- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
SDG [Beta]
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2022 SwedenPublisher:Institute of Electrical and Electronics Engineers (IEEE) Dong Wang; Therese Enlund; Johan Trygg; Mats Tysklind; Lili Jiang;Buildings are highly energy-consuming and therefore are largely accountable for environmental degradation. Detecting anomalous energy consumption is one of the effective ways to reduce energy consumption. Besides, it can contribute to the safety and robustness of building systems since anomalies in the energy data are usually the reflection of malfunctions in building systems. As the most flexible and applicable type of anomaly detection approach, unsupervised anomaly detection has been implemented in several studies for building energy data. However, no studies have investigated the joint influence of data structures and algorithms’ mechanisms on the performance of unsupervised anomaly detection for building energy data. Thus, we put forward a novel workflow based on two levels, data structure level and algorithm mechanism level, to effectively detect the imperceptible anomalies in the energy consumption profiles of buildings. The proposed workflow was implemented in a case study for identifying the anomalies in three real-world energy consumption datasets from two types of commercial buildings. Two aims were achieved through the case study. First, it precisely detected the contextual anomalies concealed beneath the time variation of the energy consumption profiles of the three buildings. The performance in terms of areas under the precision-recall curves (AUC_PR) for the three given datasets were 0.989, 0.941, and 0.957, respectively. Second, more broadly, the joint effect of the two levels was examined. On the data level, all four detectors on the contextualized data were superior to their counterparts on the original data. On the algorithm level, there was a consistent ranking of detectors regarding their detecting performances on the contextualized data. The consistent ranking suggests that local approaches outperform global approaches in the scenarios where the goal is to detect the instances deviating from their contextual neighbors rather than the rest of the entire data.
IEEE Access arrow_drop_down Publikationer från Umeå universitetArticle . 2022 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2022 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2022.3160170&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert IEEE Access arrow_drop_down Publikationer från Umeå universitetArticle . 2022 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2022 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2022.3160170&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 SwedenPublisher:Institute of Electrical and Electronics Engineers (IEEE) Dong Wang; Therese Enlund; Johan Trygg; Mats Tysklind; Lili Jiang;Buildings are highly energy-consuming and therefore are largely accountable for environmental degradation. Detecting anomalous energy consumption is one of the effective ways to reduce energy consumption. Besides, it can contribute to the safety and robustness of building systems since anomalies in the energy data are usually the reflection of malfunctions in building systems. As the most flexible and applicable type of anomaly detection approach, unsupervised anomaly detection has been implemented in several studies for building energy data. However, no studies have investigated the joint influence of data structures and algorithms’ mechanisms on the performance of unsupervised anomaly detection for building energy data. Thus, we put forward a novel workflow based on two levels, data structure level and algorithm mechanism level, to effectively detect the imperceptible anomalies in the energy consumption profiles of buildings. The proposed workflow was implemented in a case study for identifying the anomalies in three real-world energy consumption datasets from two types of commercial buildings. Two aims were achieved through the case study. First, it precisely detected the contextual anomalies concealed beneath the time variation of the energy consumption profiles of the three buildings. The performance in terms of areas under the precision-recall curves (AUC_PR) for the three given datasets were 0.989, 0.941, and 0.957, respectively. Second, more broadly, the joint effect of the two levels was examined. On the data level, all four detectors on the contextualized data were superior to their counterparts on the original data. On the algorithm level, there was a consistent ranking of detectors regarding their detecting performances on the contextualized data. The consistent ranking suggests that local approaches outperform global approaches in the scenarios where the goal is to detect the instances deviating from their contextual neighbors rather than the rest of the entire data.
IEEE Access arrow_drop_down Publikationer från Umeå universitetArticle . 2022 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2022 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2022.3160170&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert IEEE Access arrow_drop_down Publikationer från Umeå universitetArticle . 2022 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2022 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2022.3160170&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2022 SwedenPublisher:Institute of Electrical and Electronics Engineers (IEEE) Dong Wang; Therese Enlund; Johan Trygg; Mats Tysklind; Lili Jiang;Buildings are highly energy-consuming and therefore are largely accountable for environmental degradation. Detecting anomalous energy consumption is one of the effective ways to reduce energy consumption. Besides, it can contribute to the safety and robustness of building systems since anomalies in the energy data are usually the reflection of malfunctions in building systems. As the most flexible and applicable type of anomaly detection approach, unsupervised anomaly detection has been implemented in several studies for building energy data. However, no studies have investigated the joint influence of data structures and algorithms’ mechanisms on the performance of unsupervised anomaly detection for building energy data. Thus, we put forward a novel workflow based on two levels, data structure level and algorithm mechanism level, to effectively detect the imperceptible anomalies in the energy consumption profiles of buildings. The proposed workflow was implemented in a case study for identifying the anomalies in three real-world energy consumption datasets from two types of commercial buildings. Two aims were achieved through the case study. First, it precisely detected the contextual anomalies concealed beneath the time variation of the energy consumption profiles of the three buildings. The performance in terms of areas under the precision-recall curves (AUC_PR) for the three given datasets were 0.989, 0.941, and 0.957, respectively. Second, more broadly, the joint effect of the two levels was examined. On the data level, all four detectors on the contextualized data were superior to their counterparts on the original data. On the algorithm level, there was a consistent ranking of detectors regarding their detecting performances on the contextualized data. The consistent ranking suggests that local approaches outperform global approaches in the scenarios where the goal is to detect the instances deviating from their contextual neighbors rather than the rest of the entire data.
IEEE Access arrow_drop_down Publikationer från Umeå universitetArticle . 2022 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2022 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2022.3160170&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert IEEE Access arrow_drop_down Publikationer från Umeå universitetArticle . 2022 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2022 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2022.3160170&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 SwedenPublisher:Institute of Electrical and Electronics Engineers (IEEE) Dong Wang; Therese Enlund; Johan Trygg; Mats Tysklind; Lili Jiang;Buildings are highly energy-consuming and therefore are largely accountable for environmental degradation. Detecting anomalous energy consumption is one of the effective ways to reduce energy consumption. Besides, it can contribute to the safety and robustness of building systems since anomalies in the energy data are usually the reflection of malfunctions in building systems. As the most flexible and applicable type of anomaly detection approach, unsupervised anomaly detection has been implemented in several studies for building energy data. However, no studies have investigated the joint influence of data structures and algorithms’ mechanisms on the performance of unsupervised anomaly detection for building energy data. Thus, we put forward a novel workflow based on two levels, data structure level and algorithm mechanism level, to effectively detect the imperceptible anomalies in the energy consumption profiles of buildings. The proposed workflow was implemented in a case study for identifying the anomalies in three real-world energy consumption datasets from two types of commercial buildings. Two aims were achieved through the case study. First, it precisely detected the contextual anomalies concealed beneath the time variation of the energy consumption profiles of the three buildings. The performance in terms of areas under the precision-recall curves (AUC_PR) for the three given datasets were 0.989, 0.941, and 0.957, respectively. Second, more broadly, the joint effect of the two levels was examined. On the data level, all four detectors on the contextualized data were superior to their counterparts on the original data. On the algorithm level, there was a consistent ranking of detectors regarding their detecting performances on the contextualized data. The consistent ranking suggests that local approaches outperform global approaches in the scenarios where the goal is to detect the instances deviating from their contextual neighbors rather than the rest of the entire data.
IEEE Access arrow_drop_down Publikationer från Umeå universitetArticle . 2022 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2022 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2022.3160170&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert IEEE Access arrow_drop_down Publikationer från Umeå universitetArticle . 2022 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2022 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2022.3160170&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu