- home
- Advanced Search
- Energy Research
- 9. Industry and infrastructure
- Energy Research
- 9. Industry and infrastructure
description Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Institute of Electrical and Electronics Engineers (IEEE) Zhimei Zhang; Rui Yao; Shaowei Huang; Ying Chen; Shengwei Mei; Kai Sun;In the analysis of cascading outages and blackouts in power systems, risky cascading fault chains should be accurately identified in order to do further block or alleviate blackouts. However, the huge computational burden makes online analysis difficult. In this paper, an online search method for representative risky fault chains based on reinforcement learning and knowledge transfer is proposed. This method aims at promoting efficiency by exploiting similarities of adjacent power flow snapshots in operations. After the “representative risky fault chain” is defined, a framework of tree search based on Markov Decision Process and Q-learning is constructed. The knowledge in past runs is accumulated offline and then applied online, with a mechanism of knowledge transition and extension. The proposed learning based approach is verified on an illustrative 39-bus system with different loading levels, and simulations are carried out on a real-world 1000-bus power grid in China to show the effectiveness and efficiency of the proposed approach.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2019.2951171&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2019.2951171&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Institute of Electrical and Electronics Engineers (IEEE) Zhimei Zhang; Rui Yao; Shaowei Huang; Ying Chen; Shengwei Mei; Kai Sun;In the analysis of cascading outages and blackouts in power systems, risky cascading fault chains should be accurately identified in order to do further block or alleviate blackouts. However, the huge computational burden makes online analysis difficult. In this paper, an online search method for representative risky fault chains based on reinforcement learning and knowledge transfer is proposed. This method aims at promoting efficiency by exploiting similarities of adjacent power flow snapshots in operations. After the “representative risky fault chain” is defined, a framework of tree search based on Markov Decision Process and Q-learning is constructed. The knowledge in past runs is accumulated offline and then applied online, with a mechanism of knowledge transition and extension. The proposed learning based approach is verified on an illustrative 39-bus system with different loading levels, and simulations are carried out on a real-world 1000-bus power grid in China to show the effectiveness and efficiency of the proposed approach.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2019.2951171&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2019.2951171&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu