- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Authors: Gabrielle Ücker Thum; Rafael Pereira Maciel; Phelype Haron Oleinik; Luiz Alberto Oliveira Rocha; +4 AuthorsGabrielle Ücker Thum; Rafael Pereira Maciel; Phelype Haron Oleinik; Luiz Alberto Oliveira Rocha; Elizaldo Domingues dos Santos; Flavio Medeiros Seibt; Bianca Neves Machado; Liércio André Isoldi;This study numerically analyzes a submerged horizontal plate (SHP) device subjected to both regular and irregular waves. This device can be used either as a breakwater or a wave energy converter (WEC). The WaveMIMO methodology was applied for the numerical generation and wave propagation of the sea state of the Rio Grande coast in southern Brazil. The finite volume method was employed to solve conservation equations for mass, momentum, and volume fraction transport. The volume of fluid model was employed to handle the water-air mixture. The SHP length (Lp) effects were carried out in five cases. Results indicate that relying solely on regular waves in numerical studies is insufficient for accurately determining the real hydrodynamic behavior. The efficiency of the SHP as a breakwater and WEC varied depending on the wave approach. Specifically, the SHP demonstrates its highest breakwater efficiency in reducing wave height at 2.5Lp for regular waves and 3Lp for irregular waves. As a WEC, it achieves its highest axial velocity at 3Lp for regular waves and 2Lp for irregular waves. Since the literature lacks studies on SHP devices under the incidence of realistic irregular waves, this study significantly contributes to the state of the art.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/fluids9080188&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/fluids9080188&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Ana Paula Giussani Mocellin; Rafael Pereira Maciel; Phelype Haron Oleinik; Elizaldo Domingues dos Santos; +4 AuthorsAna Paula Giussani Mocellin; Rafael Pereira Maciel; Phelype Haron Oleinik; Elizaldo Domingues dos Santos; Luiz Alberto Oliveira Rocha; Juliana Sartori Ziebell; Liércio André Isoldi; Bianca Neves Machado;doi: 10.3390/jeta1010003
Given the increasing global energy demand, the present study aimed to analyze the influence of bathymetry on the generation and propagation of realistic irregular waves and to geometrically optimize a wave energy converter (WEC) device of the oscillating water column (OWC) type. In essence, the OWC WEC can be defined as a partially submerged structure that is open to the sea below the free water surface (hydropneumatic chamber) and connected to a duct that is open to the atmosphere (in which the turbine is installed); its operational principle is based on the compression and decompression of air inside the hydropneumatic chamber due to incident waves, which causes an alternating air flow that drives the turbine and enables electricity generation. The computational fluid dynamics software package Fluent was used to numerically reproduce the OWC WEC according to its operational principles, with a simplification that allowed its available power to be determined, i.e., without considering the turbine. The volume of fluid (VOF) multiphase model was employed to treat the interface between the phases. The WaveMIMO methodology was used to generate realistic irregular waves mimicking those that occur on the coast of Tramandaí, Rio Grande do Sul, Brazil. The constructal design method, along with an exhaustive search technique, was employed. The degree of freedom H1/L (the ratio between the height and length of the hydropneumatic chamber of the OWC) was varied to maximize the available power in the device. The results showed that realistic irregular waves were adequately generated within both wave channels, with and without bathymetry, and that wave propagation in both computational domains was not significantly influenced by the wave channel bathymetry. Regarding the geometric evaluation, the optimal geometry found, H1/Lo = 0.1985, which maximized the available hydropneumatic power, i.e., the one that yielded a power of 25.44 W, was 2.28 times more efficient than the worst case found, which had H1/L = 2.2789.
Journal of Experimen... arrow_drop_down Journal of Experimental and Theoretical AnalysesArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jeta1010003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Experimen... arrow_drop_down Journal of Experimental and Theoretical AnalysesArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jeta1010003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Rafael Pereira Maciel; Phelype Haron Oleinik; Elizaldo Domingues Dos Santos; Luiz Alberto Oliveira Rocha; +3 AuthorsRafael Pereira Maciel; Phelype Haron Oleinik; Elizaldo Domingues Dos Santos; Luiz Alberto Oliveira Rocha; Bianca Neves Machado; Mateus das Neves Gomes; Liércio André Isoldi;doi: 10.3390/jmse11112174
In this work, we conducted a numerical analysis of an oscillating water column (OWC) wave energy converter (WEC) device. The main objective of this research was to conduct a geometric evaluation of the device by defining an optimal configuration that maximized its available hydrodynamic power while employing realistic sea data. To achieve this objective, the WaveMIMO methodology was used. This is characterized by the conversion of realistic sea data into time series of the free surface elevation. These time series were processed and transformed into water velocity components, enabling transient velocity data to be used as boundary conditions for the generation of numerical irregular waves in the Fluent 2019 R2 software. Regular waves representative of the sea data were also generated in order to evaluate the hydrodynamic performance of the device in comparison to the realistic irregular waves. For the geometric analysis, the constructal design method was utilized. The hydropneumatic chamber volume and the total volume of the device were adopted as geometric constraints and remained constant. Three degrees of freedom (DOF) were used for this study: H1/L is the ratio between the height and length of the hydropneumatic chamber, whose values were varied, and H2/l (ratio between height and length of the turbine duct) and H3 (submergence depth of hydropneumatic chamber) were kept constant. The best performance was observed for the device geometry with H1/L= 0.1985, which presented an available hydropneumatic power Phyd of 29.63 W. This value was 4.34 times higher than the power generated by the worst geometry performance, which was 6.83 W, obtained with an H1/L value of 2.2789, and 2.49 times higher than the power obtained by the device with the same dimensions as those from the one on Pico island, which was 11.89 W. When the optimal geometry was subjected to regular waves, a Phyd of 30.50 W was encountered.
Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse11112174&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse11112174&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Lenon A. Cisco; Rafael P. Maciel; Phelype H. Oleinik; Elizaldo D. dos Santos; Mateus N. Gomes; Luiz A. O. Rocha; Liércio A. Isoldi; Bianca N. Machado;The present work proposes a numerical study of an overtopping wave energy converter. The goal of this study is to evaluate the theoretical power that can be converted by an overtopping device subjected to sea waves in the coastal region of Tramandaí, Brazil. For this, realistic irregular waves were generated using the WaveMIMO methodology, which allows numerical simulation of sea waves through the imposition of transient discrete data as prescribed velocity. For the numerical analysis, a two-dimensional computational model was employed using Fluent, where the device was inserted into a wave channel. The volume of the fluid multiphase model was used for the treatment of the air–water interaction. The results indicated that the free surface elevation obtained using the WaveMIMO methodology, which converts a realistic sea state into a free surface elevation series, was adequately represented. The evaluation of the theoretical power of the overtopping device during around 45 min indicated that 471.28 W was obtained. In addition, a monthly generation projection showed that this device would supply 100% of the electricity demand of a school in the city of Tramandaí. These results demonstrated that the conversion of sea wave energy into electrical energy can contribute to supplying electricity demand, especially for coastal cities.
Fluids arrow_drop_down FluidsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2311-5521/7/11/359/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/fluids7110359&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Fluids arrow_drop_down FluidsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2311-5521/7/11/359/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/fluids7110359&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 ItalyPublisher:MDPI AG Rafael P. Maciel; Cristiano Fragassa; Bianca N. Machado; Luiz A. O. Rocha; Elizaldo D. dos Santos; Mateus N. Gomes; Liércio A. Isoldi;doi: 10.3390/jmse9080896
handle: 11585/956686
This work presents a two-dimensional numerical analysis of a wave channel and a oscillating water column (OWC) device. The main goal is to validate a methodology which uses transient velocity data as a means to impose velocity boundary condition for the generation of numerical waves. To achieve this, a numerical wave channel was simulated using regular waves with the same parameters as those used in a laboratory experiment. First, these waves were imposed as prescribed velocity boundary condition and compared with the analytical solution; then, the OWC device was inserted into the computational domain, aiming to validate this methodology. For the numerical analysis, computational fluid dynamics ANSYS Fluent software was employed, and to tackle with water–air interaction, the nonlinear multiphase model volume of fluid (VOF) was applied. Although the results obtained through the use of discrete data as velocity boundary condition presented a little disparity; in general, they showed a good agreement with laboratory experiment results. Since many studies use regular waves, there is a lack of analysis with ocean waves realistic data; thus, the proposed methodology stands out for its capacity of using realistic sea state data in numerical simulations regarding wave energy converters (WECs).
Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2077-1312/9/8/896/pdfData sources: Multidisciplinary Digital Publishing InstituteJournal of Marine Science and EngineeringArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse9080896&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2077-1312/9/8/896/pdfData sources: Multidisciplinary Digital Publishing InstituteJournal of Marine Science and EngineeringArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse9080896&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Authors: Gabrielle Ücker Thum; Rafael Pereira Maciel; Phelype Haron Oleinik; Luiz Alberto Oliveira Rocha; +4 AuthorsGabrielle Ücker Thum; Rafael Pereira Maciel; Phelype Haron Oleinik; Luiz Alberto Oliveira Rocha; Elizaldo Domingues dos Santos; Flavio Medeiros Seibt; Bianca Neves Machado; Liércio André Isoldi;This study numerically analyzes a submerged horizontal plate (SHP) device subjected to both regular and irregular waves. This device can be used either as a breakwater or a wave energy converter (WEC). The WaveMIMO methodology was applied for the numerical generation and wave propagation of the sea state of the Rio Grande coast in southern Brazil. The finite volume method was employed to solve conservation equations for mass, momentum, and volume fraction transport. The volume of fluid model was employed to handle the water-air mixture. The SHP length (Lp) effects were carried out in five cases. Results indicate that relying solely on regular waves in numerical studies is insufficient for accurately determining the real hydrodynamic behavior. The efficiency of the SHP as a breakwater and WEC varied depending on the wave approach. Specifically, the SHP demonstrates its highest breakwater efficiency in reducing wave height at 2.5Lp for regular waves and 3Lp for irregular waves. As a WEC, it achieves its highest axial velocity at 3Lp for regular waves and 2Lp for irregular waves. Since the literature lacks studies on SHP devices under the incidence of realistic irregular waves, this study significantly contributes to the state of the art.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/fluids9080188&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/fluids9080188&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Ana Paula Giussani Mocellin; Rafael Pereira Maciel; Phelype Haron Oleinik; Elizaldo Domingues dos Santos; +4 AuthorsAna Paula Giussani Mocellin; Rafael Pereira Maciel; Phelype Haron Oleinik; Elizaldo Domingues dos Santos; Luiz Alberto Oliveira Rocha; Juliana Sartori Ziebell; Liércio André Isoldi; Bianca Neves Machado;doi: 10.3390/jeta1010003
Given the increasing global energy demand, the present study aimed to analyze the influence of bathymetry on the generation and propagation of realistic irregular waves and to geometrically optimize a wave energy converter (WEC) device of the oscillating water column (OWC) type. In essence, the OWC WEC can be defined as a partially submerged structure that is open to the sea below the free water surface (hydropneumatic chamber) and connected to a duct that is open to the atmosphere (in which the turbine is installed); its operational principle is based on the compression and decompression of air inside the hydropneumatic chamber due to incident waves, which causes an alternating air flow that drives the turbine and enables electricity generation. The computational fluid dynamics software package Fluent was used to numerically reproduce the OWC WEC according to its operational principles, with a simplification that allowed its available power to be determined, i.e., without considering the turbine. The volume of fluid (VOF) multiphase model was employed to treat the interface between the phases. The WaveMIMO methodology was used to generate realistic irregular waves mimicking those that occur on the coast of Tramandaí, Rio Grande do Sul, Brazil. The constructal design method, along with an exhaustive search technique, was employed. The degree of freedom H1/L (the ratio between the height and length of the hydropneumatic chamber of the OWC) was varied to maximize the available power in the device. The results showed that realistic irregular waves were adequately generated within both wave channels, with and without bathymetry, and that wave propagation in both computational domains was not significantly influenced by the wave channel bathymetry. Regarding the geometric evaluation, the optimal geometry found, H1/Lo = 0.1985, which maximized the available hydropneumatic power, i.e., the one that yielded a power of 25.44 W, was 2.28 times more efficient than the worst case found, which had H1/L = 2.2789.
Journal of Experimen... arrow_drop_down Journal of Experimental and Theoretical AnalysesArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jeta1010003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Experimen... arrow_drop_down Journal of Experimental and Theoretical AnalysesArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jeta1010003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Rafael Pereira Maciel; Phelype Haron Oleinik; Elizaldo Domingues Dos Santos; Luiz Alberto Oliveira Rocha; +3 AuthorsRafael Pereira Maciel; Phelype Haron Oleinik; Elizaldo Domingues Dos Santos; Luiz Alberto Oliveira Rocha; Bianca Neves Machado; Mateus das Neves Gomes; Liércio André Isoldi;doi: 10.3390/jmse11112174
In this work, we conducted a numerical analysis of an oscillating water column (OWC) wave energy converter (WEC) device. The main objective of this research was to conduct a geometric evaluation of the device by defining an optimal configuration that maximized its available hydrodynamic power while employing realistic sea data. To achieve this objective, the WaveMIMO methodology was used. This is characterized by the conversion of realistic sea data into time series of the free surface elevation. These time series were processed and transformed into water velocity components, enabling transient velocity data to be used as boundary conditions for the generation of numerical irregular waves in the Fluent 2019 R2 software. Regular waves representative of the sea data were also generated in order to evaluate the hydrodynamic performance of the device in comparison to the realistic irregular waves. For the geometric analysis, the constructal design method was utilized. The hydropneumatic chamber volume and the total volume of the device were adopted as geometric constraints and remained constant. Three degrees of freedom (DOF) were used for this study: H1/L is the ratio between the height and length of the hydropneumatic chamber, whose values were varied, and H2/l (ratio between height and length of the turbine duct) and H3 (submergence depth of hydropneumatic chamber) were kept constant. The best performance was observed for the device geometry with H1/L= 0.1985, which presented an available hydropneumatic power Phyd of 29.63 W. This value was 4.34 times higher than the power generated by the worst geometry performance, which was 6.83 W, obtained with an H1/L value of 2.2789, and 2.49 times higher than the power obtained by the device with the same dimensions as those from the one on Pico island, which was 11.89 W. When the optimal geometry was subjected to regular waves, a Phyd of 30.50 W was encountered.
Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse11112174&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse11112174&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Lenon A. Cisco; Rafael P. Maciel; Phelype H. Oleinik; Elizaldo D. dos Santos; Mateus N. Gomes; Luiz A. O. Rocha; Liércio A. Isoldi; Bianca N. Machado;The present work proposes a numerical study of an overtopping wave energy converter. The goal of this study is to evaluate the theoretical power that can be converted by an overtopping device subjected to sea waves in the coastal region of Tramandaí, Brazil. For this, realistic irregular waves were generated using the WaveMIMO methodology, which allows numerical simulation of sea waves through the imposition of transient discrete data as prescribed velocity. For the numerical analysis, a two-dimensional computational model was employed using Fluent, where the device was inserted into a wave channel. The volume of the fluid multiphase model was used for the treatment of the air–water interaction. The results indicated that the free surface elevation obtained using the WaveMIMO methodology, which converts a realistic sea state into a free surface elevation series, was adequately represented. The evaluation of the theoretical power of the overtopping device during around 45 min indicated that 471.28 W was obtained. In addition, a monthly generation projection showed that this device would supply 100% of the electricity demand of a school in the city of Tramandaí. These results demonstrated that the conversion of sea wave energy into electrical energy can contribute to supplying electricity demand, especially for coastal cities.
Fluids arrow_drop_down FluidsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2311-5521/7/11/359/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/fluids7110359&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Fluids arrow_drop_down FluidsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2311-5521/7/11/359/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/fluids7110359&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 ItalyPublisher:MDPI AG Rafael P. Maciel; Cristiano Fragassa; Bianca N. Machado; Luiz A. O. Rocha; Elizaldo D. dos Santos; Mateus N. Gomes; Liércio A. Isoldi;doi: 10.3390/jmse9080896
handle: 11585/956686
This work presents a two-dimensional numerical analysis of a wave channel and a oscillating water column (OWC) device. The main goal is to validate a methodology which uses transient velocity data as a means to impose velocity boundary condition for the generation of numerical waves. To achieve this, a numerical wave channel was simulated using regular waves with the same parameters as those used in a laboratory experiment. First, these waves were imposed as prescribed velocity boundary condition and compared with the analytical solution; then, the OWC device was inserted into the computational domain, aiming to validate this methodology. For the numerical analysis, computational fluid dynamics ANSYS Fluent software was employed, and to tackle with water–air interaction, the nonlinear multiphase model volume of fluid (VOF) was applied. Although the results obtained through the use of discrete data as velocity boundary condition presented a little disparity; in general, they showed a good agreement with laboratory experiment results. Since many studies use regular waves, there is a lack of analysis with ocean waves realistic data; thus, the proposed methodology stands out for its capacity of using realistic sea state data in numerical simulations regarding wave energy converters (WECs).
Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2077-1312/9/8/896/pdfData sources: Multidisciplinary Digital Publishing InstituteJournal of Marine Science and EngineeringArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse9080896&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2077-1312/9/8/896/pdfData sources: Multidisciplinary Digital Publishing InstituteJournal of Marine Science and EngineeringArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse9080896&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu