- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2014 SpainPublisher:Springer Science and Business Media LLC Funded by:NWO | Visitor Dr. Steven Quake, EC | NONCODEVOLNWO| Visitor Dr. Steven Quake ,EC| NONCODEVOLYong Shi; Toni Gabaldón; Toni Gabaldón; Pengshan Zhao; Guoxiong Chen; Xiao-Fei Ma; Salvador Capella-Gutierrez; Xin Zhao;Sand rice (Agriophyllum squarrosum) is an annual desert plant adapted to mobile sand dunes in arid and semi-arid regions of Central Asia. The sand rice seeds have excellent nutrition value and have been historically consumed by local populations in the desert regions of northwest China. Sand rice is a potential food crop resilient to ongoing climate change; however, partly due to the scarcity of genetic information, this species has undergone only little agronomic modifications through classical breeding during recent years.We generated a deep transcriptomic sequencing of sand rice, which uncovers 67,741 unigenes. Phylogenetic analysis based on 221 single-copy genes showed close relationship between sand rice and the recently domesticated crop sugar beet. Transcriptomic comparisons also showed a high level of global sequence conservation between these two species. Conservation of sand rice and sugar beet orthologs assigned to response to salt stress gene ontology term suggests that sand rice is also a potential salt tolerant plant. Furthermore, sand rice is far more tolerant to high temperature. A set of genes likely relevant for resistance to heat stress, was functionally annotated according to expression levels, sequence annotation, and comparisons corresponding transcriptome profiling results in Arabidopsis.The present work provides abundant genomic information for functional dissection of the important traits in sand rice. Future screening the genetic variation among different ecotypes and constructing a draft genome sequence will further facilitate agronomic trait improvement and final domestication of sand rice.
BMC Genomics arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTAMACO (Monografies Acadèmiques Catalanes en Obert)Article . 2025License: CC BYData sources: MACO (Monografies Acadèmiques Catalanes en Obert)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/1471-2164-15-872&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert BMC Genomics arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTAMACO (Monografies Acadèmiques Catalanes en Obert)Article . 2025License: CC BYData sources: MACO (Monografies Acadèmiques Catalanes en Obert)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/1471-2164-15-872&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2013 Spain, Spain, Germany, SpainPublisher:Springer Science and Business Media LLC Authors: Dohm, Juliane C; Minoche, André E; Holtgräwe, Daniela; Capella-Gutiérrez, Salvador; +15 AuthorsDohm, Juliane C; Minoche, André E; Holtgräwe, Daniela; Capella-Gutiérrez, Salvador; Zakrzewski, Falk; Tafer, Hakim; Rupp, Oliver; Rosleff Sörensen, Thomas; Stracke, Ralf; Reinhardt, Richard; Goesmann, Alexander; Kraft, Thomas; Schulz, Britta; Stadler, Peter F; Schmidt, Thomas; Gabaldón, Toni; Lehrach, Hans; Weisshaar, Bernd; Himmelbauer, Heinz;Sugar beet (Beta vulgaris ssp. vulgaris) is an important crop of temperate climates which provides nearly 30% of the world's annual sugar production and is a source for bioethanol and animal feed. The species belongs to the order of Caryophylalles, is diploid with 2n = 18 chromosomes, has an estimated genome size of 714-758 megabases and shares an ancient genome triplication with other eudicot plants. Leafy beets have been cultivated since Roman times, but sugar beet is one of the most recently domesticated crops. It arose in the late eighteenth century when lines accumulating sugar in the storage root were selected from crosses made with chard and fodder beet. Here we present a reference genome sequence for sugar beet as the first non-rosid, non-asterid eudicot genome, advancing comparative genomics and phylogenetic reconstructions. The genome sequence comprises 567 megabases, of which 85% could be assigned to chromosomes. The assembly covers a large proportion of the repetitive sequence content that was estimated to be 63%. We predicted 27,421 protein-coding genes supported by transcript data and annotated them on the basis of sequence homology. Phylogenetic analyses provided evidence for the separation of Caryophyllales before the split of asterids and rosids, and revealed lineage-specific gene family expansions and losses. We sequenced spinach (Spinacia oleracea), another Caryophyllales species, and validated features that separate this clade from rosids and asterids. Intraspecific genomic variation was analysed based on the genome sequences of sea beet (Beta vulgaris ssp. maritima; progenitor of all beet crops) and four additional sugar beet accessions. We identified seven million variant positions in the reference genome, and also large regions of low variability, indicating artificial selection. The sugar beet genome sequence enables the identification of genes affecting agronomically relevant traits, supports molecular breeding and maximizes the plant's potential in energy biotechnology.
Nature arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTAPublications at Bielefeld UniversityArticle . 2014License: "In Copyright" Rights StatementData sources: Publications at Bielefeld UniversityPublications at Bielefeld UniversityOther literature type . 2014License: "In Copyright" Rights StatementData sources: Publications at Bielefeld UniversityMACO (Monografies Acadèmiques Catalanes en Obert)Article . 2025License: CC BY NC SAData sources: MACO (Monografies Acadèmiques Catalanes en Obert)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature12817&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 548 citations 548 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Nature arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTAPublications at Bielefeld UniversityArticle . 2014License: "In Copyright" Rights StatementData sources: Publications at Bielefeld UniversityPublications at Bielefeld UniversityOther literature type . 2014License: "In Copyright" Rights StatementData sources: Publications at Bielefeld UniversityMACO (Monografies Acadèmiques Catalanes en Obert)Article . 2025License: CC BY NC SAData sources: MACO (Monografies Acadèmiques Catalanes en Obert)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature12817&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2017 Spain, Italy, Australia, Spain, United Kingdom, Spain, United Kingdom, Italy, Spain, DenmarkPublisher:F1000 Research Ltd Funded by:EC | ELIXIR-EXCELERATE, EC | CORBELEC| ELIXIR-EXCELERATE ,EC| CORBELManuel Corpas; Horst Pichler; Ferran Sanz; Jon Ison; Rafael C. Jimenez; Brane Leskošek; Rowland Mosbergen; Radoslaw Suchecki; Bérénice Batut; Rob Hooft; Monther Alhamdoosh; Carole Goble; Harry Anton Talvik; Yasset Perez-Riverol; Victoria Stodden; Petr Holub; Bernard J. Pope; Ilian T. Todorov; Jonas Hagberg; Martin Cook; Maria Victoria Schneider; Daniel S. Katz; Mateusz Kuzak; Luis J. Oliveira; Josep Ll. Gelpi; Nicola Mulder; Alejandra Gonzalez-Beltran; Federico Gomez; Radka Svobodová Vařeková; Radka Svobodová Vařeková; Leyla Garcia; Andrew Treloar; Mikael Borg; Philippa C. Griffin; Daniel Vaughan; Robert Pergl; Steve Crouch; Sonika Tyagi; Salvador Capella-Gutierrez; Xiaochuan Wang; Madison Flannery; Allegra Via; Montserrat González Ferreiro; Björn Grüning; Michelle Barker; Nathan S. Watson-Haigh; Maarten van Gompel; Simon Gladman; Neil Chue Hong; David Thomas Mellor;pmid: 28751965
pmc: PMC5490478
handle: 10230/33094 , 20.500.14243/424036 , 11573/1663549 , 11343/256476
pmid: 28751965
pmc: PMC5490478
handle: 10230/33094 , 20.500.14243/424036 , 11573/1663549 , 11343/256476
Scientific research relies on computer software, yet software is not always developed following practices that ensure its quality and sustainability. This manuscript does not aim to propose new software development best practices, but rather to provide simple recommendations that encourage the adoption of existing best practices. Software development best practices promote better quality software, and better quality software improves the reproducibility and reusability of research. These recommendations are designed around Open Source values, and provide practical suggestions that contribute to making research software and its source code more discoverable, reusable and transparent. This manuscript is aimed at developers, but also at organisations, projects, journals and funders that can increase the quality and sustainability of research software by encouraging the adoption of these recommendations.
F1000Research arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/11343/256476Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTAOxford University Research ArchiveArticle . 2017License: CC BYData sources: Oxford University Research ArchiveOnline Research Database In TechnologyArticle . 2017Data sources: Online Research Database In TechnologyThe University of Manchester - Institutional RepositoryArticle . 2017Data sources: The University of Manchester - Institutional RepositoryDiposit Digital de la Universitat de BarcelonaArticle . 2017License: CC BYData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTAArchivio della ricerca- Università di Roma La SapienzaArticle . 2017Data sources: Archivio della ricerca- Università di Roma La SapienzaMACO (Monografies Acadèmiques Catalanes en Obert)Article . 2025License: CC BYData sources: MACO (Monografies Acadèmiques Catalanes en Obert)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.12688/f1000research.11407.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 94 citations 94 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 97visibility views 97 download downloads 84 Powered bymore_vert F1000Research arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/11343/256476Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTAOxford University Research ArchiveArticle . 2017License: CC BYData sources: Oxford University Research ArchiveOnline Research Database In TechnologyArticle . 2017Data sources: Online Research Database In TechnologyThe University of Manchester - Institutional RepositoryArticle . 2017Data sources: The University of Manchester - Institutional RepositoryDiposit Digital de la Universitat de BarcelonaArticle . 2017License: CC BYData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTAArchivio della ricerca- Università di Roma La SapienzaArticle . 2017Data sources: Archivio della ricerca- Università di Roma La SapienzaMACO (Monografies Acadèmiques Catalanes en Obert)Article . 2025License: CC BYData sources: MACO (Monografies Acadèmiques Catalanes en Obert)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.12688/f1000research.11407.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2014 SpainPublisher:Springer Science and Business Media LLC Funded by:NWO | Visitor Dr. Steven Quake, EC | NONCODEVOLNWO| Visitor Dr. Steven Quake ,EC| NONCODEVOLYong Shi; Toni Gabaldón; Toni Gabaldón; Pengshan Zhao; Guoxiong Chen; Xiao-Fei Ma; Salvador Capella-Gutierrez; Xin Zhao;Sand rice (Agriophyllum squarrosum) is an annual desert plant adapted to mobile sand dunes in arid and semi-arid regions of Central Asia. The sand rice seeds have excellent nutrition value and have been historically consumed by local populations in the desert regions of northwest China. Sand rice is a potential food crop resilient to ongoing climate change; however, partly due to the scarcity of genetic information, this species has undergone only little agronomic modifications through classical breeding during recent years.We generated a deep transcriptomic sequencing of sand rice, which uncovers 67,741 unigenes. Phylogenetic analysis based on 221 single-copy genes showed close relationship between sand rice and the recently domesticated crop sugar beet. Transcriptomic comparisons also showed a high level of global sequence conservation between these two species. Conservation of sand rice and sugar beet orthologs assigned to response to salt stress gene ontology term suggests that sand rice is also a potential salt tolerant plant. Furthermore, sand rice is far more tolerant to high temperature. A set of genes likely relevant for resistance to heat stress, was functionally annotated according to expression levels, sequence annotation, and comparisons corresponding transcriptome profiling results in Arabidopsis.The present work provides abundant genomic information for functional dissection of the important traits in sand rice. Future screening the genetic variation among different ecotypes and constructing a draft genome sequence will further facilitate agronomic trait improvement and final domestication of sand rice.
BMC Genomics arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTAMACO (Monografies Acadèmiques Catalanes en Obert)Article . 2025License: CC BYData sources: MACO (Monografies Acadèmiques Catalanes en Obert)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/1471-2164-15-872&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert BMC Genomics arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTAMACO (Monografies Acadèmiques Catalanes en Obert)Article . 2025License: CC BYData sources: MACO (Monografies Acadèmiques Catalanes en Obert)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/1471-2164-15-872&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2013 Spain, Spain, Germany, SpainPublisher:Springer Science and Business Media LLC Authors: Dohm, Juliane C; Minoche, André E; Holtgräwe, Daniela; Capella-Gutiérrez, Salvador; +15 AuthorsDohm, Juliane C; Minoche, André E; Holtgräwe, Daniela; Capella-Gutiérrez, Salvador; Zakrzewski, Falk; Tafer, Hakim; Rupp, Oliver; Rosleff Sörensen, Thomas; Stracke, Ralf; Reinhardt, Richard; Goesmann, Alexander; Kraft, Thomas; Schulz, Britta; Stadler, Peter F; Schmidt, Thomas; Gabaldón, Toni; Lehrach, Hans; Weisshaar, Bernd; Himmelbauer, Heinz;Sugar beet (Beta vulgaris ssp. vulgaris) is an important crop of temperate climates which provides nearly 30% of the world's annual sugar production and is a source for bioethanol and animal feed. The species belongs to the order of Caryophylalles, is diploid with 2n = 18 chromosomes, has an estimated genome size of 714-758 megabases and shares an ancient genome triplication with other eudicot plants. Leafy beets have been cultivated since Roman times, but sugar beet is one of the most recently domesticated crops. It arose in the late eighteenth century when lines accumulating sugar in the storage root were selected from crosses made with chard and fodder beet. Here we present a reference genome sequence for sugar beet as the first non-rosid, non-asterid eudicot genome, advancing comparative genomics and phylogenetic reconstructions. The genome sequence comprises 567 megabases, of which 85% could be assigned to chromosomes. The assembly covers a large proportion of the repetitive sequence content that was estimated to be 63%. We predicted 27,421 protein-coding genes supported by transcript data and annotated them on the basis of sequence homology. Phylogenetic analyses provided evidence for the separation of Caryophyllales before the split of asterids and rosids, and revealed lineage-specific gene family expansions and losses. We sequenced spinach (Spinacia oleracea), another Caryophyllales species, and validated features that separate this clade from rosids and asterids. Intraspecific genomic variation was analysed based on the genome sequences of sea beet (Beta vulgaris ssp. maritima; progenitor of all beet crops) and four additional sugar beet accessions. We identified seven million variant positions in the reference genome, and also large regions of low variability, indicating artificial selection. The sugar beet genome sequence enables the identification of genes affecting agronomically relevant traits, supports molecular breeding and maximizes the plant's potential in energy biotechnology.
Nature arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTAPublications at Bielefeld UniversityArticle . 2014License: "In Copyright" Rights StatementData sources: Publications at Bielefeld UniversityPublications at Bielefeld UniversityOther literature type . 2014License: "In Copyright" Rights StatementData sources: Publications at Bielefeld UniversityMACO (Monografies Acadèmiques Catalanes en Obert)Article . 2025License: CC BY NC SAData sources: MACO (Monografies Acadèmiques Catalanes en Obert)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature12817&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 548 citations 548 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Nature arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTAPublications at Bielefeld UniversityArticle . 2014License: "In Copyright" Rights StatementData sources: Publications at Bielefeld UniversityPublications at Bielefeld UniversityOther literature type . 2014License: "In Copyright" Rights StatementData sources: Publications at Bielefeld UniversityMACO (Monografies Acadèmiques Catalanes en Obert)Article . 2025License: CC BY NC SAData sources: MACO (Monografies Acadèmiques Catalanes en Obert)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature12817&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2017 Spain, Italy, Australia, Spain, United Kingdom, Spain, United Kingdom, Italy, Spain, DenmarkPublisher:F1000 Research Ltd Funded by:EC | ELIXIR-EXCELERATE, EC | CORBELEC| ELIXIR-EXCELERATE ,EC| CORBELManuel Corpas; Horst Pichler; Ferran Sanz; Jon Ison; Rafael C. Jimenez; Brane Leskošek; Rowland Mosbergen; Radoslaw Suchecki; Bérénice Batut; Rob Hooft; Monther Alhamdoosh; Carole Goble; Harry Anton Talvik; Yasset Perez-Riverol; Victoria Stodden; Petr Holub; Bernard J. Pope; Ilian T. Todorov; Jonas Hagberg; Martin Cook; Maria Victoria Schneider; Daniel S. Katz; Mateusz Kuzak; Luis J. Oliveira; Josep Ll. Gelpi; Nicola Mulder; Alejandra Gonzalez-Beltran; Federico Gomez; Radka Svobodová Vařeková; Radka Svobodová Vařeková; Leyla Garcia; Andrew Treloar; Mikael Borg; Philippa C. Griffin; Daniel Vaughan; Robert Pergl; Steve Crouch; Sonika Tyagi; Salvador Capella-Gutierrez; Xiaochuan Wang; Madison Flannery; Allegra Via; Montserrat González Ferreiro; Björn Grüning; Michelle Barker; Nathan S. Watson-Haigh; Maarten van Gompel; Simon Gladman; Neil Chue Hong; David Thomas Mellor;pmid: 28751965
pmc: PMC5490478
handle: 10230/33094 , 20.500.14243/424036 , 11573/1663549 , 11343/256476
pmid: 28751965
pmc: PMC5490478
handle: 10230/33094 , 20.500.14243/424036 , 11573/1663549 , 11343/256476
Scientific research relies on computer software, yet software is not always developed following practices that ensure its quality and sustainability. This manuscript does not aim to propose new software development best practices, but rather to provide simple recommendations that encourage the adoption of existing best practices. Software development best practices promote better quality software, and better quality software improves the reproducibility and reusability of research. These recommendations are designed around Open Source values, and provide practical suggestions that contribute to making research software and its source code more discoverable, reusable and transparent. This manuscript is aimed at developers, but also at organisations, projects, journals and funders that can increase the quality and sustainability of research software by encouraging the adoption of these recommendations.
F1000Research arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/11343/256476Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTAOxford University Research ArchiveArticle . 2017License: CC BYData sources: Oxford University Research ArchiveOnline Research Database In TechnologyArticle . 2017Data sources: Online Research Database In TechnologyThe University of Manchester - Institutional RepositoryArticle . 2017Data sources: The University of Manchester - Institutional RepositoryDiposit Digital de la Universitat de BarcelonaArticle . 2017License: CC BYData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTAArchivio della ricerca- Università di Roma La SapienzaArticle . 2017Data sources: Archivio della ricerca- Università di Roma La SapienzaMACO (Monografies Acadèmiques Catalanes en Obert)Article . 2025License: CC BYData sources: MACO (Monografies Acadèmiques Catalanes en Obert)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.12688/f1000research.11407.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 94 citations 94 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 97visibility views 97 download downloads 84 Powered bymore_vert F1000Research arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/11343/256476Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTAOxford University Research ArchiveArticle . 2017License: CC BYData sources: Oxford University Research ArchiveOnline Research Database In TechnologyArticle . 2017Data sources: Online Research Database In TechnologyThe University of Manchester - Institutional RepositoryArticle . 2017Data sources: The University of Manchester - Institutional RepositoryDiposit Digital de la Universitat de BarcelonaArticle . 2017License: CC BYData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTAArchivio della ricerca- Università di Roma La SapienzaArticle . 2017Data sources: Archivio della ricerca- Università di Roma La SapienzaMACO (Monografies Acadèmiques Catalanes en Obert)Article . 2025License: CC BYData sources: MACO (Monografies Acadèmiques Catalanes en Obert)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.12688/f1000research.11407.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu