, much more intensive livestock production based on feed grains, less forestry, and a structural disintegration of agroecosystem components by increasingly linear industrial farm managements. We conclude that overcoming the energy trap requires nature-based solutions to reduce current dependence on fossil-fueled external industrial inputs and increase the circularity and complexity of agroecosystems to provide healthier diets with less animal products.
Agronomy for Sustain... arrow_drop_down Agronomy for Sustainable DevelopmentArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de la Universitat de BarcelonaArticle . 2023License: CC BYData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2023Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13593-023-00925-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Agronomy for Sustain... arrow_drop_down Agronomy for Sustainable DevelopmentArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de la Universitat de BarcelonaArticle . 2023License: CC BYData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2023Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13593-023-00925-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu